仿生溶液法在镁合金表面诱导钙磷矿化层沉积的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有与自然骨接近的机械性能,其密度也与自然骨接近,而且镁离子是人体内具有重要功能的阳离子,对人体的生理系统具有非常重要的作用。所以镁合金具有较好的生物相容性,在负载的可降解硬组织植入材料方面具有很大的应用潜力。镁合金的耐蚀性问题是限制其作为硬组织替代材料的主要原因,对镁合金的表面改性处理成为了研究的热点。
     羟基磷灰石(HA)是一种重要的钙磷盐,也是人体自然骨的重要无机成分,具有良好的生物活性和生物相容性,但是HA的力学性能较差,不宜单独作为负载植入材料。仿生法是新兴的制备磷灰石涂层的方法,通过此方法可以在多种基体表面制备磷灰石涂层。
     自然矿化的研究表明带有负电荷的某些特殊基团能够吸附Ca2+,进而诱导钙磷盐在其位置沉积。植酸含—PO4 H2,EDTA含—COOH,都是优良的金属螯合剂,在较大的pH值范围内具有稳定且优良的与二价金属阳离子的螯合能力,尤其是Mg2+和Ca2+。用植酸和EDTA处理镁合金,可以在镁合金表面形成有序的—PO4 H2、—COOH的自组装分子膜,—PO4 H2、—COOH可以吸附溶液中的Ca2+,诱导钙磷盐形核沉积。
     本文通过自组装法和仿生溶液法相结合来实现在镁合金表面制备钙磷盐矿化层。试验的工艺是首先对试样进行植酸、EDTA自组装,然后在CaCl2溶液中滴加K2HPO4溶液对试样进行预钙化,最后在仿生溶液中浸泡。本文还研究了在仿生溶液中添加柠檬酸对经过EDTA自组装的试样表面钙磷盐沉积的影响。
     通过试样质量的变化和溶液pH值的变化发现植酸自组装膜和EDTA自组装膜具有一定的保护基体的作用。通过对矿化层的SEM分析、XRD分析和FTIR分析,发现经过植酸自组装的试样在仿生溶液中浸泡12天后表面沉积出均匀且较致密的以HA为主相的钙磷矿化层,经EDTA自组装的试样在浸泡8天后也生成了均匀致密的以HA为主相的钙磷矿化层。SEM图片显示两种自组装膜诱导的HA微观形貌相似,均为花簇状结构,EDTA自组装膜诱导的HA花簇状形貌更清晰,更规整。在仿生溶液中添加柠檬酸的试验结果表明,柠檬酸的加入对镁合金基体的腐蚀有一定的减缓作用,而且对钙磷沉积物的结晶状况有一定的调控作用。
Magnesium alloy is a light weight metal with mechanical properties similar to natural bone, moreover magnesium ion play an important role in biological systems of human, The biocompatible, osteoconductive of magnesium alloy are rather good, magnesium alloy have the potential to serve as degradable implants for loadbearing applications. But the corrosion resistance of magnesium alloy is poor, it limits the using of magnesium alloy as implant material for load-bearing. To improve the corrosion resistance, many researchers focus their eyes on surface treatment technology.
     Hydroxyapatite is an important apatite, and also is the important inorganic composition of nature bone. Its bioactivity and biocompatibility are excellent. The mechanical property of hydroxylapatite is poor and can not be used as implant materials for load-bearing alone. Biomimetic method is a newly developing method, we can deposit apatite coatings on many matrix through this method.
     Study of nature mineralization show some special groups with negative charge can absorb Ca2+ and then induced apatite deposit。Phytic acid contains—H2PO4, EDTA contains—COOH, they are all very good metal-chelator. They have stable and fine chelating ability in large pH range to chelating divalent metal cations, especially to Ca2+ and Mg2+.So phytic acid and EDTA be can used to dispose the magnesium alloy samples, then SAMs will be formation. The SAMs contains—H2PO4 or—COOH, can absorb Ca2+ and induce apatite nucleation.
     This paper synthesizes the method of SAMs and biomimetic to dispose apatite coating on magnesium alloy samples surface. First using phytic acid or EDTA to prepare SAMs, and then pre-calcified the matrix through dropping KH2PO4 to CaCl2, at last soaking the samples in biomimetic solution. This paper also studys the affection of citric acid on deposition of apatite when different mass citric acid was dissolved in biomimetic solution.
     By analysis the mass loss of samples and the pH of the soaking solution, the conclution can be got that both phytic acid SAMs and EDTA SAMs have the function of protecting the samples and induce the deposit of apatite, phytic acid SAMs is better. The result of SEM, XRD and FTIR indicate that a uniform and rather dense apatite mineralized layer which the main phase is hydroxyapatite has been deposition on samples surface that treated by phytic acid after soaking 12 days in biomimetic solution. After soaking 8 days, a uniform and dense apatite mineralized layer formed on samples surface treated by EDTA, hydroxyapatite is also the main phase of this layer. Both their morphology are petals, But the difference of them are apparently. The microstructure of mineralized layer that induced by EDTA SAMs is more clear and regular.The result of experiment show that citric acid not only can impact the deposition of apatite but also can impact the corrosion rate of samples.
引文
[1]郑玉峰,李莉.生物医用材料[M].哈尔滨:哈尔滨工业大学出版社,2005:16
    [2]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004:3-8
    [3]李世普.生物医用材料导论[M].武汉,武汉理工大学出版社,2000:52-53
    [4]郑玉峰,刘彬,顾雪楠.可生物降解性医用金属材料的研究进展[J].材料导报,2009,23(1) :1-6
    [5]Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai, et al.magnesium and its alloys as orthopedic biomaterials:A review [J]. Biomaterials,2006,27:1728-1734
    [6]刘振东,范清宇.应力遮挡效应-寻找丢失的钥匙[J].中华创伤骨科杂志,2002,4(1):62-64.
    [7]Hartwig A. Role of magnesium in genomic stability [J]. Mutat Res/Fund Mol Mech Mutagen 2001,475:113-121
    [8]张忠诚,徐衹云,张素洁.镁与人体健康[J].微量元素与健康研究,2006,23(4):67-69
    [9]黄琴,梁惠,杜凤沛.美德生理与临床应用[J].微量元素与健康研究,2005,22(2):61-63
    [10]Williams D. New interests in magnesium [J].Med Device Technol.2006,17 (3):9-10
    [11]A Lambotte, L'utilisation du. Magnesium comme materiel perdu dans l'osteosynthe'se. [J]. Bull Me'm Soc Nat Chir 1932,28:1325-1334
    [12]Witte F, Kaese V, Switzer H, Meyer-Lindenberg A, et al. In vivo corrosion of four magnesium alloys and the associatedbone response[J]. Biomaterials,2005,26:3557-63
    [13]Frank Witte, Jens Fischer Jens Nellesen. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials,2006,27:1013-1018
    [14]Alexis Pietak,Patricia Mahoney,George J,et al.Bone-like matrix formation on magnesium and magnesium alloys [J]. Mater Sci:Mater Med,2008,19:407-415
    [15]Heublein B,Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology[J].HEART,2003,89 (3):651-654
    [16]黄晶晶,任伊宾,张炳春,等.镁及镁合金的生物相容性研究[J].稀有金属材料工程2007,36(6):1102-1105
    [17]黄晶晶,张广道,任伊宾,等.AZ31B可降解镁合金的研究[J].功能材料,2007,38:1880-1883
    [18]Zijian Li, Xunan Gu, Siquan Lou. The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials,2008,29:1329-1344
    [19]于国宁,潘锋,闻久全,等.镁合金体内植入生物安全性的初步研究中国矫形外科杂志2008,16(13),1015—1018
    [20]陶海荣,张岩,何耀华,等.镁锌合金在动物体内降解及其相容性[J].中国组织工程研究与临床康复,2009,13(12):2232—2236
    [21]赵树萍,吕双坤,郝文杰.钛合金及表面处理[M].哈尔滨:哈尔滨工业大学出版社,2003,23-30
    [22]Lincks J, Boyan B D, Blanchard C R, et al. Response of MG63 osteoblast-like cells to tianium and tianium alloy is dependent on surface roughness and composition[J]. Biomaterials, 1999,19:2219-2232
    [23]Deligianni D D, Katsala N, Ladas S, et al. Effect of surface roughness of the titanium alloy Ti-6A1-4V on human bone marrow cell response sand protein adsorption[J]. Biomaterials,2001, 22:1241-1251
    [24]Ishikswa K, Miyamoto Y J, Nagayama M, et al. Blast coating method:new method of costing titanium surface with hydroxyapatite at room temperature[J].Biomed.Mater. Res, 1997,38:129-134
    [25]Yan L L, Leng Y, Weng L T. Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings[J]. Biomaterials,2003,24:2585-2592
    [26]Chou B Y, Chang E. plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 sceond phase and ZrO2 intermediate layer[J].surf.coats.technol,2002,153:84-92
    [27]Chou B Y,Chang E.Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyl-apatite coating on titanium alloy substrate[J].Mater.Sci:Mater.Med,2002,13:589-595
    [28]Thian E S, Huang J,Best S M, et al. Magnetron co-sputtered silicon-containing hydroxyl-apatite thin films-an in vitro study[J].Biomaterials,2005,26:2947-2956
    [29]陈彩凤.金属基纳米材料羟基磷灰石涂层材料研究进展[J].陶瓷学报,2002,23(4):241-245
    [30]Ball M D, Downes S, Scotchford C A, et al. Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation[J].Biomaterials,2001,22:337-347
    [31]D Alessio L, Ferro D, Marotta V, et al. Laser ablation and deposition of bioglass(r) 45S5 thin films [J]. Appl.Surf.Sci,2001,183:10-17
    [32]庄燕燕,胡仁,时海燕,等.钛表面电化学刻蚀及HAP/Ti复合生物材料的研究[J].厦门大学学报,2005,44:230-233
    [33]Cheng X L, Filiaggi M, Roscoe S G. Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy[J].Biomaterials,2004,25:5395-5403
    [34]Zhitomirsky I,Galor L,Electrophoretic deposition of hydroxyapatite [J]. Mater. Sci:Mater, Med,1997,8:213-219
    [35]陈晓明,李世普,韩庆荣等.在非水溶液体系中电泳沉积Ti-6Al-4V/BG/HA梯度涂层[J].硅酸盐学报,2001,29(6):565—568
    [36]Tanahashi Masami, Yao Takeshi, Kokubo Tadashi, et al. Apatite coating on organic polymers by a biomimetic process[J]. Journal of the American Ceramic Society,1994,77: 2805-2808
    [37]Florence Barrere, Margot M E Snel, Chemens A Van Blittersvijk,et al. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants [J]. Biomaterials, 2004,25:2901-2910
    [38]付涛.仿生法沉积羟基磷灰石涂层的研究进展[J].生物医学工程学杂志,2001,18(1):116-118
    [39]Guofeng Xu, Aksay Ilhan A,Groves John T,et al.Continuous Crystalline Carbonate Apatite Thin Films.A Biomimetic Approach[J].Am.Chem.Soc.2001,123:2196-2203
    [40]刘安,桂力,冯波.医用钛合金表面生物分子自组装薄膜的制备[J].功能材料,2004,35:2363-2366
    [41]顾汉卿,徐国风.生物医用材料[M].天津:天津科技翻译出版公司,1993:115-116
    [42]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:88
    [43]Sagiv J, Organized monolayerd by sdsorption,1, Formation and structure of oleophobic mixed monolayers on solid surfaces [J]. Am Chem Soc,1980,102:92-98
    [44]毫娟玲,杜竹玮,李浩然,等.利用自组装在模拟体液中诱导结晶的研究[J].科学技术与工程,2004,4(11):913—915
    [45]Liu Q, Ding J, Francis K M,et al.The role of surface functional groups in calcium phosphate nucleation on titanium foil:a self-assimbled monolayer technique[J]. Biomaterials,2002,6(4): 3103-3111
    [46]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2005,205
    [47]孙放,赵中伟.磷酸钙体系热力学分析[J].稀有技术与硬质合金.2006,34(2):35-39
    [48]王勇,高家诚,张亚平,张春燕.钛合金表面仿生矿化的热力学分析[J].2004,33(4):397-399
    [49]郑昌琼,冉均国,尹光福,等.湿法制备羟基磷灰石生物活性陶瓷粉末的热力学分析[J].成都科技大学学报,1996,93(5):67—70
    [50]Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3[J]. Journal of Biomedical Materials Research. 1990,24:721-734
    [51]Oyane A,Kim HM,Furuya T,et al. Preparation and assessment of revised simulated body fluids[J]. J Biomed Mater Res 2003,65A:188-195.
    [52]Oyane A,Onuma K,Ito A,et al. Formation and growth of clusters in conventional and new kinds of simulated body fluids[J]. J Biomed Mater Res 2003,64A:339-348.
    [53]徐群杰,万宗跃,费琳,等.植酸自组装膜对白铜缓蚀作用的光电化学研究[J].腐蚀科学与防护,2009,21(2):167—169
    [54]郑润芬,梁成浩,邵林.AZ91D镁合金植酸转化膜组成与耐蚀性能研究.大连理工大学学报,2006,46:16—19
    [55]Liu Jianrui,Guo Yina,Huang Weidong. Study on corrosion resistance of phytic acid conversion coating for magnesium alloys[J].Surface Coating Technology,2006,201:1536-1541
    [56]朱庆霞,吴建青.沉淀法制备碳酸羟基磷灰石的影响因素(英文)[J].硅酸盐学报,2007,35(6):690-694
    [57]林岚云.自组装仿生法快速沉积Ti/CHA涂层的研究[D].福州:福建师范大学,2005
    [58]华中师范大学,东北师范大学,陕西师范大学.分析化学[J],北京:高等教育出版社1986,10:266-269
    [59]Chuanbin Mao, Hengde Li, Fuzhai Cui,et al. The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite[J]. Mater.chem.1999,9,2573~2582
    [60]龚沛,王欣宇,郭洁.通过仿生法在纯美表面制备羟基磷灰石涂层的研究[J].化工中间体,2008,3:18-20
    [61]宋光铃,宋诗哲.镁在人体模拟体液中的腐蚀行为[J].物理化学学报,2006,22(10):1222—1226
    [62]Collins M J, Westbroek P, Muyzer C, et al. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons[J].Geochim Cosmochim,1992,56:1539-1544
    [63]Sikes C S, Yeung M L, Wheeler A P. Inhibition of calcium carbonate and phosphate crystallization by peptides enriched in asparitic acid and phosphoserine. In:Sikes C S,Wheeler A P ed. Surface reactive peptides and polymers:Discover and commercialization. Washington:ACS Books,1990,Ch.5.
    [64]崔福斋,生物矿化[M].北京:清华大学出版社,2007.5:166-169
    [65]朱宪彝,代谢性骨病学.天津:天津科学技术出版社,1989,82~89