铁矾渣提铟及铁资源利用新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为简化现有铁矾渣提铟流程,提高铟的直收率,消除低浓度SO2烟气排放危害,本论文提出了"NaOH分解-稀盐酸浸出-还原-TBP萃取”的含铟铁矾渣湿法处理新工艺。首先在NaOH体系中分解铁矾渣,产出Na2SO4溶液和含In、Zn的铁渣。前者经净化除杂、浓缩结晶回收芒硝后返回分解工序;后者则在盐酸体系选择性浸出和TBP萃取In、Zn,浸出渣经磁选集后作为炼铁原料。
     碱分解试验结果表明,在WNaOH:W铁矾渣=0.3814:1、温度60℃、液固比2:1、时间2h的最优条件下,铁矾渣分解率高达98.03%,As的浸出率为83.36%,In、Cu、Pb、Cd、Ag、Zn、Sb、Sn等有价金属绝大部留于分解渣中。碱分解过程中,铁主要以Fe3O4形式入渣。在温度40℃、液固比7:1、反应时间2h、MHC1/MTheory=1.8的最优条件下用稀HCl浸出分解渣,In、Zn、Cu、Cd、As、Sn、Sb、Pb、Ag的渣计浸出率分别为98.26%、99.35%、98.79%、98.93%、76.27%、68.50%、80.12%、64.82%和60.80%。89.25%的Fe留于浸出渣中,渣含Fe高达52.48%,经磁选集和除杂后可作为炼铁原料。
     在温度50℃、时间25min、铁粉用量为1.5倍理论量的最优条件下,采用铁粉还原浸出液中的三价铁并置换除杂。Fe3+的还原率达到99.90%,而As3+、Sb3+、Bi3+的脱除率分别为63.95%、100%和97.65%,In的损失率<1%。采用70%TBP+30%磺化煤油的有机相同时萃取净化液中的In、Zn,在相比O/A=1.5:1、室温、水相初始酸度1.5mol·L-1振荡及静置分层时间均为10min、三级逆流萃取的最佳工艺条件下,In、Zn平均萃取率分别为98.13%和99.05%,而Fe2+的萃取率小于1%。采用纯水反萃铟锌负载有机相,在室温、3级反萃、相比O/A=3:1、振荡和静置分层时间均为5min的最佳工艺条件下,Zn、In平均反萃率分别达到93.62%和99.10%。从萃取原液到萃余液,Zn、In的直收率分别为92.73%和97.24%。反萃液在常温下用锌板置换反萃液产出海绵铟和ZnCl2溶液,铟置换率大于99%。
     “NaOH分解-盐酸浸出-还原-TBP萃取”的含铟铁矾渣湿法处理流程实现了铁渣和低浓度502烟气的零排放,In和Zn的直收率大幅提高。浸出渣中的铁Fe含量高达52.48%,经磁选集和除杂后可作为炼铁原料,可以实现锌精矿铁资源利用并消除铁渣排放对生态环境的污染。
To simplify current process of indium extraction from jarosite residue, raise direct yield of indium and eliminate the polution of low concentration SO2, a new process of "NaOH decomposition-dilute hydrochloric acid leaching-reduction-TBP extraction" was proposed in this disseration. Jarosite residue was firstly decomposed in NaOH medium to produce Na2SO4 solution and iron residue bearing indium. Na2SO4 solution was concentrated and then refrigerated crystallization to recover mirabilite after arsenic removal, mother liquid was recycled to alkaline decomposition operation. After selective leaching of In and Zn with dilute hydrochloric acid, the magnetic separation of leached residue was carried out to produce iron concentrates that used as raw material in iron smelting. Indium and zinc in pregnant solution were simultaneously solvent extracted by TBP.
     The results of NaOH decomposition show that he decomposition ratio of ammonium jarosite can reach 98.03% under the following optimum conditions:WNaOH/WJarosite=0.3814:1,60℃, L/S ratio 2:1,2h. Impurity elements like Zn, In, Cu, Cd, Pb, Sb, Sn and Ag, are left in residue, while 83.36% of As is leached into pregnant solution in presence of AsO43-. DSC-TGA thermal analysis and XRD characterization results demonstrate that Fe is precipitated in form of Fe3O4 during alkaline decomposition. The content of Fe, In and Zn in decomposition residue is 38.81%,0.23% and 12.89%, respectively. After selective leaching with dilute HC1, the leaching ratio of In, Zn, Cu, Cd, As, Sn, Sb, Pb and Ag is 98.26%,99.35%,98.79%,98.93%,76.27%,68.50%,80.12%,64.82% and 60.80%, respectively, under the following optimum conditions:40℃, L/S ratio 7:1,2h, MHC1/MTheory=1.8.89.25% of Fe is left in leached residue with grade of 52.48%. After magnetic separation and impurities removal, iron concentrate obtained can be used as raw material for iron smelting.
     Impurity ions such as As3+, Sb2+ and Bi2+ in pregnant solution were removed by iron scrap, and their removing rate is 63.95%,100%, and 97.65%, respectively, at 50℃for 25min with iron scrap addition of 1.5 times of theoretical consumption. The reduction ratio of Fe3+ is closer to 100%, and the loss ratio of indium is lower than 1% during iron replacement process. Zn2+ and In3+ in purified solution were solvent extracted with 70%TBP+30% sulfated kerosene at room temperature for 10min with phase ratio of 1.5:1. After three-stage of countercurrent solvent extraction, the extraction ratio of Zn and In is 98.13% and 99.05%, respectively, while that of Fe2+ is lower than 1%. Zn2+ and In3+ in loaded organic phase was stripped by distilled water at ambient temperature for 5min with phase ratio of O/A=3:1. After three-stage of countercurrent stripping, the stripping rate of In and Zn is 99.10% and 93.62%, respectively. From purified solution to stripping solution, the total recovery ratio of Zn and In is 92.73% and 97.24%. Zinc plate was added into stripping solution to replacement sponge indium and purified ZnCl2 solution. The replacement rate of In3+ is higher than 99%.
     In the present process of "NaOH decomposition-dilute hydrochloric acid leaching-reduction-TBP extraction", iron residue and SO2 off-gas are not produced and the direct yield of In and Zn are higher. Iron content in the leached residue is 52.48%, which can be concentrated by magnetic separation as ironmaking raw materials. Consequently, iron resource in zinc concentrates can be utilizated and the environmental pollution due to iron residue emission are also eliminated
引文
[1]徐采栋,林蓉,王大成编著.锌冶金物理化学.上海:上海科学技术出版社,1979
    [2]彭容秋编著.重金属冶金学.长沙:中南大学出版社,2004
    [3]《铅锌冶金学》编委会编著.铅锌冶金学.北京:科学出版社,2003
    [4]梅光贵,王德润,周敬元,等编著.湿法炼锌学.长沙:中南大学出版社,2001
    [5]《重有色金属冶炼设计手册》编委会编著.《重有色金属冶炼设计手册》(铅锌铋卷).北京:冶金工业出版社,1995
    [6]徐鑫坤,魏旭编著.锌冶金学.昆明:云南科技出版社,1994
    [7]刘志宏.国内外锌冶炼技术的现状及发展动向.世界有色金属,2000(1):23-26
    [8]王忠实.中国锌冶金现状.有色冶炼,1996(6):1-5
    [9]陈邦俊.世界铅锌工业现状与展望.世界有色金属,1997(5):19-24
    [10]周敬元.铅锌冶炼技术现状及发展方向.有色金属工业,2001(5):42-45
    [11]张乐如.现代铅锌冶炼技术的应用与特点.世界有色金属,2007(4):20-22
    [12]未立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究.矿冶,2000,9(2):63-66
    [13]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径.湖南有色金属,1999,15(1):26-29
    [14]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术.冶金能源,1995,14(2):32-36
    [15]王振岭编著.电炉炼锌.北京:冶金工业出版社,2001
    [16]蔡军林.韶冶铅锌密闭鼓风炉技术改造.有色冶炼,1998(4):24-28
    [17]李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践.有色冶炼,2001(5):12-15
    [18]王志刚.密闭鼓风炉炼铅锌技术改进与展望.湖南有色金属,2003,19(6):19-22
    [19]Cunha M L, Gahan C S, Menad N, et al. Possibilities to use oxidic by-products for precipitation of Fe/As from leaching solutions for subsequent base metal recovery. Minerals Engineering,2008,21(1):38-47
    [20]马荣骏著.湿法冶金新进展.长沙:中南工业大学出版社,1996
    [21]马荣骏编著.湿法冶金原理.北京:冶金工业出版社,2007
    [22]陈家镛,于淑秋,伍志春著.湿法冶金中铁的分离与应用.北京:冶金工业出版社,1991
    [23钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出—亚硫酸锌还原—针铁矿法试验研究.有色金属,1981(1):82-87
    [24林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分),1996(5):4-6
    [25]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究.湿法冶金,1999(2):36-40
    [26]Cheng Terry C, Demopoulos George P, Shibachi Yutaka, et al. The precipitation chemistry and performance of the Akita Hematite Process-An integrated laboratory and industrial scale study. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC,2003.1657-1674
    [27]Mason Cashman R S, Grinbaum Baruch, Harlamovs Juris R, et al. Solvent extraction of halides from metallurgical solutions. Proceedings of the TMS Fall Extraction and Processing Conference. Vancouver BC:2003.765-776
    [28]谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ).国外金属矿选矿,2000(4):2-5
    [29]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展.国外金属矿选矿,2007(4):4-6
    [30]刘荣荣,刘书明.氧化锌矿浮选现状与进展.国外金属矿选矿,2002(7):17-19
    [31]段秀梅,罗琳.氧化锌矿浮选研究现状述评.矿冶,2000,9(4):47-51
    [32]Meng Xinghui, Han Kenneth N. Principles and applications of ammonia leaching of metals - a review. Mineral Processing and Extractive Metallurgy Review, 1996,16(1):23-61
    [33]胡云,朱云.难选氧化锌矿氨浸的热力学.云南冶金,2004,33(1):28-31
    [34]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学.过程工程学报,2002,2(1):81-85
    [35]张元福,梁杰,李谦,等.铵盐法处理氧化锌矿的研究.贵州工业大学学报(自然科学版),2002,31(1):37-40
    [36]刘晓丹,张元福.铵盐浸出氧化锌矿动力学研究.贵州工业大学学报(自然科学版),2004,33(2):82-84
    [37]张保平,唐谟堂,杨声海.锌氨配合体系电积锌研究.湿法冶金,2001,20(4):175-178
    [38]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌.中南工业大学学报,2003,34(6):619-623
    [39]张保平,唐谟堂.NH4C1-NH3-H2O体系浸出氧化锌矿.中南工业大学学报,2001,32(5):483-486
    [40]YANG Sheng-hai, TANG Mo-tang. Thermodynamics of Zn(Ⅱ)- NH3-NH4Cl-H2O system. Transaction of Nonferrous Metal Science of China, 2000,10(6):830-832
    [41]Ju Shaohua, Motang Tang, Shenghai Yang, Yingnian Li. Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy, 2005,80(1-2):67-74
    [42]唐谟堂,鲁君乐,袁延胜,等.Zn(Ⅱ)- NH3-(NH4)2SO4- H2O系的氨络合平衡.中南矿冶学院学报,1994,25(6):701-705
    [43]唐谟堂,欧阳民.硫铵法制取等级氧化锌.中国有色金属学报,1998,8(1):118-121
    [44]唐谟堂,张鹏,何静,等.Zn(Ⅱ)-(NH4)2SO4-H2O体系浸出锌烟尘.中南大学学报,2007,18(5):867-871
    [45]王延忠,朱云,胡汉.从氨浸液中萃取锌的试验研究.有色金属,2004,56(1):37-39
    [46]陈浩,朱云,胡汉.Zn(Ⅱ)- NH3- H2O体系中Lix54萃取锌.有色金属,2003,55(3):50-51
    [47]杨声海,唐谟堂,邓昌雄,等.由氧化锌烟灰氨法制取高纯锌.中国有色金属学报,2001,11(6):1110-1114
    [48]杨声海,唐谟堂,何静,等.锌焙砂氨法生产高纯锌.中国有色冶金,2004(2):14-17
    [49]杨声海,唐谟堂.Zn(Ⅱ)- NH3-NH4Cl- H2O体系生产金属锌.有色金属(冶炼部分),2001(1):7-9
    [50]唐谟堂,杨声海.Zn(Ⅱ)- NH3-NH4Cl-H2O电积锌工艺及阳极反应机理.中南工业大学学报,1999,30(2):153-155
    [51]YANG Sheng-hai, TANG Mo-tang, CHEN Yi-feng, et al. Anodic reaction kinetics of electrowinning zinc in system of Zn(Ⅱ)- NH3-NH4Cl- H2O. Transactions of Nonferrous Metals Society of China,2004,14(3):626-630
    [52]张乾,刘志浩,战新志,等.分散元素铟集的矿床类型和矿物专属性.矿床地质,2003,22(1):309-316
    [53]伍永田,王明艳,范森葵.分散元素铟的集规律研究综述.南方国土资源,2005(10):33-35
    [54]中国地质和矿物资源信息研究所编.中国矿物资源.北京:地质出版社,
    1993
    [55]王顺昌,齐守智.铟的资源、应用和市场.世界有色金属,2000(12):22-24
    [56]周智华,莫红兵,徐国荣,等.稀散金属铟集与回收技术的研究进展.有色金属,2005,57(1):71-76
    [57]伍锡军.国内外锗和铟回收工艺的发展.稀有金属,1995,19(3):218-223.
    [58]邹家炎,陈少纯.稀散金属产业的现状与展望.中国工程科学,2002,4(8):86-92
    [59]侬键桃.我国铟产业现状及发展.有色冶炼,2002(8):12-14
    [60]王树楷编著.铟冶金.北京:冶金工业出版社,2006
    [61]王强,李科立,刘贵德.铟在竖罐炼锌中的走向及其回收方法.有色矿冶,2003,19(5):34-36
    [62]颜美凤.韶关冶炼厂铟的综合回收及深加工探讨.中国资源综合利用,2003(2):11-12
    [63]杨斌,戴永年,罗文洲.硬锌提锌和集锗铟技术的研究和应用.真空科学与技术,1999,19(增刊):166-168
    [64]李淑兰,刘永成,翟大成,等.硬锌真空蒸馏集锗铟的研究.昆明工学院学报,1994,19(4):38-45
    [65]郑顺德.硬锌处理新工艺研究.有色金属(冶炼部分),1996(5):14-16
    [66]林兴铭.真空炉渣综合回收锗铟银等金属的碱熔法试验研究.有色矿冶,2004,20(3):33-34
    [67]胡新.从硬锌综合回收锗铟工艺浅析.有色金属(冶炼部分),1997(5):23-26
    [68]邓学广,李清湘,吴坤霖.硬锌真空蒸馏脱锌和集锗、铟.有色金属(冶炼部分),2000(2):31-34
    [69]郭天立,任益民.湿法炼锌生产中铟的集实践.有色矿冶,1998,12(6):25-28
    [70]林文军,刘全军.含铟锌渣浸出和萃取铟的研究.昆明理工大学学报(理工版),2006,31(2):23-25
    [71]王露娟,温加冰,闫杰军.提取铟工艺流程改革试验研究.有色矿冶,2000,16(2):31-34
    [72]马立明,马运柱.株冶铟集工艺改进及应用研究.矿冶工程,2003,23(2):59-62
    [73]陈志飞,姚先理,宁顺明,等.铁矾渣焙烧浸出萃取提铟的工艺.CN98112542.5,1998
    [74]宁顺明,陈志飞.从黄钾铁矾渣中回收锌铟.中国有色金属学报,
    1997,7(3):56-58
    [75]王令明.来冶铟系统技改设计思路浅述.湖南有色金属,2002,18(2):17-19
    [76]沈奕林,覃庶宏,熊志军.铁矾渣的处理及萃取提铟新工艺研究.有色金属(冶炼部分),2001(4):33-35
    [77]张银堂,陈志飞,宁顺明.In2O3还原挥发的热力学计算.中国有色金属学报,2002,12(3):592-595
    [78]马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟.湿法冶金,1997(2):58-61
    [79]宋素格,蒋开喜,李运刚,等.湿法炼锌过程中铟铁的分离.有色金属(冶炼部分),2006(3):5-7
    [80]毕胜.国内外颜料工业概况及发展趋势.涂料工业,2003,33(7):44-47
    [81]李永庆.国内氧化铁行业现状及发展趋势.化工科技市场,2004(10):27-31
    [82]曲颖.我国无机颜料工业的现状与展望.中国涂料,2006,21(7):5-15
    [83]周志刚.铁氧体磁性材料.北京:科学出版社,1981
    [84]刘志勇,刘九皋,包大新.高磁导率锰锌铁氧体材料新进展.新材料产业,2005,(12):12-16
    [85]彭龙,张怀武.我国软磁铁氧体产业发展与未来.新材料产业,2007,158(1):38-41
    [86]常青.水处理絮凝学.北京:化学工业出版社,2003
    [87]王辉.湿法炼锌工业挥发窑窑渣资源化综合循环利用.中国有色冶金,2007,(6):46-50
    [88]王伟光.锌渣综合利用的研究与利用.矿冶,1996,5(1):74-80
    [89]F Patino, E Salinas, M Cruells, et al. Alkaline decomposition-cyanidation kinetics of argentian natrojarosite. Hydrometallurgy,1998,49(3):323-336
    [90]A Rola, J Vinals, M Arranz, et al. Characterization and alkaline decomposition-cyanidation of beudantite-jarosite materials from Rio Tinto ores. Canadian Metallurgical Quarterly,1999,38(2):93-103
    [91]E Salinas, A Roca, M Cruells, et al. Characterization and alkaline decomposition- cyanidation kinetics of industrial ammonium jarosite in NaOH media. Hydrometallurgy,2001,60(3):237-246
    [92]A Rola, M Cruells, F Patino, et al. Kinetics model for the cyanidation of silver ammonium jarosite in NaOH medium. Hydrometallurgy,2006,81(1):15-23
    [93]F Patino, M Cruells, A Rola, et al. Kinetics of alkaline decomposition and cyanidation of argentian ammonium jarosite in lime medium. Hydrometallurgy, 2003,70(1):153-161