介孔分子筛SBA-15用于低浓度挥发性有机化合物(VOCs)吸脱附的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机气体(VOCs)是一类重要的大气污染物,给环境和人类健康带来严重威胁,其污染控制技术日益引起高度重视。吸附技术是处理VOCs的有效手段,转轮吸附技术解决了低浓度有机气体富集的连续性问题,其吸附性能好坏的关键是吸附剂。SBA-15介孔分子筛具有比表面积高、主孔道尺寸均一、孔壁厚、稳定性较好等特点,自首次合成以来一直受到广泛关注,在催化、吸附和分离等各领域均有潜在应用前景。本文主要通过调变合成条件制备出不同的SBA-15介孔分子筛,并将其用于VOCs(甲苯和乙酸乙酯)吸脱附性能的研究。主要研究内容如下:
     1、以三嵌段聚合物P123(EO_(20)PO_(70)EO_(20))为模板剂,TEOS(正硅酸四乙酯)为硅源,酸性条件下合成了常规SBA-15分子筛;以CTAB(十六烷基三甲基溴化铵)为模板剂,TEOS为硅源,碱性条件下合成了MCM-41分子筛。小角X射线衍射、N_2吸脱附表征结果表明,合成的两种分子筛具有典型的二维六方介孔结构,且二者有相似的比表面积。分别用穿透曲线和程序升温脱附考察了甲苯和乙酸乙酯在MCM-41以及SBA-15分子筛上的吸脱附性能。实验表明,和MCM-41相比,甲苯在SBA-15上具有更高的吸附量和较高脱附温度;而乙酸乙酯在两种分子筛上表现出相似的吸脱附性能。两种有机分子与分子筛之间的相互作用强弱用亲性指数表示,结果表明这两种分子筛均呈亲乙酸乙酯、憎甲苯的性能。甲苯在SBA-15分子筛上具有较高的脱附温度是由于SBA-15分子筛中所含的微孔内具有较高吸附势,因而需要更大的脱附活化能。和微孔分子筛TS-1、Silicalite-1等相比,有机气体在介孔分子筛上更容易脱附。
     2、通过调节合成过程中晶化温度(分别为80℃,100℃,135℃)和晶化时间(分别为0 h,12 h,1 d,2 d,5 d)两种方式调变SBA-15孔道结构。分子筛的孔道性质仍通过小角X射线衍射、N_2吸脱附表征;同时用穿透曲线和程序升温脱附研究甲苯和乙酸乙酯在所合成分子筛上的吸脱附性能。分析结果表明,晶化温度升高,样品的比面表积下降;随晶化时间延长,样品中的介孔含量增多,表明在高温和长时间晶化条件下,更多的微孔向介孔转化。根据不同有机气体在分子筛上的吸脱附行为探讨了晶化过程中有机模板剂和无机物种间脱离逐步形成孔道的可能过程。对有机气体吸脱附实验表明:晶化温度提高,气体吸附量减小,脱附温度降低;分子筛随晶化时间延长,有机气体吸附量先增加后减小。实验结果证实甲苯吸附量和分子筛中微孔含量有关,SBA-15分子筛对甲苯的吸附容量比对乙酸乙酯的吸附容量要小得多。
     3.用TG-DTG考察了甲苯和乙酸乙酯在SBA-15分子筛上的吸脱附性能,分别用ASTM E698、Friedman与OFW三种经典的动力学方法计算了乙酸乙酯在分子筛样品上的脱附活化能E、指前因子lgA及其随反应进程的变化曲线。有机气体穿透曲线达到平衡后用空气吹扫,根据不同操作条件下的气体脱附浓度与时间的关系,分析了甲苯和乙酸乙酯在分子筛上的扩散过程,表明扩散过程受到介孔孔道的限制。
Volatile organic compounds (VOCs) are one of the main air pollutants, which can be a threaten to environment and human health. Its pollution control has attracted more and more attention. Adsorption technologies has been recognized as an efficient way and the thermal swing rotor adsorption technology could condense the low concentration VOCs continuously. The key issue of this technology is the adsorbents. Mesoporous SBA-15 molecular sieve has high specific surface area, large uniform main pore sizes, thick pore wall and good stability, which is potential for catalysis, adsorption, separation etc. In this thesis, a series of mesoporous SBA-15 molecular sieves were prepared and evaluated for its applicability as a sorbent for adsorption of VOCs, using toluene and ethyl acetate as the model compounds. The main contents in this paper are summarized as follows:
     1. SBA-15 mesoporous molecular sieves were synthesized under acidic condition, using Pluronic P123 (EO_(20)PO_(70)EO_(20), EO=CH_2CH_2O- and PO = -CH_2(CH_3)_3CHO-) as the template and TEOS (Tetraethylorthosilicate) as the silica source. MCM-41 material was synthesized under alkaline condition, using CTAB (Cetyltrimethylammonium bromide) as the template. SA-XRD (Small-angle X-ray diffraction) and N_2-sorption isotherms results for the two kinds of samples exhibit the P6mm space group mesophases structure properties, with similar BET (Brunauer-Emmett-Teller) surface areas. The adsorption/desorption properties of toluene and ethyl acetate on SBA-15 and MCM-41 have been evaluated using breakthrough curves and TPD (temperature programmed desorption) techniques. A larger amount of toluene adsorption and a higher desorption temperature were observed on the SBA-15; while both samples exhibited similar properties for ethyl acetate sorption. The interaction between organic molecules and adsorbents were evaluated by affinity index. It was found that SBA-15 and MCM-41 are philic to ethyl acetate but phobic to toluene. The larger amount toluene retained and higher desorption temperature of toluene on SBA-15 were also ascribed to the higher adsorption potential existed in the micropores. In contrast to microporous adsorbents such like TS-1 and Silicalite-1, desorption of organic gases from mesoporous molecular sieves could be achieved at lower temperature.
     2. The pore structures of SBA-15 mesoporous molecular sieves were manipulated by synthesizing at different temperatures (80℃, 100℃, 135℃) and aging at different time (0 h, 12 h, Id, 2 d, 5 d). All materials were investigated by SA-XRD and N_2-sorption isotherm techniques. The results show that the surface area declined at the higher aging temperature and the mesoporous volume of samples increased with aging time, which was probably due to the fact that a gradual transition from micropore to mesopore under the higher aging temperature and the longer aging time. The sorption properties of toluene and ethyl acetate on the SBA-15 samples were tested by breakthrough curves and TPD techniques. The interactions processes may exist between organic template and inorganic silica species are discussed on basis of sorption results. Less adsorption capacities and easier desorption were observed with increasing aging temperature. When it came to the different aging time, the adsorption capacities of organic gases first increased then decreased. Experiments confirmed that the dynamic adsorption capacities of toluene was proportional to its micropore volume, and the ethyl acetate adsorption capacity on SBA-15 is much higher than that of toluene.
     3. The sorption properties of methanol and ethyl acetate on SBA-15 materials were investigated by TG-DTG analysis, and three classical dynamics methods (ASTM E698、Friedman and OFW) were used to further analysis. The ethyl acetate desorption properties was evaluated in terms of activation energy for desorption, pre-exponential factor and variation curve with desorption processes. Air purge was operated after the breakthrough curves reached equilibrium. Diffusion coefficients of toluene and ethyl acetate were obtained, based on the gas concentration and desorption time under operating condition. It was found that the diffusion was limited by the pore structure.
引文
[1]陈平,陈俊.挥发性有机化合物的污染控制[J].石油化工环境保护,2006,29(3):20-23
    [2]吴永文,李忠,奚红霞等.VOCs污染控制技术与吸附催化材料[J].离子交换与吸附,2003,19(3):88-95
    [3]吕唤春,潘洪明,陈英旭等.低浓度挥发性有机废气的处理进展[J].化工环保,2001,21(6):324-326
    [4]闫勇.有机废气中VOC的回收方法[J].化工环保,1997,17(6):332-335
    [5] Pires J., Carvalho A., Carvalho M. B..Adsorption of volatile organic compounds in Y zeolites and pillared clays [J], Micropor. Mesopor. Mater., 2001, 43 (3): 277-278
    [6] Gupta V. K., Verma N., Removal of volatile organic compounds by erogenic condensation followed by adsorption [J]. Chem. Eng. Sci., 2002,57 (14): 2679-2696
    [7] Yamauchi H., Akio K., Tsutomu H., et al. Performance of VOCs abatement by thermal swing honeycomb rotor adsorbers [J]. Ind. Eng. Chem. Res., 2007,46: 4316-4332
    [8] Matisov(?) E., (?)krab(?)kov(?) S.. Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples [J]. J. Chromatogr. A., 1995,707: 145-179
    [9] 近藤精一,石川达雄,安部郁夫著.李国希译.吸附科学[M],北京化学工业出版社,2005:2-30
    [10] 黄文强,李晨曦主编.吸附分离材料[M],化学工业出版社:北京,2005:2-6
    [11] Thomas W. J., Crittenden B.. Adsorption Technology and Design, Elsevier Science & Technology Books, 1998: 3-38
    [12] 冯孝庭主编.吸附分离技术[M].化学工业出版社,北京,2000:3-8
    [13] 傅献彩,沈文霞,姚天扬.物理化学第四版[M].高等教育出版社,1990:2-6
    [14] Duong D. Do. ADSORPTION ANALYSIS, Imperial College, 1998: 2-5
    [15] Roque-Malherbe R. M. A.. Adsorption and diffusion in nanoporous materials, CRC Press, 2007: preface
    [16] Inagaki S., FukushimaY., Kuroda K.. Synthesis of highly ordered mesoporous materials from a layered polysilicalite [J]. J. Chem. Soc. Commun., 1993: 680-682
    [17] Beck J. S., Vartuli J. C, Roth W. J.. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc, 1992, 114 (27): 10834-10843
    [18] Kresge C. T., Leonowicz M. E., Roth W. J.. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992,359: 710-712
    [19] Yang P. D. The Chemistry of Nanostructured Materials[M]. World Scientific Publishing Co. Pte. Ltd, 2003: 39-68
    [20] Soler-Illia G. J. A. A., Crepaldi E. L., Grosso D., et al. Block copolymer-templated mesoporous oxides [J]. Curr. Opin. Colloid Interf. Sci., 2003, 8(1): 109-126.
    [21] Trong On D., Desplantier-Giscard D., Danumah C, et al. Perspectives in catalytic applications of mesostructured materials [J]. Appl. Catal. A, 2003, 253: 545-602
    [22] 徐如人,庞文琴等.分子筛与多孔材料化学[M].北京,科学出版社,2004:528-539.
    [23] Fulvio P. F., Pikus S., Jaroniec M.. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis [J]. J. Mater. Chem., 2005, 15: 5053-5049
    [24] Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular templating [J]. Curr. Opin. Colloid Interface Sei., 2002, 7: 92-106
    [25] Zhao D., Sun J., Li Q., et al. Morphological control of highly ordered large pore mesoporous silica SBA-15 [J]. Chem. Mater, 2000,12: 275-279
    [26] Naik S. P., Elangovan S. P., Okubo T., et al. Morphology Control of Mesoporous Silica Particles [J]. J. Phys. Chem. C, 2007, 111: 11168-11173
    [27] Simon P. R W., Ulrich R., Spiess H., et al. Block copolymer-ceramic hybrid materials from organically modifiedceramic precursors [J]. Chem. Mater, 2001,13: 3464-86.
    [28] Soler-Illia G. J. A. A, Scolan E., Louis A., et al. Design of mesostructured titanium oxo based hybrid organic-inorganic networks [J]. New J. Chem., 2001,25: 156-65
    [29] Yang P., Zhao D., Margolese D. I., et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem. Mater, 1999,11: 2813-26.
    [30] Monnier A., Schuth E, Huo Q., et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261: 1299-1303
    [31] Tanev P, Pinnavaia T. J.. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995,261: 865-867
    [32] Brinker C. J, Lu Y., Sellinger A., Fan H.. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv. Mater., 1999,11 (7): 579-585
    [33] Edler K. J.. Current understanding of formation Mechanisms in Surfacetant- templated materials [J]. Aust.J. Chem. 2005, 58: 627-634
    [34] Wan Y., and Zhao D. Y. On the controllable soft-templating approach to mesoporous silicates [J]. Chem. Rev., 2006,107 (7): 2821-2856
    [35] Ymg J.Y., Mehnert C. P., Wong M. S.. Synthesis and applications of supramolecular- templated mesoporous materials [J]. Angew. Chem. Int. Ed., 1999,38: 56-77
    [36] Fryxell G. E., Liu J.. Designing surface chemistry in mesoporous silica in: Eugene Papirer (Ed.), Adsorption at Silica Surfaces, Marcel Dekker, New York, 2000: 665-688
    [37] Huo Q. S., Margolese D. I., Ciesla U., et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature, 1994, 368: 317
    [38] Huo Q. S., Margoles D. I., Stucky G. D.. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials [J]. Chem. Mater., 1996, 8 (5): 1147-1160
    [39] 詹望成,卢冠忠,王艳芹.介孔分子筛的功能化制备及催化性能研究进展[J].化工进展,2006,25(1):1-7
    [40] Brunei D., Blanc A. C., Galarneau A.. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals [J]. Catal. Today, 2002, 73: 139-152
    [41] Melero J. A., Grieken R. V., Morales G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials, Chem. Rev., 2006,106: 3790-3812
    [42] Wight A. P., Davis M. E.. Design and preparation of organic-inorganic hybrid catalysts [J]. Chem. Rev, 2002,102: 3589-3614
    [43] (?)ye G., Glomm W. R., Vr(?)lstad. T.. Synthesis, functionalisation and characterisation of mesoporous materials and sol-gel glasses for applications in catalysis, adsorption and photonics [J]. Adv. Colloid Interface Sei., 2006,123-126: 17-32
    [44] Li Y., Zhang W. H., Zhang L., et al. Direct synthesis of Al-SBA-15 mesoporous materials via hydrolysis-controlled approach [J]. J. Phys. Chem. B, 2004,108 (28): 9739-9744
    [45] Li Y, Feng Z. C., Lian Y. X., et al. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions [J]. Micropor. Mesopor. Mater., 2005,84 (1-3): 41-49
    [46] 王月娟,王雪俐,谢冠群等.CuO/SBA-15催化剂上巴豆醛选择性加氢[J].催化学报,2008,29(5):482-488
    [47] Timofeeva M. N., Jhung S. H., Hwang Y. K., et al. Ce-silica mesoporous SBA-15- type materials for oxidative catalysis: Synthesis, characterization, and catalytic application [J]. Appl. Catal. A, 2007,317 (1): 1-10
    [48] Dai Q. G., Wang X. Y, Chen G. P., et al. Direct synthesis of Cerium(Ⅲ)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method [J]. Micropor. Mesopor. Mater., 2007,100 (1-3): 268-275
    [49] Hoffmann F, Cornelius M, Morell J., et al. Silica-based mesoporous organic- inorganic hybrid materials [J]. Angew. Chem. Int. Ed, 2006, 45: 3216-3251
    [50] 王月娟,马静萌,孙春风等.乙二胺丙基功能化的SBA-15介孔分子筛的合成及催化性能[J].石油化工,2005,34(11):1086-1090
    [51] Sayari A., Hamoudi S.. Periodic mesoporous silica-based organic-inorganic nano- composite materials [J]. Chem. Mater., 2001,13: 3151 -3168
    [52] Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279: 548-552
    [53] Zhao D. Y, Huo Q. S., Feng J. L., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc., 1998,120: 6024-6036
    [54] Katiyar A., Yadav S., Smirniotis P. G et al. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules [J]. J. Chromatogr. A, 2006,1122: 13-20
    [55] Ryoo R., Ko C. H., Kruk M. et al. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network? [J]. J. Phys. Chem. B, 2000,104: 11465-11471
    [56] Peterlik H., Fratzl P.. Small-Angle X-ray scattering to characterize nanostructures in inorganic and hybrid materials chemistry [J]. Monatshefte f(?)r Chemie, 2006, 137: 529-543
    [57] Zhao D. Y., Sun J. Y, Li Q. Z.. Morphological control of highly ordered Mesoporous silica SBA-15 [J]. Chem. Mater. 2000,12: 275-279
    [58] Zhou W.. HRTEM investigation of mesoporous molecular sieves [J]. Micron, 2000, 31: 605-611
    [59] Diaz I., Alfredsson V., Sakamoto Y.. Transmission electron microscopy in formation and growth of ordered mesoporous materials [J]. Curr. Opin. Colloid Interface Sci., 2006,11: 302-307
    [60] Paredes J. I., Mart(?)nez-Alonso A., Tasc(?)n J. M. D.. Application of scanning tunneling and atomic forcemicroscopies to the characterization of microporous and mesoporous materials [J]. Micropor. Mesopor. Mater., 2003, 65: 93-126
    [61] Yang L. M., Wang Y. J., Luo G. S. et al. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions [J]. Micropor. Mesopor. Mater., 2005, 84: 275-282
    [62] Mirji S. A., Halligudi S. B., Mathew N.. Adsorption of methanol on Si (100)/SiO2 and mesoporous SBA-15 [J]. Colloids Surf. A., 2006,287: 51-58
    [63] Sing K. S. W.; Everett D. H.; Haul R. A. W.. Reporting physisorption data for gas/solid systems: with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure Appl. Chem., 1985,57 (4): 603-619
    [64] Brunauer, S., Emmett P. H.; Teller, E. Adsorption of gases in multimolecular layers [J]. J. Am. Chem. Soc., 1938, 60: 309-319
    [65] Barrett E. P.; Joyner L. G.; Halenda P. P.. The determination of pore volume and area distributions in porous substances: I. computations from nitrogen isotherms [J]. J. Am. Chem. Soc., 1951, 73: 373-380
    [66] Kruk M., Jaroniec M., Sayari A.. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements [J]. Langmuir, 1997,13: 6267-6273
    [67] Jaroniec M., Solovyov L. A.. Improvement of the Kruk-Jaroniec-Sayari Method for pore size analysis of ordered silicas with cylindrical mesopores [J]. Langmuir, 2006, 22: 6757-6760
    [68] 于世涛,刘福胜.固体酸与精细化工[M].化学工业出版社:北京,2006:60-89
    [69] Ma Y. R., Qi L. M., Ma J. M.. Large-pore mesoporous silica spheres: synthesis and application in HPLC [J]. Colloids Surf. A, 2003,229 (1-3) : 1-8
    [70] Che S., Lim S., Kaneda M., et al. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process [J]. J. Am. Chem. Soc., 2002,124: 13962-13963
    [71] Janssen A. H., Voort P. V. D., Koster, A. J.. A 3D-TEM study of the shape of mesopores in SBA-15 and modified SBA-15 materials [J]. Chem. Commun., 2002: 1632-1633
    [72] Parida S. K., Dash S., Patel S.. Mishra B.K. Adsorption of organic molecules on silica surface [J]. Adv. Colloid Interface Sei., 2006,121: 77-110
    [73] Yang C.M., Zibrowius B., Sch(?)th F.. A novel synthetic route for negatively charged ordered mesoporous silica SBA-15 [J].Chem. Commun., 2003 (14) : 1772-1773
    [74] Fryxell G.E.. The synthesis of functional mesoporous materials [J]. Inorg. Chem. Commun., 2006,9: 1141-1150
    [75] Mercier L., Pinnavaia T. J.. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: Factors affecting Hg (Ⅱ) uptake [J]. Environ. Sci. Technol, 1998,32 (18): 2749-2754
    [76] Liu A. M., Hidajat K., Kawi S., et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions [J]. Chem. Commun., 2000, (13) : 1145-1146
    [77] Kang T., Park Y, Choi K.. Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions [J]. J. Mater. Chem,. 2004,14 (6): 1043-1050
    [78] Yoshitake H., Yokoi T., Tatsumi T.. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1 [J]. Chem. Mater., 2002, 14 (18): 4603-4610
    [79] Ho K.Y., McKay G., Yeung K. L. et al. Selective adsorbents from ordered mesoporous silica [J]. Langmuir, 2003,19: 3019-3024
    [80] Goworek J., Kierys A., Iwan M. Sorption on as-synthesized MCM-41 [J]. J. Therm. Anal. Calorim., 2007, 87 (1): 165-169
    [81] Newalkar B. L., Choudary N. V., Kumar P., et al. Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation [J]. Chem. Mater., 2002,14: 304-309
    [82] Kosuge K., Kubo S., Kikukawa N., et al. Effect of pore structure in mesoporous silica on VOC dynamic adsorption/desorption performance [J]. Langmuir, 2007, 23: 3095-3102
    [83] Kubo S., Kosuge K.. Salt-induced formation of uniform fiberlike SBA-15 mesoporous silica particles and application to toluene adsorption [J]. Langmuir, 2007, 23: 11761-11768
    [84] Sun Y., Liu X. W., Su W., et al. Studies on ordered mesoporous materials for potential environmental and clean energy applications [J]. Appl. Surf. Sci., 2007, 253: 5650-5655
    [85] Hiyoshi N., Yogo K., Yashima T.. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 [J]. Micropor. Mesopor. Mater, 2005,84: 357-365
    [86] Bavel E. V., Meynen V., Cool P., et al. Adsorption of Hydrocarbons on Mesoporous SBA-15 and PHTS Materials [J]. Langmuir, 2005,21: 2447-2453
    [87] Dai W., Zhou Y, Li S. et al. Thiophene capture with complex adsorbent SBA-15 /Cu(Ⅰ) [J]. Ind. Eng. Chem. Res., 2006,45: 7892-7896
    [88] Grande C. A., Firpo N., Basaldella E., et al. Propane/Propene separation by SBA-15 and π-complexated Ag-SBA-15 [J]. Adsorption, 2005,11: 775-780.
    [89] Luan Z. H., Fournier J. A.. In situ FTIR spectroscopic investigation of active sites and adsorbate interactions in mesoporous aluminosilicate SBA-15 molecular sieves [J]. Micropor. Mesopor. Mater., 2005, 79: 235-240
    [90] Serrano D. P., Calleja G., Botas J. A.. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques [J]. Sep. Sci. Technol, 2007, 54: 1-9
    [91] Kim S. S., Pauly T. R., Pinnavaia T. J.. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates [J]. Chem. Commun., 2000,24: 1661-1662
    [92] Celer E. B, Jaroniec M.. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica [J]. J. Am. Chem. Soc, 2006, 128 (44): 14408-14414
    [93] Lin H. P., Cheng Y. R., Mou C. Y.. Hierarchical order in hollow spheres of mesoporous silicates [J]. Chem. Mater. 1998,10: 3772-3776
    [94] 孙锦玉,赵东元.“面包圈”状高有序度大孔径介孔分子筛SBA-15的合成[J].高等学校化学学报,2000,1:21-23
    [95] Yu C. Z., Fan J., Tian B. Z., et al. Morphology development of mesoporous materials: a colloidal phase separation mechanism [J]. Chem. Mater. 2004,16: 889-898
    [96] Yang P., Deng T., Zhao D., et al. Hierarchically ordered oxides [J]. Science, 1998, 282: 2244-22446
    [97] 陈洁,宋启泽著.有机波谱分析[M].北京:北京理工大学出版社,1996:170-194
    [98] Huang L., Xiao H., Ni Y.. Cationic MCM-41: synthesis, characterization and sorption behavior towards aromatic compounds [J]. Colloids Surf. A, 2004, 247: 129-136
    [99] Serrano D. P., Calleja G., Botas J. A., et al. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal [J]. Ind. Eng. Chem. Res., 2004, 43: 7010-7018
    [100] Wu T. M., Wu G. R., Kao H. M., et al. Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds [J]. J. Chromatogr. A, 2006, 1105: 168-175
    [101] Zhao X. S., Lu G. Q., Hu X.. Organophilicity of MCM-41 adsorbents studied by adsorption and temperature programmed desorption [J]. Colloids Surf. A, 2001,179: 261-269
    [102] Coasne B., Galarneau A., Di-Renzo R. Effect of morphological defects on gas adsorption in nanoporous silicas [J]. J. Phys. Chem. C, 2007, 111: 15759-15770
    [103] Celer E.B., Kruk M., Zuzek Y, et al. Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores [J]. J. Mater. Chem., 2006, 16: 2824-2833
    [104] Chytil S., Haugland L., Blekkan E. A.. On the mechanical stability of mesoporous silica SBA-15 [J]. Micropor. Mesopor. Mater., 2008, 111: 134-142
    [105] Hartmann M., Vinu A.. Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption [J]. Langmuir, 2002,18: 8010-8016
    [106] GunkolV. M., Vladimir V. T., Alexander V. T.. Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas [J]. Cent. Eur. J. Chem., 2007, 5 (2): 420-454
    [107] Imperor-Clerc M., Davidson P., Davidson A.. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers [J]. J. Am. Chem. Soc., 2000,122: 11925-11933
    [108] Kruk M., Jaroniec M., Ko C. H., et al. Characterization of the porous structure of SBA-15 [J]. Chem. Mater., 2000,12: 1961-1968
    [109] Wanka G., Hoffman H., Ulbricht W.. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions [J]. Macromolecules, 1994,27 (15): 4145-4159.
    [110] Alexandridis P., Hatton T. A.. Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling [J]. Colloids Surf. A, 1995, 96 (1-2): 1-49.
    [111] Almgren M, Brown W., Hvidt S.. Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution [J]. Colloid Polym. Sci., 1995,273 (1): 2-15
    [112] 辛勤,梁长海.固体催化剂实用研究方法[J].石油化工,2001,30(6):72-85
    [113] Serrano D. P., Calleja G., Botas J. A., et al. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques [J]. Sep. Sci. Technoi, 2007, 54: 1-9
    [114] Wang C. M., Chung T. W., Huang C. M., et al. Adsorption equilibria of acetate compounds on activated carbon, silica gel, and 13X zeolite [J]. J. Chem. Eng. Data, 2005,50: 811-816
    [115] Zhao X. S. Ma Q., and Lu G. Q.(Max).. VOC removal: comparison of mcm-41 with hydrophobic zeolites and activated carbon [J]. Energy & Fuels, 1998,12: 1051-1054
    [116] Groen J. C., Peffer L. A. A., P(?)rez-Ram(?)rez J.. Pore size determination in modified micro- and mesoporous materials: Pitfalls and limitations in gas adsorption data analysis [J]. Micropor. Mesopor. Mater, 2003, 6 (1-3) : 1-17
    [117] Sun J. M, Zhan H., Ma D., et al. Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores [J]. Chem. Commun., 2005, 42: 5343-5345
    [118] Feng P., Bu X., and Pine. D. J.. Control of pore sizes in mesoporous silica templated by liquid crystals in block copolymer-cosurfactant-water systems [J]. Langmuir, 2000,16: 5304-5310
    [119] 屈玲,佟大明,刘永梅等.介孔分子筛孔径调变技术[J].化工进展,2002,21(11):855-859
    [120] 周丽绘,张利中,刘洪来.晶化温度对介孔材料SBA-15结构与形貌的影响[J].过程工程学报,2006,16(3):499-502
    [121] Galarneau A., Cambon H., Renzo F. D., et al. Microporosity and conections between pores in SBA-15 mesostructureed silicas as a function of the temperature of synthesis [J]. New J. Chem., 2003,27: 73-79.
    [122] Galarneau A., Cambon H., Renzo F. D., et al. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature.[J]. Langmuir, 2001,17: 8328-8335
    [123] Liu Z., Terasaki O., Ohsuna T., et al. An HR-TEM study of channel structures in mesoporous silica SBA-15 and platinum wires produced in the channels [J]. Chem. Phys. Chem., 2 (4) : 229-231
    [124] Fan J., Yu C. Z., Wang L. M., et al. Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks [J]. J. Am. Chem. Soc., 2001,123: 12113-12114
    [125] Ravikovitch P. I, Neimark A. V.. Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method [J]. J. Phys. Chem. B, 2001,105 (29) : 6817-6823
    [126] Nowak I., Jaroniec M.. Assessment of pore structure parameters for polymer-templated mesoporous molecular sieves by means of nitrogen and argon adsorption [J]. Appl. Surf. Sei., 2007,253: 5676-5681
    [127] Yang C.M., Zibrowius B., Schmidt W.. Consecutive generation of mesopores and micropores in SBA-15 [J]. Chem. Mater. 2003,15: 3739-3741
    [128] Rolando M. A. Roque-Malherbe.. Adsorption and diffusion in nanoporous materials [M].CRC Press, 2007: 167-180
    [129] Ruthven, D. M.. Principles of Adsorption, and Adsorption Processes, John Wiley &Sons, New York, 1984: 49
    [130] Naumov S., Valiullin R., K(?)rger J., et al. Tracing pore connectivity and architecture in nanostructured silica SBA-15 [J]. Micropor. Mesopor. Mater., 2008,110 (1) : 37-40
    [131] Hu Q., Li J. J., Hao Z. P., et al. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials [J]. Chem. Eng., 2009,149: 281-288
    [132] Yoon Y. H., Nelson J. H., Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life [J]. J. Am. Ind. Hyg. Assoc, 1984, 45 (8) : 509-516.
    [133] 王长泰,林诚.固定床透过曲线的预测[M].化工学报.1986(2):183-192
    [134] Ei(?), M, Ruthven, D. M.. A new experimental technique for measurement of intracrystalline diffusivity [J]. Zeolites, 1988, 8 (1) : 40-45.
    [135] Brandanil S., Jama M. A., Ruthven D. M. ZLC measurements under non-linear conditions [J]. Chem. Eng. Sci., 2000, 55: 1205-1212
    [136] Hoang V. T., Huang Q. L., Ei(?) M., et al. Structure and diffusion characterization of sba-15 materials [J]. Langmuir, 2005,21: 2051-2057
    [137] Iucolano F., Aprea P., Caputo D., et al. Adsorption and diffusion of propane and propylene in Ag~+-impregnated MCM-41 [J]. Adsorption, 2008,14: 241 -246
    [138] Mirji S.A., Halligudi S.B., Mathew N., et al. Adsorption of methanol on mesoporous SBA-15[J]. Mater. Lett., 2007,61: 88-92
    [139] Hu X., Qiao S., Zhao X. S.. Adsorption kinetics of benzene in modified MCM-41 with an ink-bottle-like pore structure [J]. Ind. Eng. Chem. Res., 2001, 40: 862-867