鸭瘟病毒gD基因发现及重组蛋白应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭瘟(Duck Plague, DP),又称鸭病毒性肠炎(Duck Enteritis),是由鸭瘟病毒引起的鸭、鹅和其他雁形目禽类动物发生的一种以血管损伤,组织出血,消化道黏膜糜烂,淋巴器官受损和全身实质性器官退行性病变为特征的急性、接触性、败血性传染病。鸭瘟病毒(Duck Plague Virus, DPV),又称鸭肠炎病毒(Duck Enteritis Virus, DEV),或鸭疱疹病毒1型(Anatid herpesvirus1, AnHV-1),属疱疹病毒科未定种的疱疹病毒。本研究在实验室前期构建的DPV CHv毒株基因文库的基础上,首次发现并鉴定了DPVCHv株gD基因(GenBank登录号:EU195085),并对gD基因开展系列研究,获得以下结果:
     1.鸭瘟病毒gD基因发现、克隆及生物信息学分析根据本实验室构建的DPV基因组文库,随机挑取文库中的重组质粒测序,并对测定的序列进行手工和计算机拼接,寻找病毒基因组的开放阅读框架(open reading frames, ORF)。拼接出的其中一个ORF1269采用多种网上生物信息学数据库及软件进行生物信息学分析。结果表明该ORF属疱疹病毒gD基因家族,为DPV的gD基因(GenBank登录号EU195085)。 gD基因完整编码区(ORF)全长1269bp,C+G共557bp,含量为44%。编码的gD蛋白含有422个氨基酸,分子量为47.5kD,理论等电点(PI)为6.66。进化树分析gD基因与与猫疱疹病毒-1型(FeHV-1)海豹疱疹病毒1型(PhoHV-1)以及犬疱疹病毒亲缘性较高;而gD蛋白与鸡传染性喉气管炎病毒(ILTV、GaHV-1)的gD亲缘性最高。gD具有一个特征性的信号肽位于氨基酸序列1-22位;在7-29,360-382氨基酸之间有一跨膜区;gD蛋白主要定位于内质网中(44.4%),其次在胞质、分泌小囊泡、生物膜外(包括细胞膜)、线粒体和细胞核中呈相同分布(11.1%)。gD有4个N-糖基化位点和9个O-糖基化位点。gD富含无规卷曲(Coil),含量高达59.72%;其次为p-折叠(Strand),含量为24.64%;而α-螺旋(Helix)含量较低占15.64%。
     2.鸭瘟病毒gD基因胞外区原核表达、产物纯化及其抗体制备根据发现的DPVgD基因序列,设计一对引物扩增DPV gD基因胞外区并将其克隆至pGEM-T载体中,经酶切和DNA测序鉴定正确后,将gD胞外区基因插入到pET32a载体的MscⅠ和HindⅢ之间,成功构建重组表达质粒pET32a-gD。将pET32a-gD转化感受态宿主菌E.coli BL21(DE3), IPTG诱导后经SDS-PAGE电泳检测出大小约为30kD的重组蛋白,重组蛋白以可溶和不可溶包涵体两种形式表达。Western blot检测发现该蛋白能与DPV阳性血清发生特异性反应。大量表达gD蛋白,使用Ni-NTA亲和层析进行纯化,将纯化后的gD胞外区蛋白与弗氏佐剂混合后免疫家兔三次,使用ELISA方法测定血清中抗gD抗体滴度。抗gD抗体滴度可达1:256000;采集免疫家兔血清,使用Protein A亲和层析纯化收获抗gD蛋白抗体IgG,为后续研究奠定基础。
     3.鸭瘟病毒gD基因真核表达载体构建及在COS-7细胞中的瞬时表达根据DPVgD基因序列,设计一对特异引物,用PCR方法从DPV基因组中扩增目标基因全序列,将其正向插入真核表达载体pEGFP-N1和pcDNA3.1(+)多克隆位点NheⅠ和HindⅢ酶切位点之间,成功构建了重组真核表达质粒pEGFP-N1-gD和pcDNA3.1(+)-gD,脂质体介导转染至COS-7细胞中,采用激光共聚焦显微镜直接观察、Western-blotting及间接免疫荧光方法检测gD蛋白的表达。激光共聚焦显微镜下可见转染了pEGFP-N1-gD质粒的COS-7细胞质内及细胞膜上出现荧光蛋白的点状聚集现象,显示gD主要定位于细胞膜上。Western-blotting显示gD在COS-7细胞中表达产物的分子量为55KD左右,比gD预测分子量要大,为gD糖基化修饰后成熟糖蛋白;间接免疫荧光检测发现在COS-7细胞中的胞浆、核内及细胞膜上均出现荧光蛋白的点状聚集现象,显示gD主要定位于细胞膜上
     4.鸭瘟病毒gD基因的转录及表达分析及gD蛋白在宿主细胞中的亚细胞定位研究常规方法制备鸭胚成纤维细胞,细胞长成单层后,接种病毒DPV CHv株,分别于接毒后Oh(未接毒细胞,空白对照组)、2h、4h、6h、8h、12h、24h、48h、60h采集样品,进行(1)细胞总RNA提取;(2)细胞总蛋白提取,(3)细胞固定。分别进行(1)荧光定量PCR检测gD基因转录时相;(2) Western-blotting检测gD蛋白表达时相;(3)间接免疫荧光检测gD亚细胞定位。结果表明:DPVgD基因在病毒感染鸭胚成纤维细胞后2h开始转录,8h开始表达,12h后转录量和表达量迅速增加后稍下降但仍维持较高水平至60h;该基因在DEF细胞中的表达产物呈现高丰度现象,主要为分子量55Kd的成熟糖蛋白.而gD蛋白在DEF细胞中的定位是一个动态变化过程,最早在接种后8h观察到定位于胞浆,12h见除胞浆外还定位于细胞核膜上,24h主要定位于细胞膜,48h在细胞核核膜、细胞膜及胞浆中均有定位。持续至60h后由于细胞融合崩解至定位不规则。该定位特征与疱疹病毒糖蛋白相同。检测到的时相定位与疱疹病毒糖蛋白的合成过程及定位基本相似,证实了DPVgD功能与其他疱疹病毒gD功能的相似性。
     5. DPV gD胞外区蛋白作为包被抗原检测鸭瘟抗体间接ELISA建立和应用本试验以pET32a为载体原核表达的重组DPVgD蛋白作包被抗原,进行间接ELISA检测DPV抗体的研究;并对该方法进行了优化和应用。采用方阵滴定实验确定重组表达蛋白与血清的最佳稀释度,最适包被重组抗原蛋白浓度为100ng/孔(1μg/mL,100μL/孔)包被后37℃1h,然后于4℃条件下过夜,最佳血清稀释度为1:80,0.5%的明胶PBST作封闭液,阴阳性的临界值(cut off值)为阴性样本OD值的平均值(x)+3SD。用建立的间接ELISA检测方法对收集到的DPV阳性血清、DHBV阳性血清、DHV阳性血清以及GpV阳性血清作1:80稀释,ELISA测定发现其只与DPV阳性血清发生反应。与本室自制的DPV全病毒ELISA试剂盒平行检测临床样本血清90份,吻合率为94%,检出率差异不显著。结果表明建立的gD-ELISA检测方法具有很好的特异性和敏感性,可以用于DPV感染的诊断和疫苗免疫后的抗体监测。
     6.基于DPV gD基因的PCR检测方法建立和应用依据DPV gD基因无信号肽片段序列设计引物,建立了检测DPVgD基因PCR方法并进行了应用。特异性试验中,从正常DEF细胞、鸭胚尿囊液及DHV. DHBV. GpVDNA中均未扩增出阳性条带,同时对同为疱疹病毒的HSV-1, HSV-2和BV来说,可从病毒DNA中能扩增出条带,说明了gD蛋白在同科病毒中的同源性,而扩增出的片段大小并不与gD基因预计扩增片段大小相同,说明了gD基因PCR引物及方法的特异性;敏感性试验结果显示能检测出lpg左右的DPV DNA;应用该PCR方法对DPV感染病料肝脏、脾脏、胸腺、淋巴结和法氏囊等免疫相关器官组织进行检测,均能扩增出与预期大小一致以及序列吻合的特异性条带,正常组织中未检出阳性条带。证实该方法可应用于临床DPV的检测。
Duck plague (DP), also called duck virus enteritis (DVE), is an acute, contagious and lethal septicemia herpes virus infection of ducks,geese,and swans. It had causes great economical loss in domestic ducks and wild waterfowls. Duck Plague Virus (DPV), also called Duck Enteritis Virus (DEV), or Anatid herpesvirus1(AnHV-1), is an unassigned species in the FAMILY HERPESVIRIDAE. Only few research in the fields of duck plague virus genomics and gene express were performed. Based on the DPV CHv DNA gene library constructed in our laboratory, DPV glycoprotein D (gD) gene sequence was first identified (Gene Bank Accession No. EU195085), a series of studies were conducted and results got as follows:
     l.The discovery, Cloning and Molecular Characterization of duck plague virus gD gene According to the CHv strain of duck plague virus (DPV CHv) DNA gene library constructed in our laboratory, A complete open reading frame (ORF1269) found was homology to herpes virus glycoprotein D gene. Sequence analysis confirmed that the ORF1269is DPV gD gene. Bioinformatics analysis showed that DPV gD gene is1269bp in length, encoded a422amino acid. Its molecular weight was45kD and the isoelectric point (PI) was6.66. DPV gD gene is closer to Felid herpesvirus1(FeHV-1), Phocid herpesvirus1(PhoHV-1) and Canid herpesvirus1(CaHV-1) than others in genetic relationship, while gD is closer to Gallid herpesvirus1(GaHV-1). Signal peptide located at positions laa-22aa. While transmembrane helix at7aa-29aa and360aa-382aa. There are4N-linked glyeosylation sites,9O-linked glyeosylation sites and25Phosphorylation site in DPV gD. The main location site in cell is endoplasmic reticulum, about44.4%, and the others are cytoplasm, vacuolar, extracellular, including cell wall, mitochondrial and nuclear, about11.1%each.
     2. Cloning, prokaryotic expression, purification and antibody preparation of Duck plague virus gD gene According to the Duck plague virus gD gene sequence found, Extracellular region of DPV gD gene about729bp was amplified and cloned into pGEM-T vector. After confirmed with restriction enzyme digestion and DNA sequencing. The gD gene fragment were sub cloned into Msc I and HindⅢ site of prokaryotic expression vector pET-32a (+).Recombinant plasmid pET-32a-gD was constructed successfully. Plasmid PET32a-gD was transformed into competent host bacteria E. coli BL21(DE3). After induction with IPTG, size of approximately30kD recombinant protein was detected by SDS-PAGE electrophoresis。Recombinant protein expressed as two forms: the soluble and insoluble inclusion body. The results of Western blotting demonstrated that the protein can specifically react with anti-DPV serum. The recombinant gD protein was purified by using Ni-NTA affinity chromatography. Immunized rabbit with purified gD extracellular region protein mixed with Freund's adjuvant three times, the ELISA method was used to measure the titers of anti-gD antibody in the serum. The titer is1:256000. Collected the immuned rabbit serum, anti-gD IgG was purified by using Protein A affinity chromatography,
     3. Construction of Duck plague virus gD gene eukaryotic expression vector and its transient expression in COS-7cells According gene sequence of DPVgD, a pair of specific primers was designed, the whole gene sequence was amplified from the DPV genome. Insert the fragment between the cloning sites NheⅠ and HindⅢ of the eukaryotic expression vector pEGFP-N1and pcDNA3.1(+), then the Recombinant eukaryotic expression plasmid pEGFP-N1-gD and pcDNA3.1(+)-gD were successfully constructed. then the Recombinant eukaryotic expression plasmids were transfected in COS-7cells Liposome-mediated method, using laser scanning confocal microscope,Western-blotting, indirect immunofluorescence method were used to observe the expression of gD protein. The fluorescent protein punctate aggregated in cytoplasm and cell membrane of COS-7transfected plasmid pEGFP-Nl-gD, mainly located in the cell membrane. Data of Western-blotting showed molecular weight of the gD expressed in COS-7cells was about55KD, a little larger than molecular weight of gD predicted. The fluorescent protein punctate aggregated in cytoplasm,nuclease and cell membrane of COS-7transfected plasmid pcDNA3.1(+)-gD,mainly located in the cell membrane.
     4.The transcription and expression analysis of duck plague virus gD and the subcellular localization of gD protein in the DPV-infected DEF cells
     DEF cells prepared as conventional methods used. CHv strains inoculated whenthe cells grow as a monolayer. Samples were collected respectively after inoculated Oh (blank control group),2h,4h,6h,8h,12h,24h,48h,60h. and dealed with(1) extracting total cellular RNA,(2) extracting total cellular proteins,(3) fixing cell. Then used the sample for (1) detecting gD gene transcription phase by Fluorescent quantitative PCR,(2) detecting gD gene expression phase by Western-blotting,(3) detecting gD subcellular localization of gD protein by indirect immunofluorescence method. The results show that the gene has begun to transcript from2h after DPV infection,8h began to express. Transcription and expression increased rapidly after12h then continued to60h. The expression product of gD gene in the DEF cells appeared high abundance, molecular weight of mainly mature glycoprotein is55kD. the subcellular localization of gD protein in DEF cells is a dynamic process. localized in the cytoplasm from8h after DPV infection, after12h in nuclear membrane, after24h in cell membrane, after48h in nuclear membrane, the cell membrane and cytoplasm. Continued to60h, the location is irregular because of cell fusion and disintegration. The location feature just the same herpes virus glycoprotein, Confirmed the similarity of DPVgD function with other herpes virus gD function.
     5. Establishment and Application of an Indirect Recombinant Glycoprotein D-based Enzyme-linked Immunosorbent Assays (ELISA) An indirect ELISA for detecting antibody of duck plague was developed using purified Recombinant gD as antigen. anti-DPV sera were used to carry ELISA.Data of chessboard titration showed that the fitful concentration of antigen is100ng per well (1μg/mL,100μL/well), and of serum, is1:80. Results of crossing test and interdiction test demonstrated specificity and sensitivity of the method. The right coating condition is in37℃1h, then4℃overnight. 5g/L gelatine PBST is the fitful block solution. The indirect gD-ELISA was specific and sensitive according to the detection of DHV, DHBV and GpV. Statistical data of90clinical samples showed that there was no difference between two detection systems: gD-ELISA and DPV-ELISA. The recombinant protein gD has high immunoreactivity. gD-based indirect ELISA method can be used in diagnosis of DPV in clinic.
     6Development and application of a Polymerase Chain Reaction to Detect DPV gD gene According to the DPV gD gene fragment lack of signal peptide, a PCR assay was developed. A specific DNA fragment about1009bp was obtained from DNA of DPV CHv strain and DPV vaccine. There are no specific fragments were amplified from normal DEF,duck embryo allantoic fluid, duck hepatitis virus, duck hepatitis B virus and gosling plague virus., at the same time,some brands varies in length can be amplified from DNA of herpes virus HSV-1,HSV-2and BV, demonstrated that gD is Congeneric in herpes virus homology. The length of the amplified fragment is not the same as the gD gene expected, indicating the specificity of the PCR primers and methods. Susceptibility test results show that about lpg DPV DNA can be detected. Application of the PCR method of to detect, the right length and specific fragment can be amplified from DPV infected tissue liver, spleen, thymus, lymph nodes and Bursa of Fabricius.The positive bands were not detected in the normal tissues. Confirmed that the method can be used in clinical detection of DPV.
引文
[1]殷震,刘景华.动物病毒学[M].第2版.北京:科学出版社,1997:988-998;1073-1077.
    [2]FAUQUET C.M., MAYO M.A., MANILOFF J., et al, Virus Taxonomy:Eighth Report of the International Committe on the Taxonomy of Viruses[M] California, USA: Elsevier Academic Press,2005:193-212
    [3]洪健,周雪平.ICTV第八次报告的最新病毒分类系统[J].中国病毒学,2006,21(1):84-96.
    [4]沈婵娟.鸭瘟病毒UL52基因部分特性及基因工程蛋白的研究[D].博士学位论文.雅安:四川农业大学.2010.
    [5]Domingo E., Parrish C. R., Holland J. J. Origin and Evolution of Viruses [M].2nd Ed. California, USA:Elsevier Academic Press,2008:447-475.
    [6]Roizman B, Pellett, PE. The family Herpesviridae:a brief introduction. Virology,2001, 2(4):2381-2397.
    [7]Trybala, E. Olofsson, S. Mardberg, et al. Structural and Functional Features of the Polycationic Peptide Required for Inhibition of Herpes Simplex Virus Invasion of Cells[J].Antiviral Research,2004,62 (3):125-134.
    [8]Perez S, Inman M, Doster A, et al. Latency-related gene encoded by bovine herpesvirus 1 promotes virus growth and reactivation from latency in tonsils of infected calves [J]. J Clin Microbiol.2005,43(1):393-401.
    [9]Hermens, W. T. J,,Verhaagen. Viral Vectors, Tools for Gene Transfer in the Nervous System[J].Progress in Neurobiology,1998,55 (4):399-432.
    [10]侯云德.分子病毒学[M].北京:学苑出版社,1990:114-142.
    [11]ARVIN A, FIUME G. C., MOCARSKI E. et al. Human Herpesviruses:Biology, Therapy, and Immunoprophylaxis[M]. Cambridge, UK:Cambridge University Press, 2007:70-92.
    [12]FUCHS W, VEITS J, HELFERICH D, et al. Molecular biology of avian infectious laryngotracheitis virus[J]. Vet. Res.2007,38:261-279.
    [13]Tulman ER, Afonso, Lu Z, et al. The Genome of a Very Virulent Marek's Disease Virus[J].Jounal of virology,2000,74:7980-7988.
    [14]Davison AJ, Scott. The Complete DNA Sequence of Varicella-Zoster Virus[J].J Gen Virol,1986,67:1759-1816.
    [15]Telford EA, Watson MS, McBride K,et al.The DNA sequence of equine herpesvirus-1[J]. Virology.1992,189(1):304-16.
    [16]Telford EA, Watson, Perry J, et al. The Complete Sequence of Equine Herpesvirus-4.[J].J Gen Virol,1992,79:1197-1203.
    [17]Wu Y., Cheng A,CMin., Wang M.S. et al. Complete Genomic Sequence of Chinese Virulent Duck Enteritis Virus[J]. J. Virol.2012,86(10):5965.
    [18]Li Y.F., HUANG B., MA X.L. et al. Molecular characterization of the genome of duck enteritis virus[J] Virology,2009, (391):151-161.
    [19]Wang J. C., Hoper D., Beer M., et al. Complete genome sequence of virulent duck enteritis virus(DEV) strain2085 and comparison with genome sequences of virulen and attenuated DEV strains[J]. Virus Research.2011,60:316-325.
    [20]Gale M, Jr Tan S L,Katze M G. Translational control of viral gene expression in eukaryotes[J]. Microbiol Mol Biol Rev,2000,64(2):239-80.
    [21]HARALD GRANZOW, FRANK WEILAND,et al.Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture:a reassessment[J]. J Virol, 1997,71 (3):2072-82.
    [22]Weir J P. Regulation of herpes simplex virus gene expression[J]. Gene, 2001(271):117-130.
    [23]Feldman L, Rixon FJ, Jean JH, etal. Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled[J]. Virology,1979,97(2):316-27.
    [24]Murphy F.A., Gibbs E. P.J., Horzinek M. C.,et al. Veterinary Virology [M].3rd Ed. San Diego, Academic Press.1999:301-326.
    [25]Jean, S.,LeVan, K. M.,Song, B.,et al. Herpes Simplex Virus 1 Icp27 Is Required for Transcription of Two Viral Late ([Gamma]2) Genes in Infected Cells [J]. Virology, 2001,283 (2):273-284.
    [26]Smith, Hardwicke, Sandri-Goldin, et al. Evidence That the Herpes Simplex Virus Immediate Early Protein Icp27 Acts Post-Transcriptionally During Infection to Regulate Gene Expression[J].Virology,1992,186 (1):74-86.
    [27]徐耀先,周晓峰,刘立德.分子病毒学[M].武汉: 湖北科学技术出版社,2000:103-128.367-384.
    [28]Dimmock N. J., Easton A. J., Leppard K. N. Introduction to Modern Virology[M].6th ed. Malden. BLACKWELL PUBLISHING.2007:139-141.
    [29]McGeoch DJ, Dolan A, Donald S, et al. Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1[J]. J Mol Biol. 1985,181(1):1-13.
    [30]Dolan A, Jamieson FE, Cunningham C, et al.The genome sequence of herpes simplex virus type 2[J]. J Virol.1998,72(3):2010-2021.
    [31]Perelygina L, Zhu L, Zurkuhlen H,et al.Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey[J]. Virol.2003,77(11):6167-6177.
    [32]Tyler SD, Peters GA, Severini A.Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses[J]. Virology.2005, 331(2):429-440.
    [33]Johnson MA, Tyack SG, Prideaux CT, et al. Sequence characteristics of a gene in infectious laryngotracheitis virus homologous to glycoprotein D of herpes simplex virus[J]. DNA Seq.1995;5(3):191-4.
    [34]Costes B, Ruiz-Argiiello MB, Bryant NA, et al.Both soluble and membrane-anchored forms of Felid herpesvirus 1 glycoprotein G function as a broad-spectrum chemokine-binding protein[J]. J Gen Virol.2005,86(Pt 12):3209-3214.
    [35]Tikoo S K, Fitzpatrick D R, Babiuk L A. Molecular cloning, sequencing and expression of functional bovine herpesvirus 1 glycoprotein gIV in transfected bovine cells[J].J Viol,1990,64(10):5132-5142.
    [36]程安春,汪铭书,文明,等.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J].高技术通讯,2006,16(9):948-953.
    [37]NICOLA AV, WILLIS SH, NAIDOO NN, et al. Structure function analysis of soluble forms of herpes simplex virus glycoprotein D [J]. J Virol,1996,70(6):3815-3822.
    [38]韦平,秦爱建主编重要动物病毒分子生物学[M].北京:科学出版社,2008:210-211.
    [39]Perez S, Inman M, Doster A, et al Latency-related gene encoded by bovine herpesvirus 1 promotes virus growth and reactivation from latency in tonsils of infected calves[J]. J Clin Microbiol.2005,43(1):393-401.
    [40]Whalley JM, Ruitenberg KM, Sullivan K,et al. Host cell tropism of equine herpesviruses:glycoprotein D of EHV-1 enables EHV-4 to infect a non-permissive cell line[J], Arch Virol.2007,152(4):717-25.
    [41]Azab W, Osterrieder N. Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins[J]. J Virol.2012,86(4): 2031-44.
    [42]Karger A, Schmidt J, Mettenleiter TC. Infectivity of a Pseudorabies Virus Mutant Lacking Attachment Glycoproteins C and D[J].journal of virolgy,1998,72 (9): 7341-7348
    [43]Deepak Shukla,Patricia G Spear. Herpesviruses and heparan sulfate:an intimate relationship in aid of viral entry. J. Clin. Invest,2001,108:503-510.
    [44]Kopp S. J., Storti C. S., Muller W. J. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at theMucosa[J]. Clinical and Developmental Immunology.2012, Article ID 284104,10 pages.
    [45]Fan Q., Amen M., Harden M., et al. Herpes B Virus Utilizes Human Nectin-1 but Not HVEM or PILRa for Cell-Cell Fusion and Virus Entry[J]. Journal of Virology,2012, 86 (8):4468-4476.
    [46]Trybala, E.Bergstrom, T. Spillmann, et al. Mode of Interaction between Pseudorabies Virus and Heparan Sulfate/Heparin[J].Virology,1996,218 (1):35-42.
    [47]Nauwynck, H. J. Functional Aspects of Aujeszky's Disease (Pseudorabies) Viral Protein with Relation to Invasion,VirμLence and Immungenicity[J].Vet Microbiol,, 1997,55:3-11.
    [48]Mettenleiter, Thomas C. Immunobiology of Pseudorabies (Aujeszky's Disease) [J].Veterinary Immunology and Immunopathology,1996,54 (1-4):221-229.
    [49]Regge N.D., Nauwynck H.J., Geenen K. et al. a-Herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites [J].The Journal of Cell Biology,2006,174(2):267-275.
    [50]Klupp B., Altenschmidt J., Granzow H., et al. Glycoproteins Required for Entry Are Not Necessary for Egress of Pseudorabies Virus[J]. JOURNAL OF VIROLOGY.2008, 82(13):6299-6309.
    [51]Alber DG, Killington RA, Stokes A. Solid Matrix-Antibody-Antigen Complexes Incorporating Equine Herpesvirus 1 Glycoproteins C and D Elicit Anti-Viral Immune Responses in Balb/C (H-2kd) and C3h (H-2kk) Mice[J].vaccine,2000,19(7-8): 895-901.
    [52]Blacklaws BA, Nash AA.Immunological memory to herpes simplex virus type 1 glycoproteins B and D in mice[J] J. Gen. Virol.1990,71:863-871.
    [53]Monteil M., Le Potier M. F., Cariolet R. Effective priming of neonates born to immune dams against the immunogenic pseudorabies virus glycoprotein gD by replication-incompetent adenovirus-mediated gene transfer at birth[J]. Journal of General Virology,1997,78:3303-3310.
    [54]Caselli E, Boni M, Di Luca D,et al.A combined bovine herpesvirus 1 gB-gD DNA vaccine induces immune response in mice[J]. Comp Immunol Microbiol Infect Dis. 2005,28(2):155-166.
    [55]Peralta A, Molinari P, Conte-Grand D, et al. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties[J]. Appl Microbiol Biotechnol. 2007,75(2):407-414.
    [56]Khattar SK, Collins PL, Samal SK. Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1 [J]. Vaccine.2010,28(18):3159-3170.
    [57]Peralta A, Molinari P, Conte-Grand D., et al.A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties [J]. Appl Microbiol Biotechnol.2007 75(2):407-414.
    [58]Van RooijE.M.A., RijsewijkF.A.M., Moonen-LeusenH.W., et al. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs[J]. Vaccine 2010 (28): 1808-1813.
    [59]Monteil M., Le Potier M. F., R. Cariolet, et al. Effective priming of neonates born to immune dams against the immunogenic pseudorabies virus glycoprotein gD by replication-incompetent adenovirus-mediated gene transfer at birth[J]. Journal of General Virology.1997,(78):3303-3310.
    [60]Haagmans B. L., van Rooij E M.A., Dubelaar M., et al. Vaccination of pigs against pseudorabies virus with plasmid DNA encoding glycoprotein D[J]. Vaccine,1999, (17):1264-1271.
    [61]Shiau A.L., Chu C.Y., Su W.C., et al. Vaccination with the glycoprotein D gene of pseudorabies virus delivered by nonpathogenic Escherichia coli elicits protective immune responses [J].Vaccine.2001, (19):3277-3284.
    [62]Weerasinghe CU, Learmonth GS, Gilkerson JR, et al. Equine herpesvirus 1 glycoprotein D expressed in E. coli provides partial protection against equine herpesvirus infection in mice and elicits virus-neutralizing antibodies in the horse [M]. Vet Immunol Immunopathol.2006,111(1-2):59-66.
    [63]Foote CE, Love DN, Gilkerson JR, et al.Serum antibody responses to equine herpesvirus 1 glycoprotein D in horses, pregnant mares and young foals[J]. Vet Immunol Immunopathol.2005,105(1-2):47-57.
    [64]SAIF Y M, BARNES H J, GLISSON, J R, et al. D iseases of Poultry [M].12th ed. Iowa:Blackwell publishing,2008:384-393.
    [65]黄引贤.拟鸭瘟的研究[J].华南农业大学学报(自然科学版),1959(1):1-13.
    [66]Frederick A. Murphy, E. Paul J. Gibbs, Marian C. Horzinek, et al. Veterinary Virology[M],3rd ed. California, USA:Academic Press,1999:321.
    [67]GARDNER R, WILKERSON J, JOHNSON JC. Molecular characterization of the DNA of Antaid Herpesvirus 1[J]. intervirology,1993,36(2):99-112
    [68]LIAN B, XU C., CHENG A.H., et al, Identification and characterization of duck plague virus glycoprotein C gene and gene product[J] Virology Journal,2010,7:349.
    [69]CHANG Hua, CHENG An-chun, WANG Ming-shu, et al. cloning, expression and characterization of gE protein of Duck plague virus[J].Virology Journal,2010,7:120.
    [70]HAN XJ,WANGJ W,MA B. Cloning and sequence of glycol-protein H gene of duck plague virus[J]. Agricultural Sciences in China,2006,5 (5):397-402.
    [71]ZHAO L C,CHENG A C,WANG M S, et al. Identification and characterization of duck enteritis virus dU TPase gene [J].A vian Dis,2008,52 (2):324-331.
    [72]JIA Ren-yong, CHENG An-chun, WANG Ming-shu et al Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus[J]. Virus Genes,2009,38:96-103.
    [73]CAI Ming-Sheng, CHENG An-Chun, WANG Ming-Shu, et al. Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene[J]. Intervirology, 2009,52:266-278.
    [74][] SHEN Chan-Juan, CHENG An-Chun, WANG Ming-Shu, et al. Identification and characterization of the duck enteritis virus UL51 gene[J].Arch Virol,2009,154: 1061-1069.
    [75]CARFF A, WILLIS S. H., WHITEBECK J. C, et al. Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor HveA[J] Molecular Cell,2001,8(7): 169-179.
    [76]AKHTAR J. SHUKLA D. Viral entry mechanisms:cellular and viral mediators of herpes simplex virus entry [J] FEBSJ.,2009,276(24):7228-7236.
    [77]FINCINSKA J., MINNEBRUGGEN G V, NAUWYNCK H. J., et al. Pseudorabies Virus Glycoprotein gD Contains a Functional Endocytosis Motif That Acts in Concert with an Endocytosis Motif in gB To Drive Internalization of Antibody-Antigen Complexes from the Surface of Infected Monocytes[J] JOURNAL OF VIROLOGY, 2005,79(11):7248-7254
    [78]文明.DEV基因文库构建、核衣壳蛋白基因的发现及克隆与表达[D].博士学位论文.雅安:四川农业大学.2005.
    [79]范薇,,程安春,汪铭书,等.鸭瘟病毒gD基因胞外区的原核表达及ELISA检测方法的建立与应用[J].中国兽医科学.2012,42(5):488-494.
    [80]贾仁勇,程安春,汪铭书,等.鸭瘟病毒UL24基因的分子特征分析[J].中国兽医科学.2009,39(02):110-118.
    [81]徐超.鸭瘟病毒gC基因的发现、原核表达和应用研究[D].博士学位论文.雅安.四川农业大学.2008.
    [82]葛菡,徐超,程安春,等.鸭瘟病毒TK基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(4):297-302.
    [83]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞中形态发生学的研究[J].畜牧兽医学报.2006,37(3):274-280.
    [84]文明,程安春,汪铭书,等.鸭病毒性肠炎病毒的提纯及其结构蛋白SDS-PAGE分析[J].中国兽医学报.2006,26(3):243-246.
    [85]姜泊,张亚历,周殿元主编.分子生物学常用实验方法[M].北京:人民军医出版社,1995:
    [86]孙志贤,汲言三,王升启,等.现代生物化学理论与研究技术[M].北京:军事医学科学出版社,1995:217-222.
    [87]翟中和,王喜忠,丁明孝主编.细胞生物学[M].北京:高等教育出版社,2000:22-25;158-204.
    [88]Sasaki M, Hasebe R, Makino Y, et al. Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D[J]. Genes Cells.2011,16(4):343-57.
    [89]Van de Walle GR, Peters ST, VanderVen BC et al.Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D[J]. J Virol.2008,82(23):11859-11868.
    [90]Caselli E, Boni M, Di Luca D, et al A combined bovine herpesvirus 1 gB-gD DNA vaccine induces immune response in mice[J]. Comp Immunol Microbiol Infect Dis. 2005,28(2):155-166.
    [91]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.d实验指南[M].第2版.北京:科学出版社,1992:880-887.
    [92]范薇,杨敬,隋丽华,等.钩端螺旋体外膜脂蛋白LipL32的重组表达及纯化[J].军事医学科学院院刊.2004,28(5):420-423.
    [93]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000:29-37.
    [94]凌明圣;许祥裕;丁树标.以包涵体形式存在的重组蛋白的纯化和体外折叠[J].中国生化药物杂志1995,16(3):135-139.
    [95]Momtaz H., Dehkordi P. G., Rezaeian A. A., et al.Cloning and phylogenetic analysis of gD gene of human herpes simplex virus type 2 in Iranian isolates[J]. African Journal of Microbiology Research Vol.2010,4 (11):1082-1086.
    [96]Johnson MA, Tyack SG, Prideaux CT, et al. Sequence characteristics of a gene in infectious laryngotracheitis virus homologous to glycoprotein D of herpes simplex virus[J]. DNA Seq.1995,5(3):191-194.
    [97]徐志文郭万柱,许雁峰等猪伪狂犬病病毒gD基因的生物信息学分析[J].中国兽医学报.2009,29(11):1382-1389,1394.
    [98]BENNETT A. M., HARRINGTON L., KELLY D. C. Nucleotide sequence analysis of genes encoding glycoproteins D and J in simian herpes B virus[J]. Journal of General Virology.,1992,73:2963-2967.
    [99]Zhao Y. Wang J. W. Characterization of Duck Enteritis Virus US6, US7 and US8 Gene [J]. Intervirology.2010,53:141-145.
    [100]NICOLA AV, PENG C, LOU H, et al. Antigenic structure of soluble herpes simplex virus (HSV) glycoprotein D correlates with inhibition of HSV infection[J]. J Virol, 1997,71(4):2940-2946.
    [101]NICOLA AV, WILLIS SH, NAIDOO NN, et al. Structure function analysis of soluble forms of herpes simplex virus glycoprotein D [J]. J Virol,1996,70(6): 3815-3822.
    [102]章晟SARS-CoV 3a蛋白以及炭疽致死毒素诱导细胞自噬的研究[D].博士学位论文.北京.军事医学科学院.2009.
    [103]夏玉凤.以GFP为报告基因来研究蛋白亚细胞定位[J].生物技术通报.2006,2:11-13.
    [104]许家喜,麻密,麻远,等.一种简单有效检测基因表达产物的方法[J]科学通报.1999.44(9):947-951.
    [105]XI You-wei ZHAO Jian WANG Zhen-hu et al. Expression of Chitinase Gene of HaSNPV,and Purification,Refolding of Its Recombinant Protein[J] China biotechnology.2010,12(2):110-115.
    [106]陈琳; 张亚东; 赵艳华,等.酵母表达重组人血清白蛋白检测方法的比较[J].生物技术通讯,2004,14(3):254-255.
    [107]张尧.鸭瘟病毒UL26.5基因的原核表达及在病毒感染细胞定位研究[D].硕士学位论文雅安.四川农业大学.2009.
    [108]林丹.鸭瘟病毒UL27基因主要抗原域蛋白的原核表达、纯化、抗体制备及在UL27蛋白表达时相和亚细胞定位中的应用[D].硕士学位论文雅安.四川农业大学.2009.
    [109]娄昆鹏.鸭瘟病毒UL28基因的克隆、原核表达、细胞定位和转录时相研究[D].硕士学位论文.雅安.四川农业大学.2009.
    [110]张显.鸭瘟病毒UL29基因的原核表达、细胞定位及转录表达时相研究[D].硕士学位论文雅安.四川农业大学.2009.
    [111]蒲阳.鸭瘟病毒UL33基因的克隆、原核表达、转录时相和细胞定位研究[D].硕士学位论文雅安.四川农业大学.2009.
    [112]钟小容鸭瘟病毒UL34基因的克隆、表达以及在病毒复制中的功能研究[D].硕士学位论文雅安.四川农业大学.2009.
    [113]蔡铭升.鸭瘟病毒UL35基因的原核表达、蛋白纯化、转录时相、表达时相及亚细胞定位[D].硕士学位论文雅安.四川农业大学.2009.
    [114]罗丹丹.鸭瘟病毒UL47基因转录时相分析及主要抗原域的原核表达和抗体制备[D].硕士学位论文雅安.四川农业大学.2009.
    [115]常华.鸭瘟病毒gE基因功能初步研究[D].博士学位论文.雅安.四川农业大学.2008.
    [116]Mahmoudian A, Markham PF, Noormohammadi AH, et al.Kinetics of transcription of infectious laryngotracheitis virus genes[J]. Comp Immunol Microbiol Infect Dis. 2012,35(2):103-115.
    [117]Aguilar J.S., Devi-Rao G.V., Rice M.K,et al.Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis[J]. Virology,2006, 348:233-241
    [118]TAN XY, BRUNOVSKIS P, VELICER L F. Transcriptional Analysis of Marek's Disease Virus Glycoprotein D, I, and E Genes:gD Expression Is Undetectable in Cell Culture[J]. JOURNAL OF VIROLOGY,2001,75 (5):2067-2075.
    [119]L IVA K K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and t he 2 [-Delta Delta C(T)] met hod [J]. Met hods, 2001,25 (4):402-408.
    [120]贾仁勇.鸭瘟病毒蛋白质组二维电泳特性和UL24基因的发现、原核表达及应用研究[D].博士学位论文.雅安.四川农业大学.2008.
    [121]Gryspeerdt AC, Vandekerckhove AP, Baghi HB, et al. Expression of late viral proteins is restricted in nasal mucosal leucocytes but not in epithelial cells during early-stage equine herpes virus-1 infection[J]. Vet J.2012,193(2):576-578.
    [122]张松,黄波, 夏雪峰,等.蛋白质亚细胞定位的生物信息学研究[J].生物化学与生物物理进展.2007,34(6):573-579.
    [123]李立奇,万瑛. 蛋白质的亚细胞定位预测研究进展[J].免疫学杂志.2009,25(5):602-604.
    [124]张松,夏学峰,沈金城,等.基于序列保守性和蛋白质相互作用的真核蛋白质亚细胞定位预测[J].生物化学与生物物理进展.2008,35(5):531-535.
    [125]Pearson, A.,Coen, D. M. Identification, Localization, and Regulation of Expression of the U124 Protein of Herpes Simplex Virus Type 1[J]. Journal of Virology.2002, 76(21):10821-10828.
    [126]王战勇.单纯疱疹病毒Ⅰ型包膜糖蛋白D的表达和功能检测[D].硕士学位论文济南.山东大学.2003.
    [127]范薇,于长明,杨敬,等.重组钩端螺旋体外膜蛋白酶联免疫吸附(ELISA)检测方法的建立[J].中国实验动物学报.2005,13(4):249-252.
    [128]范薇,于长明,杨敬,等.重组钩端螺旋体外膜蛋白ELISA检测方法的建立[C].中国实验动物学会第六届学术年会论文集.杭州.2004.
    [129]张礼壁.ELISA法应用于诊断病毒病的进展[J].病毒学报,1988,4(1):91-95.
    [130]程安春,汪铭书.酶联免疫吸附试验检测鸭瘟抗体的研究和应用[J].四川农业大学学报,1997,15(3):379-381.
    [131]Malmarugan, S.,Sulochana, S. Comparison of Dot-Elisa Passive Haemagglutination Test for the Detection of Antibodies to Duck Plague[J].Indian Veterinary Journal,2002, 79(7):648-651.
    [132]Kumar N. V., Reddy Y. N.,Rao M. V. S. Development of Enzyme Linked Immunosorbent Assay for the Detection of Antibodies to Duck Plague Virus[J].Indian Veterinary Journal,2004,81 (4):363-365.
    [133]齐雪峰,程安春,汪铭书,等.鸭瘟病毒抗体间接ELISA检测试剂盒的研制[J].中国兽医科学,2007,37(08):690-694.
    [134]孙涛鸭瘟病毒UL-6基因主要抗原域的原核表达和应用[D]硕士学位论文.雅安.四川农业大学.2008.
    [135]Dea S.,Wilson L.,Therrien D., et al. Competitive Elisa for Detection of Antibodies to Porcine Reproductive and Respiratory Syndrome Virus Using Recombinant E. Coli-Expressed Nucleocapsid Protein as Antigen[J].Journal of Virological Methods, 2000,87 (1-2):109-122.
    [136]Witte, S. B.,Chard-Bergstrom, et al. Development of a Recombinant Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay for Quantification of Antibodies against Porcine Reproductive and Respiratory Syndrome Virus[J].Clinical and Vaccine Immunology,2000,7 (4):700-702.
    [137]Chen H., Coote B., Attree S., et al. Evaluation of a Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies against Infectious Bronchitis Virus[J].Avian Pathology,2003,32 (5):519-526.
    [138]Lu L, Cheng A, Wang M, et al.Polyclonal antibody against the DPV UL46M protein can be a diagnostic candidate[J]. Virol J.2010,7:83.
    [139]Jia R, Cheng A, Wang M, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein[J]. J Virol Methods.2009, 161(1):38-43.
    [140]杨明凡,崔保安,张素梅,等鸡传染性喉气管炎病毒gD基因的表达及间接ELISA检测方法的初步建立[J].中国兽医学报.2009 29(3):253-285,267.
    [141]ZU L.C., SHEN Z.Q., LI J., et al. Development of PPA-ELISA for Detecting Antibodies against Porcine Pseudorabies Virus Using Truncated Recombinant Glycoprotein gD Expressed in E. coli[J]. Animal Husbandry and Feed Science, 2011,3 (6-12):29-34.
    [142]祖立闯,朱远茂,王延辉,等牛传染性鼻气管炎病毒重组gD蛋白间接ELISA方法的建立及应用[J].中国预防兽医学报.2008,30(7):537-543.
    [143]董华兴,侯喜林,谢金鑫,等.牛传染性鼻气管炎病毒DQ株gD基因表达及其间接ELISA方法的建立和初步应用[J].中国兽医志,2011,47(2):3-5.
    [144]肖镜,付瑞,贺争鸣.猿猴疱疹病毒B糖蛋白D的表达及抗原性探讨[J].中国实验动物学报.2007,1 5(6):436-440.
    [145]卢爱桃,姚松坡,呼和巴特尔.B病毒重组蛋白的构建及其抗原性检测[J].黑龙江畜牧兽医.2008,7:82-83.
    [146]Plummer P. J., Alefantis T., Kaplan S.,et al. Detection of Duck Enteritis Virus by Polymerase Chain Reaction[J]. Avian Diseases,1998,42 (3):554-564.
    [147]Hansen WR, Brown SE, Nashold SW, et al. Identification of duck plague virus by polymerase chain reaction[J]. Avian Dis.1999,43(1):106-15.
    [148]Pritchard L. I., Morrissy C.,Van Phuc K., et al. Development of a Polymerase Chain Reaction to Detect Vietnamese Isolates of Duck Virus Enteritis[J].Veterinary Microbiology,1999,68(1-2):149-156.
    [149]谢芝勋,谢志勤,刘加波,等.用聚合酶链反应检测鸭瘟病毒的研究[J].中国兽药杂志,2000,(4):12-14.
    [150]郭霄峰,廖明,严英华,等.利用PCR检测鸭瘟病毒[J].中国兽医科技,2002,(4):13-16.
    [151]杨晓燕,罗薇,齐雪峰.应用PCR检测成年鸭体内鸭瘟强毒的分布[J].中国兽医科技,2004,34(1): 66-69.
    [152]程安春,汪铭书,刘菲,等.PCR在鸭瘟临床诊断和免疫及致病机理研究中的初步应用[J].病毒学报,2004,20(4):364-369.
    [153]宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志2005;41(2):17-20.
    [154]赵妍,王君伟,邢明伟,等.二重Pcr检测鸭瘟病毒和鹅细小病毒的初步研究[J].中国预防兽医学报,2007,29(9): 710-713.
    [155]信洪一.鸭瘟病毒US3基因的发现、原核表达及应用研究[D].博士学位论文.雅安.四川农业大学.2008.
    [156]段玉友,崔治中,殷震用PCR扩增和克隆马立克氏病病毒糖蛋白D基因[J].中国病毒学.1996,11(2):176-182.
    [157]杨慧兰,李明,廖元兴,等.gD基因在生殖器疱疹PCR诊断中的研究[J].临床皮肤科杂志,1998,27(5):292-294.
    [158]王冰,张敏敏,刘正飞,等.牛疱疹病毒gD-PCR鉴别检测方法的建立[J].中国奶牛.2010,12:3-6.