大型结构件的疲劳寿命预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装备结构件的疲劳寿命是决定设备安全可靠服役的基本能力,因此它是装备设计与制造中必须科学分析的重要问题。现代装备服役功能日趋强大,结构日趋大型化和复杂化,对构件的性能指标—特别是可靠性要求更为突出,要求疲劳寿命的计算更为科学真实,而疲劳寿命计算是建立在充分的试验基础上,构件的超大型化使构件原型疲劳寿命试验十分困难,以致大型件的寿命设计成为当今装备设计的一大难题,本文拟在已有疲劳计算理论基础上,结合大型构件特点探索一种有限试验与计算分析结合的疲劳寿命预测方法。由于拉伸疲劳分析是其它疲劳分析的基础,本论文主要对拉伸作用下大型结构件疲劳寿命的几个主要因素的影响规律进行研究,并在此基础上形成大型结构件疲劳寿命的预测方法。
     1.针对构件内部缺陷随尺寸的增大而增加,发生疲劳失效的概率也增大,特别是位于高应力区域中(如应力集中)的缺陷更容易萌生裂纹;以及常规的拉伸疲劳试验中光滑试样尺寸效应不显著,用于修正大型结构件的疲劳强度将产生较大的误差,甚至可能得到错误的结果,基于带缺口试样裂纹萌生和扩展规律与大尺寸结构因内部缺陷而萌生裂纹并发展断裂机制相似,本文提出缺口试样尺寸系数,用它代替光滑试样尺寸系数进行疲劳寿命分析。通过有限元法和TheCritical Distance(TCD)理论对几何相似试样进行缺口试样尺寸系数分析(厚度未作考虑),得到了基于梯度效应的缺口试样尺寸系数简易计算式。利用此式对一实例进行尺寸系数计算,结果表明引入缺口试样尺寸系数是合理有效的,反映了拉伸作用下的缺口试样尺寸效应。
     2.由于疲劳失效的局部特性和裂纹常萌生于表面,当构件三维方向结构变化大时,本文建立了高应力区局部结构尺寸对疲劳强度影响程度的量化式子。假设缺口板试样的寿命以裂纹形成寿命为主,通过对两种材料(45#,Q235)的几何相似试样进行拉-拉疲劳寿命测试,结果发现:除了应力梯度的影响外,缺口局部高应力方向的尺寸对疲劳寿命也产生一定的影响(文中称厚度效应),同时考虑这两方面的影响才能更全面地反映缺口试样的尺寸效应。利用疲劳极限的外推法获得了与局部特征参量L/G相关的缺口试样疲劳强度经验公式,并根据此式和趋势外推法得到缺口试样尺寸系数表达式。基于疲劳模拟实验和相似性准则,可建立巨型锻压机机架的模拟缩比模型(属于光滑缺口试样),利用尺寸系数表达式便可计算出机架的尺寸系数。
     3.在零件的尺寸系数计算过程中,同时考虑应力集中、尺寸和表面加工状态的综合影响,对大型结构件的疲劳强度修正过程进行演绎推导,得出了新的疲劳综合修正系数模型。通过该模型对理论应力集中系数、表面加工系数和缺口试样尺寸系数的敏度分析,并与未考虑组合影响的综合修正系数表达式的敏度分析对比,结果表明了新表达式的合理性。
     4.利用新的疲劳综合修正系数对试样疲劳寿命进行分析,计算结果与试验结果基本相符,与传统修正系数计算的结果对比,结果表明:用本文的疲劳综合修正系数进行修正具有更好的效果,更符合实验情况。把它应用于大型结构件上,基于名义应力法可实现利用小试样试验得到大型结构件的疲劳寿命预测,由此形成疲劳寿命预测的试验分析方法,为大型结构件的疲劳寿命评估提供参考。
     5.由于疲劳试验结果的分散性,假定疲劳强度和对数疲劳寿命服从正态分布,本文考虑综合修正系数中的三个关键因素的分散性,利用随机变量组合方法得到了疲劳综合系数的分布。根据材料疲劳极限的分布,运用综合修正系数的分布得到零件疲劳极限的分布。在材料的中值S-N(可靠度为50%)曲线基础上,作出可靠度为99.9%的大型结构件S-N曲线,从而估算出其高可靠性寿命,使计算结果更加合理。
     6.在名义应力法基础上,应用本文的综合修正系数修正材料的S-N曲线后实现了巨型锻压机机架的疲劳寿命预测,预测结果是可以接受的,解决了其试验难的问题。该方法为拉伸载荷下的大型结构件疲劳寿命评估提供了一种新的途径。
     7.大型结构件通常是长时间、高可靠服役。当其尺寸和形状基本确定后,运用本文提出的疲劳寿命分析方法进行构件局部结构精细设计,以进一步提高其使用寿命。本文从结构细部设计规律方面进行了探索,以减少局部应力集中为目标,提出了几种简单、经济的巨型锻压机机架结构延寿设计方案,有限元分析结果说明了其有效性,可满足设计寿命要求,为大型结构件的抗疲劳设计提供参考。图90幅,表23个,参考文献173篇。
The fatigue life of the equipment structure is to determine its basic capability of safe and reliable service, so it is an important problem for scientific analysis in design and manufacuture of equipments. Service functions of modern equipment are becoming more powerful, the structure is developing towards larger and more complex. The performance target of the components, especially reliability requirements, is more prominent, requires of the fatigue life calculation is more scientific and real. The fatigue life calculation is based on the full tests, the prototype fatigue life test of super-scale components is very difficult in experimenting, so that the life design of large-scale components becomes a major problem in today's equipment design. Combined with characteristics of large-scale components, this article intends to explore a fatigue life prediction method of limited test and computational analysis on basis of the existing fatigue calculation theory. Because the tensile fatigue analysis is a base for other fatigue analysis, the influencing law of several major factors of large-scale components fatigue life is mainly investigated under tension load in this thesis, and the fatigue life prediction method for large-scale components is formed on this basis.
     1. Because defects in component increase with increasing its dimension, the probability of fatigue failure also augments. Especially, defects in high stress region easily result in initiating cracks. Due to no obvious size effect under tension in routine fatigue test, fatigue strength calculating result of large-scale component will be larger errors, sometimes wrong results may appear. Based on the similarity of fatigue crack initiation and expanding mechanism between notched-sample and defects in big dimension structure, the notched-sample size factor was presented, the smooth specimen size coefficient was replaced with it in fatigue life analysis. Finite element method (FEM) and theory of critical distance (TCD) were employed to analyze size coefficient of geometrically similar specimens (not including thickness), a simple expression of notched-sample size coefficient was obtained based on gradient effect. A size coefficient example shows that introduction of notched-sample size coefficient is reasonable and effective, the notched-sample size effect under tension is prominent.
     2. Based on the local characteristic of fatigue failure and surface crack, when components size in three dimension largens, it is necessary to investigate the weighed formula of local structure size in high stress region influencing on fatigue strength. It is assumed that the life of notched-plate specimen is dominated by the crack initiation life, fatigue life of geometrically similar specimens of two materials (45#, Q235) were test under tension. The results show that size in local high stress direction has a certain impact on fatigue life except for stress gradient (named thickness effect). Simultaneously considering effect of two aspects can comprehensively reflect size effect of notched-sample. An empirical formula of notched-sample fatigue strength was obtained by applying extrapolation of fatigue limit, in which a local characteristic parameter L/G represented effect of geometric size variations on fatigue performance. The notched-sample size coefficient was calculated through this formula and trend extrapolation. Based on simulated fatigue experiment and similarity rule, the simulated-scale model of large-scale rack of giant forging press machine (notched-sample) was established, its size coefficient was obtained.
     3. During caculating the component size coefficient, simultaneously considering three key factors:stress concentration, surface processing state and size effect, the corrected process of fatigue strength calculation of large-scale component was analysed and deduced; a new comprehensive fatigue correction factor model was established. Sensitivity analysis of model to the theoretical stress concentration coefficient, the surface processing coefficient and the notched-sample size coefficient was proceeded, and was compared with not considering combining influence of comprehensive correction factor expression, the rationality of new expression is proved.
     4. Fatigue life of a notched-sample was analyzed with new fatigue comprehensive correction factor, calculating results basically agree with experimental results. Compared with that of traditional correction coefficient, it shows that the new factor correcting has better effect, and is in accordance with test situation. New factor is used to large-scale component based on nominal stress method, its fatigue life prediction will be accomplished through fatigue test of small samples, which result in experiment&analysis method. It provides reference for fatigue life assessment of large-scale component.
     5. Due to dispersion of fatigue experimental results, this article assumes fatigue strength and logarithm fatigue life both belong to normal distribution, dispersion of three key factors of comprehensive correction factor were taken into account, fatigue comprehensive correction factor distribution was determined through random variables combination method. Fatigue limit distribution of component was obtained with comprehensive correction factor distribution based on distribution of material fatigue limit distribution. On basis of material S-N curve (50%reliability),99.9%reliability S-N curves was drawn, so the reliability life was gotten. This makes life calculation result more reasonable.
     6. On basis of nominal stress method, after amending S-N curve of material with new comprehensive correction factor, fatigue life prediction of rack of giant forging press machine was effectively predicted, life result can be accepted, which can solve its difficult problem in the experiment. This method is to provide a new way for large-scale component fatigue assessment under tensile load.
     7. Large-scale component usually require longer and more reliable service life. When its size and shape was determined, local detials structure were designed with new fatigue life prediction method, so that the service life is to be increased. Structural details design rule were explored in this article, which aimed to reduce stress concentration, a few simple, economic structure life extension design programs were presented, finite element analysis results show their effectiveness. This ensures design life requirement and provides reference for anti-fatigue design of large-scaled component.
引文
[1]周传月,郑红霞,罗慧强等编著.Msc.Fatigue疲劳分析应用与实例[M].北京:科学出版社,2005:1-5.
    [2]Colin R Gagg, Peter R Lewis. In-service fatigue failure of engineered products and structures-Case study review[J]. Engineering Failure Analysis,2009,16: 1775-93.
    [3]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003:10-25.
    [4]李舜酩编著.机械疲劳与可靠性设计[M].北京:科学出版社,2006:1-10.
    [5]穆志韬,曾本银等著.直升机结构疲劳[M].北京:国防工业出版社,2009:2-8.
    [6]熊峻江编著.飞行器结构疲劳与寿命设计[M].北京:北京航天航空大学出版社,2004:1-9.
    [7]赵少汴,王忠保编著.抗疲劳设计[M].北京:机械工业出版社,1997:2-13.
    [8]SCHIJVE J. Fatigue of structures and materials in the 20th Century and the state of the art [J]. International Journal of Fatigue,2003,25:679-702.
    [9]ZHENG Jinyang, WU Linlin, SHI Jianfeng. Extreme pressure equipments[J]. Chinese Journal of Mechanical Engineering,2011,24(2):202-206.
    [10]张小丽,陈雪峰,李兵等.机械重大装备寿命预测综述[J].机械工程学报,2011,47(11):100-116.
    [11]M. Makkonen. Predicting the total fatigue life in metals[J]. Int. J. Fatigue,2009, 13:1163-1175.
    [12]宁晋建.结构连接件疲劳损伤容限全寿命设计方法[J].飞机设计,2005,4:11-13.
    [13]殷之平,黄其青.SN-Paris全寿命综合模型[J].西北工业大学学报,2007,25(3):327-330.
    [14]李德建.59坦克传动装置齿轮的疲劳分析[D].大连:大连理工大学硕士论文,2007.
    [15]J.C. Newman Jr, E.P. Phillips, M.H. Swain. Fatigue-life prediction methodology using small-crack theory[J]. Int. J. Fatigue,1999,21:109-119.
    [16]Jae-Yong Lim, Seong-Gu Hong, Soon-Bok Lee. Application of local stress strain approaches in the prediction of fatigue crack initiation life for cyclically non-stabilized and non-Masing steel[J]. Int. J. Fatigue,2005,27:1653-1660.
    [17]T.Ghidini,C. Dalle Donne. Fatigue life predictions using fracture mechanics methods[J]. Engineering Fracture Mechanics,2008,11:1-15.
    [18]A. Varvani-Farahani, T. Kodric, A. Ghahramani. A method of fatigue life prediction in notched and un-notched components[J]. Journal of Materials Processing Technology,2005,169:94-102.
    [19]Me Diarmid D L. A General Criterion for High-Cycle Multiaxial Fatigue Failure [J]. Fatigue Fracture of Engineering Material and Structure,1991,14(4): 429-453.
    [20]金丹,陈旭,吴剑华等.基于一种新临界面的多轴载荷疲劳寿命预测方法[J].机械强度,2008,30(6):973-976.
    [21]雷冬,赵建华,龚明等.疲劳过程中的能量耗散和疲劳寿命的预测[J].实验力学,2008,23(5):434-442.
    [22]童小燕,姚磊江,吕胜利.疲劳能量方法研究回顾[J].机械强度,2004,26(S):216-221.
    [23]熊峻江,王三平,高镇同.疲劳寿命估算的能量法及其实验研究[J].力学学报,2000,32(4):420-426.
    [24]雷东.疲劳寿命预测若干方法的研究[D].合肥:中国科学技术大学博士学位论文,2006.
    [25]Tung X Y, Wang D J, Xu H. Inverstingation of cyclic hysteresis energy in fatigue failure problems[J]. Int. J. Fatigue,1989,11 (5):355-359.
    [26]A. E. Tsybul'ko, E. A. Romanenko. Fatigue Strength of Materials in a Complex Stress State[J], Russian Engineering Research,2010,30(1):23-25.
    [27]Yao W. X. Stress field intensity approach for prediction fatigue life[J]. Int. J. Fatigue,1993,15(3):233-245.
    [28]尚德广,王大康,李明等.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报,2002,38(1):67-70.
    [29]S. Hanaki, M. Yamashita, H. Uchida, etal. On stochastic evaluation of S-N data based on fatigue strength distribution[J]. Int. J. Fatigue,2010,32:605-609.
    [30]R. Tovo. On the fatigue reliability evaluation of structural components unders ervice loading[J]. Int. J. Fatigue,2001,23:587-598.
    [31]T.D. Righiniotis, M.K. Chryssanthopoulos. Probabilistic fatigue analysis under constant amplitude loading [J]. Journal of Constructional Steel Research,2003, 59:867-886.
    [32]Shigeo Shimizu, Katsuji Tosha, Kazuo Tsuchiya. New data analysis of probabilistic stress-life (P-S-N) curve and its applicationfor structural materials[J]. Int. J. Fatigue,2010,32:565-575.
    [33]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社,1998:15-22.
    [34]肖志金,朱思洪.基于虚拟样机技术的轻型载货汽车车架疲劳寿命预测方法[J].机械设计,2010,27(1):59-62.
    [35]刘德刚,侯卫星,王凤洲.基于有限元技术的构件疲劳寿命计算[J].铁道学报,2004,26(2):47-51.
    [36]汤清洪,马吉胜,赵琦.自行火炮履带板疲劳寿命预测仿真研究[J].系统仿真学报,2007,19(9):1983-1986.
    [37]王启唐,韩兵,王岐燕.基于有限元技术的疲劳寿命分析[J].拖拉机与农用运输车,2007,34(3):76-77.
    [38]周华祥,黄松林.大型梁疲劳寿命分析与计算[J].黄石理工学院学报,2008,24(3):43-48.
    [39]缪炳荣,阳光武,肖守讷.机车车辆结构疲劳寿命预测方法的研究[J].内燃机车,2005,11:1-5.
    [40]Yves Verreman, Nathalie Limodin. Fatigue notch factor and short crack propagation J]. Engineering Fracture Mechanics,2008,75:1320-1335.
    [41]Miner M A. Cumulative damage in fatigue [J]. Journal of the Applied Mechanics. 1945,67(12):159-164.
    [42]赵少汴.局部应力应变法的推广应用[J].机械设计,2000,17(3):11-13.
    [43]钱桂安,王茂廷,王莲.用局部应力应变法进行高周疲劳寿命预测的研究[J].机械强度,2004,26(S):275-277.
    [44]聂宏,常龙.基于局部应力应变法估算高周疲劳寿命[J].南京航空航天大学学报,2000,32(1):75-79.
    [45]李玉春.复杂载荷下应力场强度抗疲劳设计方法研究[D].南京:南京航空航天大学博士学位论文,2000.
    [46]Jen, Y.M., Wang, W.W. Crack initiation life prediction for solid cylinders with transverse circular holes under in-phase and out-of-phase multiaxial loading[J]. Int. J. Fatigue,2005,27:527-539.
    [47]Yip, M.C., Jen, Y.M. Biaxial fatigue crack initiation life prediction of solid cylindrical specimens with transverse circular holes[J]. Int. J. Fatigue,1996,18: 111-17.
    [48]Leipholz H H E. On the modified S-Ncurve for metal fatigue prediction and its experimental verification[J]. Engineering Fracture Mechanics,1986,23(3): 495-505.
    [49]Artymiak P, Bukowski L, Feliks J, et al. Determination of S-N curves with the application of artificial neural networks[J]. J of Fatigue Fract Engng Mater Struct,1999,22(8):723-728.
    [50]J. Kohout, S. Vechet. A new function for fatigue curves characterization and its multiple merits[J]. Int. J. Fatigue,2001,23:175-183.
    [51]张亚军.S-N疲劳曲线的数学表达式处理方法探讨[J].理化检验-物理分册,2007,43(11):563-565.
    [52]卢曦,郑松林,褚超美.基于疲劳强度衰减模型的S-N曲线测定方法[J].农业机械学报,2007,38(7):152-155.
    [53]赵林,王德俊,徐灏.金属材料疲劳规律的预测方法[J].东北大学学报(自然科学版),1995,16(5):508-512.
    [54]黄芳,聂雪媛,江增荣等.利用红外热像技术快速预测材料的S-N曲线[J].实验力学,2009,24(4):291-297.
    [55]吴富强,姚卫星.一个新的材料疲劳寿命曲线模型[J].中国机械工程,2008,19(13):1634-1637.
    [56]王文阁,刘祖斌,郑联珠.疲劳寿命曲线特性研究及在汽车部件疲劳试验优化中的应用[J].汽车技术,2005,11:19-21.
    [57]韩希棚,许超,段作祥等.高周疲劳曲线的等效应力法[J].航空材料学报,2003,23(3):53-57.
    [58]吴富民.结构疲劳强度[M].西安:西北工业大学出版社,1985:16-179.
    [59]Jaap Schijve. Fatigue of Structure and Material[M]. Springer,2008:25-94.
    [60]Buch A. Fatigue strength Calculation[M]. Brookfield:Trans Tech Publication Brookfield Publishing Co.,1988.
    [61]Shengping Wang. Relationship between the fatigue limit and the mechanical strength of metals[J]. Journal of Materials Processing Technology,2000,100: 42-46.
    [62]乔艳江,孙强,李春旺等.合金钢与铝合金疲劳极限的理论估算方法分析[J],力学与实践,2007,294:47-50.
    [63]Jing Li, Qiang Sun, Zhong-ping Zhang, etal. Theoretical estimation to the cyclic yield strength and fatigue limit for alloy steels[J]. Mechanics Research Communications,2009,36:316-321.
    [64]S. Kwofie. An exponential stress function for predicting fatigue strength and life due to mean stresses[J]. Int. J. Fatigue,2001,23:829-836.
    [65]丁遂栋,杨国战.钛合金光滑试样非对称循环疲劳极限的估算[J],机械强度,2001,23(3):371-372.
    [66]丁遂栋.结构钢光滑试样非对称循环疲劳极限的估算[J],机械强度,1997,19(1):45-47.
    [67]董聪,董树利,刘建华,非对称荷载下疲劳强度临界值的统一公式[J],工程力学,2001,18(2):92-98.
    [68]白曌宇,孟宪红,徐阿玲.确定疲劳极限的外推法[J],应用力学学报,2003,20(1):121-122.
    [69]刘浩,曾伟,丁桦等.利用红外热像技术快速确定材料疲劳极限[J],力学与实践,2007,29(4):36-39.
    [70]刘浩,赵军,丁桦.快速确定45钢疲劳极限的试验方法[J],物理测试,2008,26(2):38-42.
    [71]Y.X. Zhao, B. Yang. Probabilistic measurements of the fatigue limit data from a small sampling up-and-down test method[J]. Int. J. Fatigue,2008,30:2094-2103.
    [72]Schijve, J. Stress gradients around notches[J]. Fatigue Engrg. Mater. Struct., 1981,3:325-338.
    [73]Peterson, R.E. Stress Concentration Factors[M]. John Wiley & Sons, New York,1974. New edition by Pilkey, W.D. and Pilkey,D.F. Peterson's Stress Concentration Factors,3rd rev. edn. John Wiley & Sons,2008.
    [74]陈耀明编著.评价及估算切口疲劳强度的新方法[M].北京:航空工业出版社,2006:4-6.
    [75]Gooyer, L.E. Overbeeke, J.L. The stress distributions in shouldered shafts under axisymmetric loading[J]. J. Strain Anal.,1991,26:181-184.
    [76]Noda N-A., Takase Y., Monda K. Stress concentration factors for shoulder fillets in round and flat bars under various loads[J]. Int. J. Fatigue,1997,19(1):75-84.
    [77]陈容,黄宁.一种有效的理论应力集中系数的算法[J].工程设计学报,2010,17(3):215-218.
    [78]董志航,廖志忠.理论应力集中系数的有限元求法[J].航空兵器,2005,3:15-18.
    [79]陈玉振,陈亚峰,瞿亦峰.子模型技术在强度分析中的应用[J].机械,2008,35(8):28-30.
    [80]杨固川,于江,陈文等.大型模锻液压机机架结构分析研究[J].锻压技术,2010,35(3):109-112.
    [81]姚保森,我国锻造夜压机地现状及发展[J].锻压装备与制造技术,2005, 3:28-29.
    [82]Nao-Aki Noda, Yasushi Takase, Keiji Monda. Stress concentration factors for shoulder fillets in round and flat bars under various loads [J]. Int. J. Fatigue,1997, 19(1):75-84.
    [83]Neuber H. Theory of stress concentration for shear strained prismatic bodies with arbitory nonlinear stress-strain law[J]. Journal of Applied Mechanics, ASME, 1951:544-550.
    [84]Neuber H. Theory of notch stresses:principles for exact calculation of strength with reference to structural form and material[M].2nd ed. Berlin:Springer; 1958:292.
    [85]Peterson RE. Notch-sensitivity[M]. In:Sines G, Waisman JL, editors. Metal fatigue. New York:McGraw-Hill; 1959:293-306.
    [86]Siebel E, Stieler M. Non-uniform stress distribution in vibrating load[J]. VDI-Z, 1955,97(5):243-245.
    [87]Yu M T, DuQuesnay D L, Topper T H. Notch fatigue behaviour of SAE1045 steel[J]. Int. J. Fatigue,1988,10(2):109-116.
    [88]郑楚鸿.高周疲劳设计方法—应力场强法的研究[D].北京:清华大学博士学位论文,1984.
    [89]Yao Weixing, Xia Kaiquan, Guo Yi. On the fatigue notch factor, Kf[J]. Int. J. Fatigue,1995,17(4):245-251.
    [90](前苏)谢联先CB主编.机器零件的承载能力和强度计算[M].注一麟等译.北京:机械工业出版社,1984:120-165.
    [91]Ye Duyi, Wang Dejun. A new approach to the prediction of fatigue notch reduction factor Kf[J]. Int. J. Fatigue,1996,18(2):105-109.
    [92]胡本润,刘建中,陈剑峰.疲劳缺口系数Kf与理论应力集中系数Kt之间的关系[J].材料工程,2007,7:70-73.
    [93]D. Arola, C.L. Williams. Estimating the fatigue stress concentration factor of machined surfaces[J]. Int J Fatigue,2002,24:923-930.
    [94]Mohameel R. Bayoumi, A.K.Abdellatif. Effect of surface finish on fatigue strength[J]. Engineering Fracture Mechanics,1995,51(5):861-870.
    [95]Phillips, C.E. and Heywood, R.B., Size effect in fatigue of plain and notched steel specimens[J]. Proc. Inst. Mech. Engrs.,1951,165:113-124.
    [96]Stamoulis K, Giannakopoulos A E. Size effects on strength, toughness and fatigue crack growth of gradient elastic solids[J]. International Journal of Solids and Structures,2008,45:4921-4935.
    [97]BUCH. Verification of Fatigue Life Prediction results for notched specimens with short crack propagation phase[J].Materials Science and Engineering Technology,1981,12(8):272-281.
    [98]Weibull W. A statistical theory for the strength of materials[M]. Stock-holm: Swedish Royal Institute for Engineering Research,1939:23-48.
    [99]Bazant ZP. Size effect in blunt fracture:concrete, rock, metal[J]. J Eng Mech ASCE,1984,110:518-35.
    [100]D. Leguillon, D. Quesada, C. Putot, E. Martin. Prediction of crack initiation at blunt notches and cavities-size effects[J]. Engineering Fracture Mechanics, 2007,74:2420-2436.
    [101]Andrea Carpinteri, A. Spagnoli, S. Vantadori. An approach to size effect in fatigue of metals using fractal theories[J]. Fatigue Fract Engng Mater Struct. 2002,25:619-627.
    [102]林志忠编著.金属的缺陷、载荷与疲劳[M].北京:中国铁道出版社,1993:28-50.
    [103]姚卫星.论疲劳尺寸系数[J].机械强度,1994,16(3):69-71.
    [104]Mauro Filippini. Stress gradient calculations at notches[J]. International Journal of Fatigue,2000,22:397-409.
    [105]王少华,张质文.概率疲劳强度估算方法和疲劳尺寸效应的分析[J],机械强度,1992,14(3):71-75.
    [106]Hans-Peter Gaenser. Some notes on gradient, volumetric and weakest link concepts in fatigue[J]. Computational Materials Science,2008,44:230-239.
    [107]Norberg S, Olsson M. The effect of loaded volume and stress gradient on the fatigue limit[J]. Int J Fatigue,2007,29(12):2259-2272.
    [108]Adib-Ramezani H, Jeong J. Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots [J]. Computational Materials Science,2007,39:649-663.
    [109]Makkonen M. Notch size effects in the fatigue limit of steel [J]. Int J Fatigue, 2003,25:17-26.
    [110]Karlen K, Olsson M. Experimental and statistical investigation of the weakest link integral and the volume effect[J]. Procedia Engineering,2010; 2(1): 1451-1457.
    [111]G. Savaidisa, A. Savaidis, G. Tsamasphyros, Ch. Zhang. On size and technological effects in fatigue analysis and prediction of engineering materials and components[J].International Journal of Mechanical Sciences,2002,44 521-543.
    [112]E.T. Ooi, Z.J. Yang. Efficient prediction of deterministic size effects using the scaled boundary finite element method[J]. Engineering Fracture Mechanics, 2010,77:985-1000.
    [113]David Taylor. Analysis of fatigue failures in components using the theory of critical distances[J]. Engineering Failure Analysis,2005,12:906-914.
    [114]Xiulin Zheng. On some basic problems of fatigue research in engineering[J]. Int J Fatigue,2001,23:751-766.
    [115]Nicholas T. Critical issues in high cycle fatigue[J]. Int J Fatigue,1999,21: S221-231.
    [116]Smith RA, Miller KJ. Prediction of fatigue regimes in notch components [J]. Int J Mech Sci,1978,20:201-206.
    [117]El Haddad MH, Smith KN, Topper TH. Fatigue crack propagation of short cracks[J]. J Eng Mater Technol (Trans ASME),1979,101:42-46.
    [118]Sheppard SD. Field effects in fatigue crack initiation:long life fatigue strength[J]. Trans ASME J Mech Des,1991,113:188-194.
    [119]Taylor D. The theory of critical distances:a new perspective in fracture mechanics[M]. Oxford, UK:Elsevier; 2007:1-9.
    [120]D. Taylor, P. Bologna, K. Bel Knani. Prediction of fatigue failure location on a component using a critical distance method[J]. Int J Fatigue,2000,22:735-742.
    [121]Taylor D, Wang G. The validation of some methods of notch fatigue analysis [J]. Fatigue Fract Eng Mater Struct,2000,23:387-394.
    [122]David Taylor, Saeid Kasiri. A comparison of critical distance methods for fracture prediction[J]. International Journal of Mechanical Sciences,2008,50: 1075-1081.
    [123]G. Chiandussi, M. Rossetto. Evaluation of the fatigue strength of notched specimens by the point and line methods with high stress ratios[J]. Int J Fatigue, 2005,27:639-650.
    [124]Luca Susmel. The theory of critical distances:a review of its applications in fatigue [J]. Engineering Fracture Mechanics,2008,75:1706-1724.
    [125]Toshio Hattori, Naoya Nishimura, Minoru Yamashita. Standardization of strength evaluation methods using critical distance stress [J], Engineering Fracture Mechanics,2008,75:1725-1735.
    [126]Atzori B, Meneghetti G, Susmel L. Material fatigue properties for assessing mechanical components weakened by notches and defects[J]. Fatigue Fract Engng Mater Struct,2004,28:83-97.
    [127]David B. Lanning, Theodore Nicholas, George K. Haritos. On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6A1-4V[J]. Int J Fatigue,2005,27:45-57.
    [128]David B. Lanninga, Theodore Nicholasb, Anthony Palazotto. The effect of notch geometry on critical distance high cycle fatigue predictions [J]. Int J Fatigue,2005,27:1623-1627.
    [129]S. Filippi, P. Lazzarin, R. Tovo. Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates [J]. International Journal of Solids and Structures,2002,39:4543-4565.
    [130]D.Kujawski, C.S.Shin. On the elastic longitudnal stress estimation in the neighbourhood of notches[J]. Engineering Fracture Mechanics,1997,55(1): 137-138.
    [131]Glinka G, Newport A. Universal features of elastic notch-tip stress fields[J]. Int J Fatigue,1987,9(3):143-50.
    [132]International standard ISO 1099, Metallic materials Fatigue testing-Axial-force-controlled method[S],2006:1-21.
    [133]王滨.ASTM金属材料拉伸试样介绍[J].理化检验-物理分册,2004,40(9):477-480.
    [134]Rosenkranz P, Humer K, Weber H W. Influence of specimen size on the tension-tension fatigue behavior of fibre-reinforced plastics at room temperature and at 77 K[J]. Cryogenics,2000,40:155-158.
    [135]Fatemi A, Fang D, Zeng Z. Notched fatigue behavior under axial and torsion loads:experiments and predictions[C]. The eight international fatigue congress, Stockholm, Sweden,2002, Vol3:1905-1914.
    [136]李莉,谢里阳,何雪法,考虑表面加工的疲劳缺口系数研究与应用[J].组合机床与自动化加工技术,2009,2:1-3.
    [137]Kung, C.Y. and Fine, M.E., Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys[J]. Metall. Trans. A,1979,10A:603-609.
    [138]Sigler, D.,Montpetit, M.C. and Haworth,W.L., Metallography of fatigue crack initiation in an overaged high strength aluminium alloy [J]. Metall. Trans. A,1983,14A:931-938.
    [139]David B. Lanning, Theodore Nicholas, Anthony Palazotto. HCF notch predictions based on weakest-link failure models[J]. Int J Fatigue,2003,25: 35-41.
    [140]Mischke CR. A probabilistic model of size effect in the fatigue strength of rounds in bending and torsion[J]. ASME Paper,1979,79-DE-16.
    [141]M. Makkonen. Statistical size effect in the fatigue limit of steel[J]. Int J Fatigue, 2001,23:395-402.
    [142]Lipson C, Juvinall R C. Handbook of Stress and Strength[M], McMillan ComPany, Neuyork,1963:25-56.
    [143]Hakan Ersoy. Design sensitivity analysis of structures based upon the singular value decomposition[J]. Comput. Methods Appl. Mech Engrg,2002,191: 3459-3476.
    [144]Langelaan J W, Livne E. Analytic sensitivities and design oriented structural analysis for airplane fuselage shape synthesis [J]. Compputers & Structures,1997, 62(3):505-519.
    [145]Rosenkranz P, Humer K, Weber H W. Influence of specimen size on the tension-tension fatigue behaviour of fibre-reinforced plastics at room temperature and at 77 K[J]. Cryogenics,2000,40:155-158.
    [146]T. Nicholas. Critical issues in high cycle fatigue[J]. Int. J. Fatigue,1999,21: S221-S231.
    [147]Sonsino, C.M., Course of S-N-curves especially in the high-cycle fatigue regime with regard to component design and safety[J]. Int. J. Fatigue,2007,29: 2246-2258.
    [148]G. Qylafku, Z. Azari, N. Kadi, etal. Application of a new model proposal for fatigue life prediction on notches and key-seats[J]. Int. J. Fatigue,1999,21: 753-760.
    [149]Leipholz H H E. On the modified S-N curve for metal fatigue prediction and its experimental verification[J]. Engineering Fracture Mechanics,1986,23(3): 495-505.
    [150]赵少汴.概率疲劳设计方法与设计数据[J].机械设,2000,4:8-10.
    [151]濮进.长寿命区疲劳寿命概率分布[J].机械强度,2001,23(1):043-046.
    [152]S. Hanaki, M. Yamashita, H. Uchida. On stochastic evaluation of S-N data based on fatigue strength distribution[J]. Int. J. Fatigue,2010,32:605-609.
    [153]朱文予编著.机械可靠性设计.上海:上海交通大学出版社,1997,69-84.
    [154]黄明辉.巨型精密模锻水压机力流传递与监控研究[D].长沙:中南大学博士学位论文,2006.
    [155]佘崇民,郭万林,张斌等.有限厚中心圆孔板的最大三维应力集中[J].机械科学与技术,2006,25(4):438-441.
    [156]中华人民共和国机械行业标准,大型压力容器锻件用钢[S],北京:科学出版社,JB/T 6400-1992.
    [157]Liu J, Shao X J, Liu Y J, et al. The effect of holes quality on fatigue life of open hole[J]. Materials Science and Engineering A,2007,467:8-14.
    [158]W.X. Sun, S. Nishida, N. Hattori, et al. Fatigue properties of cold-rolled notched eutectoid steel[J]. Int. J. Fatigue,2004,26:1139-1145.
    [159]Rachid Ghfiri, Hui-Ji Shi, Ran Guo, et al. Effects of expanded and non-expanded hole on the delay of arresting crack propagation for aluminum alloys[J]. Materials Science and Engineering A,2000,286:244-249.
    [160]A. Amrouche, G. Mesmacque, S. Garcia. Cold expansion effect on the initiation and the propagation of the fatigue crack[J]. Int. J. Fatigue,2003,25: 949-954.
    [161]Keith W. Jones, Martin L. Dunn. Predicting corner crack fatigue propagation from cold worked holes[J]. Engineering Fracture Mechanics 2009; 76:2074-2090.
    [162]Liu Yongshou, Shao Xiaojun, Liu Jun, et al. Finite element method and experimental investigation on the residual stress fields and fatigue performance of cold expansion hole[J]. Materials and Design,2010,31:1208-1215.
    [163]T.N. Chakherlou, J. Vogwell. The effect of cold expansion on improving the fatigue life of fastener holes[J]. Engineering Failure Analysis,2003,10:13-24.
    [164]B.A. Shaw, C. Aylott, P. O'Hara, K. Brimble. The role of residual stress on the fatigue strength of high performance gearing[J]. Int. J. Fatigue,2003, 25:1279-1283.
    [165]Shin-Ichi Nishida, Congling Zhou, Nobusuke Hattori, Shengwu Wang. Fatigue strength improvement of notched structural steels with work hardening[J]. Materials Science and Engineering A,2007,468-470:176-183.
    [166]I.P. Semenova, G.Kh. Salimgareeva, V.V. Latysh, T. Lowe, R.Z. Valiev. Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation[J]. Materials Science and Engineering A,2009,503:92-95.
    [167]Masanobu Kubota, Shunsuke Kataoka, Yoshiyuki Kondo. Effect of stress relief groove on fretting fatigue strength and index for the selection of optimal groove shape[J], Int. J. Fatigue,2009,31:439-446.
    [168]S. Shkarayev. Theoretical modeling of crack arrest by inserting interference fit fasteners[J]. Int. J. Fatigue,2003,25:317-324.
    [169]R. Das, R. Jones. Fatigue life enhancement of structures using shape optimization[J]. Theoretical and Applied Fracture Mechanics,2009,52:165-179=
    [170]Heywood R B. Designing Against Fatigue[M], London, Chapman and HallLTD.1962,10-135.
    [171]Colin R Gagg, Peter R Lewis. In-service fatigue failure of engineered products and structures-Case study review[J]. Engineering Failure Analysis,2009,16: 1775-1793.
    [172]黄宁,黄明辉,湛利华等.巨型压机C型机架的结构分析与改进[J],锻压技术,2009,34(5):93-95.
    [173]Huang Ning, Huang Ming-hui, Zhan Li-hua. Numerical study of a panel with big grooves subjected to in-plane tension[J].Advanced Materials Research,2010, 102-104:297-3