重熔时间及涂层厚度对火焰热喷涂件疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热喷涂技术做为一种表面强化技术,是表面工程技术的重要组成部分,一直是我国重点推广的新技术项目,随着科技发展,热喷涂技术目前在国内外已取得了比较广泛的推广应用。为了保证热喷涂构件的使用性能,以往人们主要关注的是热喷涂件的耐磨损性、耐腐蚀性、耐高温隔热性、电学、光学等性能,对热喷涂件整体疲劳性能及影响因素方面研究较少。本文通过对热喷涂成形过程及影响热喷涂件疲劳性能关键因素方面的系统研究,取得了如下成果:
     1.分析了热喷涂涂层微观成形机理,研究了热喷涂的燃烧火焰特性、喷涂粒子的速度特征及喷粉熔滴飞行过程中的氧化行为,确定了喷涂试样合理的工艺方案及参数。
     2.通过试验研究了不同重熔条件下火焰热喷涂件的弯扭疲劳性能,并对试样的宏观断口、微观断口、涂层组织成分、极限应力、疲劳扩展面积等方面进行了分析研究。结果表明:重熔时间长短是影响火焰热喷涂件疲劳性能的关键因素之
     当重熔时间合理时,火焰热喷涂件的弯扭疲劳寿命最长。当重熔时间不足时,涂层中Ni粉及Si粉颗粒大多没有熔融,Si粒与空气中的O发生化学反应生成Si02颗粒。同时,涂层表面强度、涂层内聚力、涂层与基体结合力均不强,导致疲劳寿命较短。当重熔时间过长时,涂层中的Si再次与O发生化学反应生成Si02颗粒,成主要疲劳裂纹源,且保温时间越长,颗粒越大,致使疲劳寿命降低。
     3.基体试样与重熔合理试样在弯扭疲劳试验中的疲劳裂纹扩展区面积S的对数(1gS)与疲劳寿命Nf的对数(1gN1)戎线性正比关系,相关系数分别为0.992和0.994。由此可以推断:对于火焰热喷涂重熔合理试样及基材试样可尝试根据扩展区面积来推算疲劳寿命。
     4.经不同重熔时间处理后涂层表面主要组成相为Cr7C3.Ni.Cr3Ni5Si2.CrB. Ni3B.随着重熔时间的变化,涂层表面硬质相的含量会出现变化。当重熔时间过长后涂层表面硬质相的含量明显降低。
     5.涂层厚度是影响火焰热喷涂件疲劳寿命的又一关键因素。对所设计试样而言,其合理的涂层厚度为0.25mm。当涂层厚度大于0.25mm时,热喷涂件的拉压疲劳寿命随厚度的增加而呈现总体下降的趋势,热喷涂件的拉压疲劳寿命与涂层中非金属颗粒及孔隙的数量及平均大小密切相关。涂层厚度合理时,涂层表面及界面相对于中间涂层部分承受较大的轴向拉压载荷,热喷涂件的拉压疲劳寿命在合理的重熔条件下,高于基体40Cr试样的疲劳寿命。这一试验结果说明研究火焰热喷涂件的疲劳寿命具有实际的应用价值。
     6.重熔时间也是决定火焰热喷涂件涂层磨损性能及涂层表面硬度的关键因素。经重熔2min、5min、10min及12min后涂层表面显微硬度分别为:340HV、385HV、455HV及400HV。涂层磨损体积分别为:3.734×107μm3、3.50974×107μm3、3.029×107μm3及3.266×107μm3。以上试验结果表明:当重熔时间合理时,涂层表面显微硬度及涂层耐磨损能力最强。同时分析表明:涂层的磨损机理主要为磨粒磨损和疲劳磨损。
     7.应用一种能将高周疲劳和低周疲劳统一表征的能量形式表征参量对不同重熔处理下热喷涂件的低周疲劳寿命进行了预测。预测结果与试验结果符合较好。说明:应用能量法则来进行疲劳寿命的预测能够揭示疲劳损伤的本质,具有较高的准确性,并且物理意义明确,对疲劳寿命评估具有重要的实际意义。
The thermal spraying technology which as a surface strengthening technology is one of surface engineering technology, and its development and promotion have been given priority in china. With the development of science and technology the thermal spraying technology has been made extensive popularization and application at home and abroad. In order to guarantee the usability of thermal spraying component, people mainly focused on wear resistance, corrosion resistance, high temperature resistant and heat insulation performance, electrical and optical properties, etc. The fatigue performance and affecting factors on fatigue of thermal spraying component were rarely concerned. In this paper, the forming process of thermal spray and the affecting factors of fatigue performance were studied, and some important results were obtained as follow:
     1. The micro-mechanism of thermal spraying coating forming was analyzed, burning flame characteristics of thermal spraying, speed characteristics of spraying particles, oxidation behavior of spray molten droplets in the process of the flight were researched, the reasonable process scheme and spraying parameters of thermal spraying component were determined.
     2. The combined bending and torsion fatigue life of the sample which were remelted under different remelting time conditions were investigated by test. The macrofracture and the microfracture of samples, coating composition, limit stress, fatigue extension area were analyzed. The results show that the reasonable remelting time is the key factor to decide the performance of combined bending and torsion fatigue of thermal spraying components. The components have the longest fatigue life when remelting time is reasonable. The shorter remelting time the lower fatigue lifetime resulting from loose coating, lower strength of coating surface and the interface of coating and substrate and SiO2particles produced by unfused Si particles reacted with Oxygen. The longer remelting time the lower fatigue lifetime owing to reproduced particles of SiO2that as the source of crack, and the longer soaking time, the shorter fatige lifetime of components.
     3. The logarithmic value (lgS) of fatigue crack propagation region area(S) is proportional to logarithmic value(1g N1) of fatigue life of base samples and spraying samples with reasonable remelting time, and the correlation coefficient is0.992and0.994, respectively. Thus it can be inferred that the size of the propagation region area can be used to estimate the fatigue life of samples with reasonable remelting time.
     4. The main composition of coating with different remelting time are Cr7C3、Ni、 Cr3Ni5Si2、CrB、 Ni3B. The content of different composition of coating surface was changed with different remelting time. The content of hard phase of coating surface was decreased obviously after longer remelting time.
     5. The coating thickness is another key factor to decide the fatigue life of flame thermal spraying components. The reasonable coating thickness is0.25mm for the designed samples. The stretching and compression fatigue lifetime of flame thermal spraying components was decreased with the increase of the thickness of coating when the thickness of coating is more than0.25mm. The fatigue lifetime of components is closely related to the number and the average size of nonmetallic particles and pores. The interface and the surface of coating endure more loads of stretching and compression than the middle coating when the coating thickness and the remelting time are reasonable, so the stretching and compression fatigue lifetime of thermal spraying samples is longer than matrix samples. The test results show that the research on fatigue lifetime of flame thermal spraying component has practical application value.
     6. The remelting time is a key factor to decide the wear resistance and surface hardness of coating of thermal spraying components. The surface hardness of coating with remelting time of2min,5min,10min and12min is340HV,385HV,455HV,400HV, respectively, and the corresponding wear volume of coating is3.734X107μm3、3.50974×107μm3、3.029×107μm3、3.266×107μm3, respectively. The test results show that the surface micro-hardness and the wear resistance ability of coating are strongest when the remelting time is reasonable. The wear mechanism of coating is mainly abrasive wear and fatigue wear.
     7. An energy model for a characterization parameters of energy form that can characterize the fatigue life of low and high cycle fatigue simultaneously was used to forecast the LCF life of thermal spraying components with different remelting time, the predicted results were consistent with the experimental results. The result show that using the law of energy to forecast the fatigue life of coating components can reveal the nature of the fatigue damage, the results has higher accuracy and clear physical meaning, so it has important practical significance to evaluate the life time of cycle fatigue.
引文
[1]张胜华.层状金属复合材料的研究现状[J].铝加工高新技术文集:423-438.
    [2]徐滨士,刘世参.中国材料工程大典[M].北京:化学工业出版社,2006,16:1-10.
    [3]王海军.热喷涂实用技术[M].北京:国防工业出版社,2006:1-8.
    [4]吴子建,吴朝军,曾克里,等.热喷涂技术与应用[M].北京:机械工业出版社,2006,1.
    [5]Schorr B S, Stein K J, Marder A R. Characterization of thermal spray coatings[J]. Wear,1999,42(2/3):93-100.
    [6]于月光.中国热喷涂材料的发展趋势[J].热喷涂及热处理技术专辑,2007,(5):9-13.
    [7]李小龙,王引真,石建稳,等.热喷涂技术的最新进展-反应热喷涂[J].新技术新工艺,2004,(10):64-66.
    [8]徐滨士,李长久.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,11(1):3-9.
    [9]赵力东,Erich L,李新.热喷涂技术的新发展[J].中国表面工程,2002,56(3):5-8.
    [10]刘江.金属复合材料生产技术的现状与发展趋势[J].金属功能材料,2008,15(1):44-52.
    [11]曾涛,吴林志,杜善义.陶瓷/金属多层复合材料破坏过程的数值模拟[J].固体力学会议论文集.
    [12]张朝晖,廖秋尽,程荆卫,等.双金属复合材料固相结合数值仿真研究[J].材料工程,2006,(10)31-36.
    [13]陈振中,高金贺.颗粒尺寸对SiCp/A1复合材料疲劳裂纹扩展速率的影响[J].飞机设计,2006,(1):8-10.
    [14]陈传尧.疲劳与断裂[M].武汉:华中科技大出版社,2001.4-5.
    [15]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西安:西北工业大学出版社,2002.
    [16]王弘.40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨[D].西南交通大学,2004.10.
    [17]傅祥炯,刘文埏.结构疲劳与断裂[M].西安:西北工业大学出版社,1995:61-95.
    [18]Basquin O H.The exponential law of endurance tests [C].Proceeding of the American Society for Testing and Materials,1910.10:625-630.
    [19]Bairstow L.The elastic limits of iron and steel under cyclic variations of stress[C].Philosophical Transactions of the Royal Society,London 210,1910:35-55.
    [20]徐灏.疲劳强度[M].高等教育出版社,1990.
    [21]Manson S S.Behavior of materials under conditions of thermal stress.National Advisory Commission on Aeronautics [M]:Report 1170.Cleveland Lewis Flight Propulsion Laboratory,1954.
    [22]Coffin L F. A study of the effects of cyclic thermal Stresses on the ductile metal[J].Transactions of the American Society of Mechanical Engineers.1954.76: 931-950.
    [23]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].成都:西南交通大学出版社,2002.
    [24]Topper T H,Wetzel R M,Morrow J D.Neuber's rule applied to fatigue of notched specimens[J].Mater.1969,4(1):200-209.
    [25]Griffith A A.The phenomenon of rupture and flow in solids[C].Philosophical Transactions of the Royal Society,London 221,1921:163-197.
    [26]Irwin G R. Analysis of stress near the end of a crack traversing a Plate[J]. Journal of Applied Mechanics.1957.24:361-364.
    [27]Paris P, Erdogan F. A critical analysis of crack growth laws [J].Journal of Basic Engineering, Transaction of the ASME,1963(85):528-534.
    [28]Miner M A.Cumulative damage in fatigue[J].Mechanics.1945,12:3-159.
    [29]Miller K J, Zachariah K P. Cumulative damage laws for fatigue crack initiation and stage I propagation[J].Strain Analysis.1977,12:262-270.
    [30]Hashin Z,Laird C.Cumulative damage under two level cycling[J].Fatigue Engineering Material Structure.1978,2:147-160.
    [31]Kujawski D,Ellyin F. A cumulative damage theory for fatigue crack initiation and propagation[J].International Journal Fatigue,1984,6(2):83-88.
    [32]Jeelani S,Ghebremedhin S,Musial.A study of cumulative fatigue damage in titanium 6A1-4V alloy[J].International Journal Fatigue,1986,8(l):23-27.
    [33]Stulen F B.Preventing fatigue failures[J].Machine Design,1961:33.
    [34]Kececioglu D.Designing a specified reliability directly into a component.Process of 3th Annual Aerospace R & M.Conference,1964.
    [35]Freudenthal A M.The analysis of structural safety[J] Journal of the Structural Division.ASCE,1966,92:572.
    [36]王章忠,左建民.金属材料疲劳门槛与疲劳设计[J].中国机械工程,2003(4):1610-1613.
    [37]机械设计手册编委会.机械设计手册:疲劳强度设计[M].北京:机械工业出版社,2007.
    [38]Elbert W. Fatigue crack closure undet cyclic tension[J]. Engineering Fracture Mechanics,1997(2):37-45.
    [39]赵永翔,杨冰,张卫华.一种疲劳长裂纹扩展率新模型[J].机械工程学报,2006,11(42):120-123.
    [40]华绍春,王汉功,汪刘应,等.热喷涂技术的研究进展[J].金属热处理,2008,33(5):82-87.
    [41]Wood WA. Formation of fatigue cracks [J]. Philosophical Magazine.1955.3:692-699.
    [42]Forsyth P J E. A two stage process of fatigue crack growth[M].In Crack Propagation:proceeding of Canfield Symposium, London:Her Majesty's Stationery Office.1962,76-94.
    [43]Forsyth P J E,Ryder D A. Fatigue fracture[J]. Aircraft Engineering,1960. 32:96-99.
    [44]Laird C. The influence of metallurgical structure on the mechanisms of fatigue Crack Propagation [M]. In Fatigue Crack Propagation, Special Technical Publication 415, Philadelphia:The American Society for Testing and Materials. 1967,131-168.
    [45]Budinski K G.Surface engineering for wear resistance[M].Englewood Cliffs,New Jersey:Prentice-Hall,Inc,1988:219.
    [46]MeGrann R T R.The relation of material properties,residual stress,and thermal and mechanical loadings to coating[D].The university of Tulsa,1997.
    [47]Meyer W B.Metal spraying in United States:AJTST historical paper [J].Thermal Spray Technology,New York,1992:63-69.
    [48]Smith R W.Equipment and theory,in:A lesson from thermal spray technology,Course 51,Lesson,Test 2,Materials Engineering Institute.Materials Park,OH:ASM International,New York,1992:63-69.
    [49]张伟,郭永明,陈永雄.热喷涂技术在产品再制造领域的应用及发展趋势[J].中国表面工程,2011,24(6):1-10.
    [50]徐滨士,王海斗.再制造工程中的热喷涂技术[J].热喷涂技术,2009,1(1):1-7.
    [51]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005.
    [52]徐滨士,刘世参.表面工程技术手册(上)[M].北京:化学工业出版社,2009.
    [53]Ohmori A,Li C J.Quantitative characterization of the structure of plasma-sprayed Al2O3coating by using copper electroplating[J].Thin Solid Films,1991,201(2):241-252.
    [54]Erickson L C.Wear ane microstructural integrity of ceramic plasma sprayed coating[D].The university of British Columbia,1998.
    [55]Wang Z,Kulkami A,Deshpande S,et al.Effects of pores and interfaces on effective properties of plasma sprayed zirconia coating[J].Acta Material,2003,51 (18):5319-5334.
    [56]Nakamura T,Qian G,Bernt C C.Effects of pores on mechanical properties of plasma-sprayed ceramic coatings[J].Am.Ceram.Soc.,2000,83(3):578-584.
    [57]Clyne T W,Gill S C.Residual stresses in thermal spray coating and their effect on interfacial adhesion:a review of recent work[J].Thermal Spray Technology,1996,5 (4):401-418.
    [58]Bengtsson P, Johannesson T.Characterization of microstructural defects in plasma-sprayed thermal barrier coatings[J].Thermal Spray Technology,1995,4(3): 245-251.
    [59]Kuroda,Clyne T W.Quenching stress in thermally sprayed coatings[J].Thin Solid Films,1991,200(1):49-66.
    [60]Sampath S,Jiang X,Kulkami,et al..Development of process maps for plasma spray:case study for Molybdenum[J].Material Science Engineer,2003,A348(1-2): 54-66.
    [61]Gnaeupel-Herold T,Prask H J,Barker J,et al..Microstructure,mechanical properties,and adhesion in IN625 air plasma sprayed coatings[J].Material Science Engineer,2006,A421(1-2):77-85.
    [62]Ctibor P,Roussel O,Tricoire A.Unmelted particles in plasma sprayed coatings[J]. Joumal of the European Ceramic Society,2003,23(16):2993-2999.
    [63]Matthes B, Broszeit E, Aromaa J,et al..Corrosion performance of some titanium-based hard coatings[J].Surface & Coating Technology,1991,49(1-3):489-495.
    [64]Yu I, Konyashin T V, Chukalovskaya T V. A technique for measurement of porosity in protective coatings[J].Surface & Coating Technology,1996,88(1-3):5-11.
    [65]Cunha L, Andritschky M, Pischow K,et al.Microstructure of CrN coatings produced by PVD techniques[J].Thin Solid Films,1999,355/356(1):465-471.
    [66]Fowler D B, Riggs W, Russ J C. Inspecting thermal sprayed coatings[J].Advanced Materials & Processes,1990,138(5):41-52.
    [67]Deshpande S, Kulkarni A, Sampath S,et al..Application of image analysis for characterization of porosity in thermal spray coating and correlation with small angle neutron scattering[J].Surface & Coating Technology,2004,187(1):6-16.
    [68]Schorr B, Stein K, Marder A. Characterization of thermal spray coatings[J].Materials.Characterization.,1999,42(2):93-100.
    [69]Zhu Y L, Liao H L, Coddet C,et al..Characterization via image analysis of cross-over trajectories and inhomogeneity in twin wire arc spraying[J].Surface & Coating Technology,2003,162(2-3):301-308.
    [70]McPherson R. Shafer B V. Interlamellar contact within plasma-sprayed coatings[J].Thin Solid Films,1982,97(3):201-204.
    [71]Richerson D W. Modern ceramic engineering[M].Marcel Dekker Inc.,New York,1982.
    [72]Li C J, Ohmori A, McPherson R. Relationship between microstructure and Young's modulus of thermally sprayed ceramic coatings[J]. Materials Science,1997,32(4): 997-1004.
    [73]Ppllck H M. Nanoindentation,in Fraction,Iubrication and wear technology[M], ASM Handbook,1992,18:419-429.
    [74]Doerner M F, Nix W D. Method for interpreting the data from depth sensing indentation instruments[J]. Materials Research,1986,1(4):601-609.
    [75]Prasad S L A, Mayuram M M, Krishnamurthy R. Response of plasma-sprayed alumina-titania composites to static indentation process[J].Materials Letters,1999, 41(5):234-240.
    [76]Marshall D B, Noma T, Evans A G. A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements [J].Am. Ceram.Soc.,1982,65(10)C175-C176.
    [77]Bao Y W, Wang W, Zhou Y C.Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements.Acta Material,2004,52(18):5397-5404.
    [78]Brindley W J, Whittenberger J D. Stress relaxation of low pressure plasma sprayed NiCrAlY alloy[J].Materia Science and Engineering,1993,A163(1):33-41.
    [79]Stoney G G. The tension of metallic films deposited by electrolysis[M].Proc.Roy .Soc.London,1909,82:172-175.
    [80]Brenner A, Senderoff S. Calculation of stress in. electrodeposits from the curvature of a plated strip[J].Res.Natl.Bur.Stand.,1949,42(2):105-123.
    [81]Saul R H. Effect of a GaAsxP1-x transition zone on the perfection of GaP crystals grown by deposition onto GaAs substrates[J].Applied Physics,1969;40(8):3273 -3279.
    [82]Reinhart F K, Logan R A. Interface stress of AlxGa1-xAs-GaAs layer structure[J].Applied Physics,1973,44(7):3171-3175.
    [83]Roll K. Analysis of stress and strain distribution in thin films and substrates[J].Applied Physics,1979,47(7):3224-3229.
    [84]Shimizu H, Itoh K, Wada M,et al..Improvement in operation lives of galas visible lasers by introducing galas buffer layers.IEEE J.Quantum Electron.,1981,QE-17 (5):763-767.
    [85]Vilms J, Kerps D. Simple stress formula for multilayered thin films on a thick substrate[J].Applied Physics,1882,53(3:)1536-1537.
    [86]徐滨士,王海斗,朴钟宇,张显程.再制造的热喷涂合金涂层的结构完整性与服役寿命预测研究[J].金属学报,2011,47(11):1355-1361.
    [87]Morks M F, Kobayashi A. Influence of gas flow rate on the microstructure and mechanical properties of hydroxyapatite coatings fabricated by gas tunnel type plasma spraying[J].Surface & Coating Technology,2006,201(6):2560-2566.
    [88]Gao Y,Xu X L, Yan Z J, et al..High hardness alumina coatings prepared by low power plasma spraying[J].Surface & Coating Technology,2002,154(2-3):189-193.
    [89]Cizek J, Khor K A, Prochazka A.Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite [J] Journal of Materials science and engineering,2007,C27(2):340-344.
    [90]Li J F, Liao H L, Ding C X, et al..Optimizing the plasma spray process parameters of yttria stabilized zirconia coating using a uniform design of experiments[J].Journal of Materials Processing Technology,2005,160(1):34-42.
    [91]Vardelle M, Vardelle A, Fauchais P. Spray parameters and particle behavior relationships during plasma spraying[J].Thermal Spray Technology,1993,2(1):79-91.
    [92]Kulkarni A, Vaidya A, Goland A, et al..Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings[J].Journal of Materials science and engineering,2003,A359(1-2):100-111.
    [93]Madejski J. Solidification of droplets on cold surface[J].Int.J.Heat Mass Transfer,1976,19(9):1009-1013.
    [94]Leger A C, Vardelle M, Vardelle A, et al..Plasma sprayed zirconia:relationship between particle parameter,splat formation and deposit generation-Part I:Impact and solidification,in Thermal spray Practical solution for surface engineering problems,Ed.,C.C.Berndt,ASM International,1996:623-628.
    [95]郭永明,王海军,刘明,等.超音速等离子喷涂连续梯度热障涂层工艺优化研究[J].装甲兵工程学院学报.2008,22(5):74-78.
    [96]Akebono H,Komotori J, Shimizu M.Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy [J].International Journal of Fatigue,2008,30:814-821.
    [97]Oh J, Komotori J, Song J. Fatigue strength and fracture mechanism of different post-fuse thermal spray-coated steels with a Co-based self-fluxing alloy coating[J]. International Journal of Fatigue,2008,30:1441-1447.
    [98]Zhang X C,Xu B S,Wang Z D, Tu S T.Failure mode and fatigue mechanism of laser-remelted plasma-sprayed Ni alloy coating in rolling contact[J].Surface & Coating Technology,2011,205:3119-3127.
    [99]朴钟宇,徐滨士,王海斗,等.表征涂层接触疲劳寿命方法的试验研究[J].中国机械工程,2009,20(13):1616-1618.
    [100]王韶云,李国禄,王海斗,等.超音速等离子NiCr/Cr3C2涂层的接触疲劳寿命[J].材料热处理学报,2012,33(5):112-115.
    [101]朴钟宇,徐滨士,王海斗,等.等离子喷涂铁基涂层的接触疲劳失效机理研究[J].材料工程,2009,11:69-73.
    [102]朴钟宇,徐滨士,王海斗,等.热喷涂金属陶瓷涂层的接触疲劳失效机理分析[J].材料保护,2008,41(10):1-6.
    [103]张晓东,董世运,徐滨士,等.激光熔覆和活化屏等离子体氮化复合涂层组织与接触疲劳性能[J].中国激光,2011,38(6):1-5.
    [104]王军威,李国禄,王海斗,等.氮碳共渗45钢的滚动接触疲劳失效机理[J].材料热处理学报.2012,33(10):124-129.
    [105]张志强,李国禄,王海斗,等.等离子喷涂Fe基合金涂层及接触疲劳损伤性能的研究[J].材料工程,2012,6:59-62.
    [106]张志强,李国禄,王海斗,等.涂层接触疲劳损伤过程中的声发射小波分析[J].材料工程,2012,9:48-53.
    [107]张志强,李国禄,王海斗,等.喷涂层接触疲劳损伤的声发射研究[J].材料热处理学报,2012,33(6):153-157.
    [108]Berger L M, Lipp J, Spatzier J, Bretschneider J.Dependence of the rolling contact fatigue of HVOF-Sprayed WC-17%Co hardmetal coatings on substrate hardness[J].Wear,2011,271:2080-2088.
    [109]王韶云,李国禄,刘金海,等.微缺陷对热喷涂涂层接触疲劳性能的影响[J].材料工程,2012,2:72-75.
    [110]王韶云,李国禄,王海斗,等.重熔处理对NiCrBSi涂层接触疲劳性能的影响 [J].材料热处理学报,2011,32(11):135-139.
    [111]王强.A1203陶瓷热喷涂涂层磨损及冲击性能研究[D].南昌大学,2006.
    [112]马光,孙冬柏,樊自拴.HVAF喷涂纳米结构Ni基涂层组织及磨损性能研究[J].材料热处理技术,143-148.
    [113]王利民,许一,高飞,等.凸凹棒石黏土作为润滑油添加剂的摩擦学性能[J].中国表面工程,2012,25(3):92-97.
    [114]易德亮,冶银平,刘光,等.等离子喷涂Al2O3-30%TiO2微米/纳米复合涂层的结构与耐磨性能[J].材料工程,2012,5:24-29.
    [115]袁晓静,王汉功,查柏林,等.多功能超音速火焰喷涂WC10Co4Cr涂层磨损性能研究[J].材料科学与工程学报,2004,22(2):204-208.
    [116]徐滨士,张晓东,董世运,等.激光熔覆-活化屏等离子复合处理层耐磨性能研究[J].材料工程,2010,2:37-40.
    [117]王东生,田宗军,王松林,等.激光重熔等离子喷涂WC颗粒增强镍基涂层组织及高温磨损性能[J].焊接学报,2012,33(11):13-16.
    [118]简中华,马壮,曹素红,等.超音速火焰喷涂WC-Co与NiCr-Cr2C3涂层磨损性能研究[J].材料工程,2007,7:21-24.
    [119]司洪娟,徐滨士,王海斗,等.FeCrBSi/FeS真空辐照环境下的组织结构与摩擦学性能研究[J].真空科学与技术学院,2011,31(5):560-564.
    [120]司洪娟,徐滨士,王海斗,等.复合Zn/ZnS层的组织结构及其大气与真空环境下的摩擦学性能[J].中国表面工程,2010,23(1):75-79.
    [121]马国政,徐滨士,王海斗,等.电刷镀In/Ni组合镀层的真空摩擦学性能研究[J].材料工程,2010,12:66-71.
    [122]马国政,徐滨士,王海斗,等.表面纳米化预处理对lCr18Ni9Ti不锈钢渗硫层摩擦学性能的影响[J].机械工程学报,2011,47(11):75-80.
    [123]濮春欢,徐滨士,王海斗,等.不同载荷下3Cr13不锈钢涂层磨损寿命研究[J].摩擦学学报,2010,30(1):75-79.
    [124]朴钟宇,徐滨士,王海斗.等离子喷涂铁基涂层的疲劳磨损裂纹行为[J].摩擦学学报,2011,31(1):57-60.
    [125]李恩重,徐滨士,王海斗,等.玻璃纤维增强PEEK复合材料的高速干摩擦性能[J].工程塑料应用,2012,40(5):62-65.
    [126]李亚东,李玉飞,朱忠诚,等.火焰喷涂ETFE涂层的干摩擦磨损性能研究[J].摩擦学学报,2011,31(1):4549.
    [127]杜令忠,徐滨士,杨华,等.超音速等离子喷涂12Co-WC涂层在含沙油润滑条件下的摩擦学行为[J].材料保护,2007,40(10):65-67.
    [128]朴钟宇,徐滨士,王海斗,等.涂层厚度对喷涂层疲劳磨损寿命的影响[J].摩 擦学学报,2010,30(5):448-452.
    [129]Costa M Y P, Venditti M L R, Cioffi M O H, Voorwald H J C,et,al. Fatigue behavior of PVD coated Ti-6A1-4V alloy [J].International Journal of Fatigue,2011,33:759-765.
    [130]陈昭运,孟祥红,李建明.爆炸喷涂Cr3C2-NiCr涂层及其对2CrlOMoVNbN钢疲劳性能的影响[J].机械工程材料,2009,33(6):85-89.
    [131]文磊,王亚明,周玉,等.LY12铝合金微弧氧化涂层组织结构对基体疲劳性能的影响[J].稀有金属材料与工程,2009,38(s2):747-750.
    [132]邓春明,刘敏,周克崧,等.超音速火焰喷涂WC-10Co4Cr涂层的高周疲劳损伤[J].机械工程材料,2010,34(1):1-4.
    [133]梁兴华,邓畅光,刘敏,等.镍基单晶低压等离子喷涂NiCoCrAlYTa涂层高温高周疲劳性能[J].热喷涂技术,2009,1(1):34-38.
    [134]邓春明,周克崧,刘敏,等.近疲劳强度载荷下WC/Co涂层对300M钢疲劳性能的影响[J].机械工程材料,2006,30(9):44-47.
    [135]周克崧,邓春明,刘敏.超音速火焰喷涂WC涂层替代电镀硬铬:疲劳和摩擦磨损性能[J].中国工程科学,2009,11(10):48-54.
    [136]田斌,王成彪,胡斌,等.热处理对中频感应重熔NiCrBSi涂层抽油光杆性能的影响[J].中国表面工程,2011,24(6):35-40.
    [137]Schijve J. Fatigue of structures and materials in the 20th Century and the state of the art[J]. International Journal of Fatigue,2003,25:679-702.
    [138]高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995,17(3):61-80.
    [139]张国庆,王成焘,徐滨士.几种疲劳寿命预测方法的探讨及评价[J].机械强度,2011,33(3):469-474.
    [140]Haiba M, Barton D C, Brooks P C, Levesley M C.Review of life assessment techniques applied to dynamically loaded automotive components[J]. Computers and Structures,2002,80:481-494.
    [141]Langer B F. Fatigue failure from stress cycles of varing amplitude[J]. Jounal Apple Mch,1937,4(59):A160-A162.
    [142]Heuler,Seeger. Assessment of cyclic stress-strain behavior and damage accumulation by variable amplitude loading tests[C].Proceedings of the International Conference.London,England; United Kingdom:Canadian Standards Association(CSA),1983:140-151.
    [143]Inglis N P. Hysteresis and fatigue of Wohler rotating cantilever specimen[J].The Metallurgist,1927,1(1):23.
    [144]姚磊江,童小燕,吕胜利.基于能量耗散的疲劳损伤模型[J].机械强度,2004,26(5):522-525.
    [145]Feltner C E, Morrow J D. Microscopic strain hysteresis energy as a criterion for fatigue fracture[J].Journal Basic Engineering,ASME,1961,81(1):16.
    [146]Martin D E.An energy criterion for low-cycle fatigue.Journal Basic Engineering[J],1961,81(12):565.
    [147]陈凌,蒋家羚,范志超,等.低周疲劳寿命预测的能量模型探讨[J].金属学报,2006,42(2):195-200.
    [148]许超,张国栋,苏彬.高周疲劳和低周疲劳统一的能量表征方法研究[J].材料工程,2007,8:65-68.
    [149]李新勇,赵志平.柱塞火焰热喷涂工艺的探究与实践[J].兰州工业高等专科学校学报,2005,2.:11-14.
    [150]段红燕.不同载荷下缺口参数对轴类零件低周疲劳寿命的影响[D].兰州理工大学.2009.
    [151]赵志平,李新勇,李有堂,等.不同重熔条件下热喷涂柱塞件的疲劳性能分析及工艺改进[J].材料热处理学报,2012,33(s1):92-95.
    [152]赵志平,李新勇,李有堂,等.不同重熔处理对镍基粉末合金热喷涂件疲劳性能的影响[J].粉末冶金技术,2012(1).3-7.
    [153]赵志平,李新勇,李有堂,等.不同重熔处理对钴基粉末合金热喷涂件的疲劳强度及寿命影响[J].兰州理工大学学报,2011,37(4):34-37.
    [154]赵志平,李新勇,段红艳,等.涂层厚度对火焰热喷涂件拉压疲劳性能的影响[J].材料热处理学报,2012,33(s2):139-144.
    [155]Miller M P, Mcdowell D L, Ochmker L F,et al. A life prediction model for thermomechanical fatigue based on microcrack propagation[A].Sehitogla H. Thermomechanical Fatigue Behavior of Materials[C].Philadelphia:ASTM STP 1186, American Society for Testing and Materials,1993,35-49.