多孔硅酸铝材料吸附剂的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护意识的增强,世界各国将实施更加严格限制燃料油中硫含量的新规定,为此进一步发展低硫汽油生产技术具有重要意义。吸附脱硫技术操作简单、方便、快速,成为目前较为关注的脱硫技术。与工业化的加氢脱硫相比,其投资成本及操作费用可降低一半以上,且不会降低汽油的辛烷值。但是其工业化面临的主要问题在于吸附剂的硫容量不高以及选择性差,因此目前最迫切的问题是制备高性能的吸附剂。复合分子筛材料同时具备介孔材料的孔道优势和微孔材料的选择性优势,在石油化工、吸附分离、大分子择形催化等领域具有广泛的应用前景。因此,本文尝试采用复合分子筛作为吸附脱硫剂以及作为吸附剂的载体进行汽油吸附脱硫,得到了较好的结果。
     采用碱处理ZSM-5的浆液作为硅铝源合成新型微孔-介孔复合分子筛MCM-41 -ZSM-5,采用XRD、BET等分析手段对其进行了表征,以模拟汽油吸附脱硫对分子筛进行性能评价。XRD和BET结果显示:产物为微孔、介孔双孔分布的复合分子筛,具有类MCM-41的典型六方介孔结构,长程有序性较好,孔分布集中,比表面积较高。通过制备过程的单因素考察,实验范围内找到了复合材料的最优制备条件。正交实验结果表明,pH值对分子筛的吸附性能影响最大,其次是碱浓度,影响较小的是晶化时间和碱处理时间,并得出了优化合成条件。
     以合成的复合分子筛为载体,采用浸渍法制备了两类高效吸附剂: Fe/ MCM-41 -ZSM-5和Ni-Co/MCM-41-ZSM-5。其活性组分分别为Fe2O3,Co3O4和NiO。通过对两种吸附剂的制备条件、吸附条件的考察,确定了适宜的制备条件和吸附工艺条件。Fe型吸附剂的适宜制备条件:浸渍液浓度0.20mol/L,浸渍时间10h,干燥温度100℃,550℃焙烧4h。最佳吸附条件:常温、常压,吸附时间1h,剂油比1:60,在该条件下吸附剂的饱和吸附量为36.46mgS/g吸附剂。Ni-Co型吸附剂的适宜制备条件为:负载量10%,浸渍时间12h,干燥温度100℃,450℃焙烧4h。最佳吸附条件与上述Fe型吸附剂相同,其饱和吸附量为36.84mgS/g吸附剂。当有芳烃存在时两种吸附剂的硫容量都有明显下降,说明芳烃对硫化物存在竞争吸附作用。当用总硫含量为250.7μg/g的真实汽油为研究对象时吸附剂的吸附量降低,分别为10.21、10.5mgS/g吸附剂,考察两种吸附剂的动态吸附效果,硫容量分别为8.6和9.6mgS/g吸附剂。分析吸附机理,π-络合可能是本论文中制备的两种吸附剂能够有效吸附噻吩类硫化物的主要因素。
With the enhanced awareness of environmental protection, countries around the world will implement more stringent restrictions on sulfur content in fuel oil in the new requirement, for the further development of low sulfur gasoline production technology is of great significance. The technology of adsorptive desulfurization is operated easily, expediently, quickly and become an important desulfurization technology. Compared to the others technology, adsorption desulfurization has several potential advantages: reduce the investment and operating cost markedly, no or quite less reduction of octane number. Key issue for the commercialization of adsorption desulfurization is developing new adsorbents with higher sulfur capacity and selectivity. The composite molecular sieves possess the pore advantage of the mesoporous material and the high selectivity of the microporous material has comprehensively applicational prospects in the fields such as petrochemical industry, adsorption, macromolecule shape selective catalysis, and so on.
     In this paper, the composite molecular sieve materials MCM-41-ZSM-5 were employed as adsorbents for adsorption desulfurization on model gasoline,the better result was obtained.
     A series of micro-mesoporous composite molecular sieves were synthesized by the assembly behaviors of alkali-treated ZSM-5 zeolite, and characterized by XRD, BET techniques. Adsorption properties for sulfur removal from model gasoline on the composite molecular sieves were studied. The results indicate the composite materials with microporous and mesoporous double pores-size distribution possess ordered hexagonal structure of MCM-41-type and high surface areas. The factors were studied one by one, got the optimum synthesis condition. Analysis of orthogonal experiments gives the orders of the importance of each factor in the synthesis of composite materials: pH value is the most important; it is more important to control the pH value than the concentration of NaOH; less important influential factors are crystallization time and time of alkali-treatment.
     The composite molecular sieve material as the support, two kinds of adsorbents were prepared using impregnation method: Fe/MCM-41-ZSM-5 and Ni-Co/MCM-41-ZSM-5. Active components within the adsorbents were Fe2O3, and Co3O4,NiO respectively. The effects of preparation and adsorption conditions on performance of the adsorbents were investigated and the suitable conditions were determined.
     The suitable preparation conditions of Fe/MCM-41-ZSM-5 are iron nitrate concentration 0.20 mol/L, impregnation time 10h, drying temperature 100℃, calcinating 550℃for 4h. The suitable adsorption conditions are: ambient temperature and pressure, the adsorbent-oil ratio 1:60, adsorption time 1h. The saturated adsorption quality is 36.46mgS/g adsorbent. The suitable preparation conditions of Ni-Co/MCM-41-ZSM-5 are : nickel and cobalt loaded quality 10%, impregnation time 12h, drying temperature 100℃, calcinating 450℃for 4h. The suitable adsorption conditions are the same as the first adsorbent. The saturated adsorption quality is 36.84 mgS/g adsorbent.
     Aromatic hydrocarbon compound have strong competence with sulfide. Therefore, it is necessary that how to enhance selectivity of sorbent, when use the real gasoline, the sulfur capacities of the adsorbents are 10.21、10.5mgS/g adsorbent respectively. Reviewed by dynamic adsorption experiments, the sulfur capacities are 8.6 and 9.6 mg S/g.π-complexation will be the mainly mechanism of the adsorption.
引文
[1]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社, 2004, 2-10
    [2]李玉平,潘瑞丽,霍全,等.微孔-介孔复合分子筛的合成近况[J].石油化工, 2005, 34(2): 188-194
    [3]高滋.沸石催化与分离技术[M].北京:中国石化出版社, 1999, 1-13
    [4]潘晖华,何鸣元,宋家庆.分子筛材料研究及其在催化裂化过程中的应用前景[J].化学进展, 2006, 18(4): 501-506
    [5]宋毅,牛雄雷,翟玉春,等.微孔分子筛合成进展[J].石油化工. 2005, 34(6): 807-811
    [6]姚云峰,张迈生,杨燕生.纳米介孔分子筛MCM-41的微波辐射合成法[J],物理化学学报, 2001, 17(12): 1117-1121
    [7]祝淑芳,倪文.介孔分子筛材料合成及应用研究的现状及进展[J].岩石矿物学杂志,2006,25(4): 327-334
    [8] On D T, Lutic D, Kaliaguine S. Composites of micro- and mesoporousmaterials: Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Microporous Mesoporous Mater., 1999, 27(2):181-192
    [9] Beck J S, V artuli C, Ro thW J, et al, A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am. Chem. Soc., 1992, 114: 10834-10854
    [10] Monnier A, Schuth F, Huo Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science, 1993, 261: 1299-1303
    [11] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/ inorganic composite-materials[J]. Nature, 1994, 368: 317-321
    [12]李斌,王剑华,郭玉忠,等.表面活性剂模板法制备介孔材料[J].材料导报, 2006 11(20): 36-39
    [13] Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, 6(8): 1176-1191
    [14] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. Chem. Soc. Chem. Commun., 1993: 680-686
    [15]吴祚祥.高硫柴油吸附脱硫剂的研究[J].化学工业与工程, 2007, 24(1): 28-31
    [16]李玉平,潘瑞丽,霍全,等.一种合成高水热稳定性微孔-介孔复合分子筛β沸石/MCM-41的新方法[J].无机化学学报, 2005, 10: 1455-1460
    [17]马广伟,葛学贵,黄少云.新型中微孔复合分子筛的合成[J].工业催化,2003,11(1): 40-42
    [18]郭万平,黄立民,陈海鹰,等.新型MCM-41-β-沸石中孔-微孔复合分子筛[J].高等学校化学学报,1999, 20(3): 356-361
    [19] Karlsson A , Stocker M , Schmidt R. Composites of micro-and mesoporous materials: simultaneous syntheses of MFI/MC-41 like phases by a mixed template approach[J]. Microporous Mesoporous Mater., 1999, 27(223): 181-185
    [20] Poladi R H P R, Landry C C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1[J]. Journal of Solid State Chemistry, 2002, 167: 363-369
    [21]徐玲,徐海燕,吴通好,等.新型复合分子筛的合成和催化应用[J].催化学报, 2006, 27(12): 1150-1159
    [22] Huang L, Guo W, Deng P, et al. Investigation of synthesizing MCM-41/ZSM-5 composites[J]. Phys. Chem. B, 2000, 104: 2817-2823
    [23] Kloetstra K R, Zandbergen H W, Jansen J C, van Bekkum H. Overgrowth of mesoporous MCM-41 on faujasite [J]. Micropor. Mater., 1996, 6 (5-6): 287-293
    [24] Liu Yu, Zhang Wenzhong, Pinnavaia T J . Steam-stable aluminosilicate meso-structures assembled from zeolite type Y seeds [J]. J Am. Chem. Soc., 2000, 122: 8791-8792
    [25] Liu Yu, Zhang Wenzhong, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from ZSM-5 and zeolite beta seeds [J]. Angew Chem. Int. Ed., 2001, 40 (7): 1255 -1258
    [26] Liu Yu, Pinnavaia T J. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking [J]. J Am. Chem. Soc., 2003, 125(9): 2376 -2377
    [27] Zhang Z T, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. J Am. Chem. Soc., 2001, 123(21): 5014-5021
    [28] Zhang Z T, Han Y, Zhu L, et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J]. Angew Chem. Int. Ed., 2001, 40 (7): 1258-1262
    [29] Zhu L, Xiao F S, Zhang Z T, et al. High activity in catalytic cracking over stable mesoporous aluminosilicates[J]. Catalysis Today, 2001, 68: 209-216
    [30]李工,阚秋斌,吴通好,等.具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较[J].高等学校化学学报, 2002, 23(6): 1171-1173
    [31]肖丰收,韩宇,裘式纶.介孔分子筛的酸性和水热稳定性[J].高等学校化学学报, 2002, 23(10): 1847-1853
    [32]李福祥,吴岚,秦梦庚,等.中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报, 1998, 26(2): 102-107
    [33]王云芳,尹风利,史德青,等.新型炭复合材料吸附剂脱除汽油中硫化物的研究[J].石油炼制与化工,2006, 37(6): 37-40
    [34] Ma Xiaoliang, Sprague Michael, Song Chunshan. Deep Desulfurization of Gasoline by Selective Adsorption over Nickel-Based Adsorbent for Fuel Cell Applications[J]. Catalysis Today, 2006, 111: 74-83
    [35]冯孝庭.吸附分离技术[M].北京:化学工业出版社, 2000, 116-123
    [36] Irvine R L. Process for desulfurizing gasoline and hydrocarbon [P]. US Patent 5730860, 1998
    [37]王华峰.清洁氧化生产低硫油品技术[D].黑龙江大庆石油学院, 2006
    [38] Gislason J. Phillips sulfur-removal process nears commercialization [J]. Oil Gas, 2002, 99 (3):74-78
    [39] Ma Xiaoliang,Lu Sun, Song Chunshan. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell application[J]. Catalysis Today, 2002, 77: 107-116
    [40]陈焕章,李永丹,赵地顺.催化裂化汽油脱硫技术进展[J].化工科技, 2004, 12(3): 46-51
    [41]张晓静,秦如意,刘金龙.汽油吸附脱硫工艺技术-LADS工艺[J].天然气与石油. 2003, 21(1): 39-42
    [42] UOP LLC. Removal of organic sulfur compounds from FCC gasoline using regenerableadsorbents [P]. USP 5843300, 1998
    [43]罗国华,徐新,佟泽民,等.沸石分子筛选择吸附焦化苯中的噻吩[J].燃料化学学报, 1999, 27 (5): 466-480
    [44] Weitkamp J, Schwark M, Ernest S. Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5[J]. J Chem. Soc. Chem. Commun., 1991, 25: 1133-1134
    [45] Chica A, Strohmaier K, Iglesia E. Adsorption, desorption and conversion of thiophene on H-ZSM-5[J]. Langmuir, 2004, 20(25): 10982-10991
    [46] King D L, Faz C, Flynn T. Desulfurizafion of gasoline feedstocks for application in fuel reforming[C]. Detroit, Michigan : Society of Automotive Engineers(SAE), 2000
    [47]曾小军,张晓昕,宗保宁.负载型吸附剂用于柴油吸附脱硫的研究[J].无机盐工业, 2005, 37(10): 52-55
    [48] Hernandez-Maldonado A J, Yang R T. Desulfurization of diesel fuels by adsorption via pai-complexation with vapor exchanged Cu (I)-Yzoelites[J]. J Am. Chem. Soc., 2004, 126(4): 992-993
    [49] Ma X, Velu S, Kim J H, Song C. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications[J]. Applied Catalysis B:Environmental, 2005, 56: 137-147
    [50] Yang R T, Herna′ndez-Maldonado A J, Yang F H. Desulfurization of Transportation Fuels with Zeolites Under Ambient Conditions[J]. Science, 2003, 301 (4): 79-81
    [51] Salem A B S H. Naphtha Desulfurization by Adsorption [J]. Ind. Eng. Chem. Res., 1994, 33(2): 336-342
    [52] Tian Fuping, Jiang Zongxuan, Liang Changhai. Deep Desulfurization of Gasoline by adsorption on Mesoporous MCM-41[J].催化学报, 2005, 26(8): 628-630
    [53] Dai Wei, Zhou Yaping, Su Wei, et al. Thiophene capture with complex adsorbent SBA-15/Cu(I)[C]. 4th Pacific Conference on Adsorption Science and Technology, Tianjin, 2006
    [54]崔榕,刘晓勤. Ce-MCM-41分子筛吸附剂的制备及其在模拟汽油脱硫中的性能[J].天然气化工, 2008, 33(2): 11-16
    [55]冯丽娟,王振永,李春虎,等.汽油吸附脱硫研究进展[J].化学研究与应用, 2006, 18(11): 1257-1261
    [56]宋春敏,阎子峰.高表面积MCM-41的合成与性能[J].物理化学学报,2002,18(3): 279-283
    [57]宋春敏,阎子峰,王槐平,等.用碱处理的ZSM-5沸石合成MCM-41型结构复合分子筛的研究[J], 2006, 30(5): 113-117
    [58]苗毅,关明华.清洁燃料的开发与生产[J].石油炼制与化工, 2000, 21(8): 1-6
    [59]徐林刚,李永红.改性分子筛吸附脱硫[J].石油化工高等学校学报, 2007, 20(1): 48-51
    [60] Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of superamolecular- templated mesoporous materials[J]. Angew Chem. Int. Ed., 1999, 38(1-2): 56-77
    [61] Rac B, Molnar A, Forg P, et al. A comparative study of solid sulfonic acid catalysts based on various ordered mesoporous silica materials[J]. J Mol. Catal. A: Chem., 2005, 244: 46-57
    [62] Zhao J W, Gao F, Fu Y L, et al. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography[J]. Chem. Commun., 2002, 7: 752-753
    [63]高峰,赵建伟,张松,等.中孔分子筛SBA-15作为液相色谱固定相以及在疏基化合物分离中的应用[J].高等学校化学学报, 2002, 23(8): 1494-1497
    [64] Doadrio A L, Sousa E M B, Doadrio J C, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery[J]. J Control Release, 2004, 97: 125-132
    [65] Toshiyuki Y,Takashi T,Hideaki Y. Fe3+ coordinated to amino-functionalized MCM-41: an adsorbent for the toxic oxyanions with high capacity, resistibility to inhibiting anions, and reusability after a simple treatment[J]. J Collooid interf Sci, 2004, 274: 451-457
    [66] Esparza J M, Ojeda M L, Campero A, et al. Development and sorption characterization of some model mesoporous and microporous silica adsorbents[J]. J Mol. Catal. A; Chem., 2005, 228: 97-110
    [67] Wang L N, Qi T, Zhang Y. Novel organic-inorganic hybrid mesoporous materials for boron adsorption[J]. Colloid Surf A: Physicochem Eng Aspects, 2006, 275: 73-78
    [68]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978, 1-38
    [69] Tian Fuping, Jiang Zongxuan, Liang Changhai. Deep Desulfurization of Gasoline by adsorption on Mesoporous MCM-41[J].催化学报, 2005, 26(8): 628-630
    [70] Masaru Ogura, Shin-ya Shinomiya, Junko Tateno. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Applied Catalysis A: General, 2001, 219: 33-43
    [71]张宝吉.钛硅分子筛二元复合物(TS-1/Ti-MCM-41)的制备表征及其在几种精细化学品合成中催化性能的研究[M].北京:石油化工科学研究院, 2002: 61-64
    [72] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-718
    [73]闫永辉,卜欣立,尚平.吸附法脱除FCC汽油中含硫化合物的新技术[J].河北化工, 2003, 19(6): 5-8
    [74] Velu S, Ma X, Song C. Zeolite-based adsorbent for desulfurization of jet fuel by selective adsorption[J], Am.Chem. Soc., Div. Fuel Chem. Prepr. 2002, 47: 447-448