陶瓷材料的静动态力学性能和损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料因其优异的物理、力学性能,广泛应用在军用防护装甲以及民用发动机部件等方面,在国防及高科技领域起到了极其重要的作用。对陶瓷材料的力学性能、抗冲击特性以及损伤破坏规律的研究,成为国内外防护工程新的发展趋势。总体上来讲,目前对陶瓷材料的研究工作大多是初步且比较分散的,同时国内的研究工作与国外相比还有较大的差距。本文对陶瓷材料的基本静动态力学性能以及损伤破坏特性等方面,通过实验、理论及数值模拟相结合的较为全面的研究工作,较深刻地揭示陶瓷材料的抗侵彻机理。
     论文利用系列静动态力学性能实验装置(MTS、SHPB、 LGG及侵彻),开展了AD95与AD86/10两种陶瓷材料的静动态力学性能实验。利用MTS实验装置获得了材料在较低应变率下的强度、泊松比、杨氏模量等参数,以及低应变率下的应力应变曲线。利用SHPB实验装置获得了两种陶瓷材料在中高应变率下的屈服强度,并发现材料的应变率硬化效应。利用极高应变率下的LGG实验装置,获得了材料的自由面速度时程曲线以及层裂强度。开展了两种陶瓷材料抗杆弹侵彻实验,得到了材料的厚度防护系数及质量防护系数,为工程应用提供了依据。
     以实验研究所获得的基本材料参数及实验数据为基础,得到了陶瓷材料的JH-2本构模型参数。经过理论分析建立了既包含材料应变率效应也包含材料压力相关屈服效应和损伤软化效应的陶瓷材料的含损伤动态屈服准则。分析对比了本构计算的半径回归法与严格增量算法的计算流程及优缺点,以所建立的屈服准则为算例,推导了严格增量算法的计算公式。
     工程分析方法研究方面,通过同时考虑弹体和靶体材料的应变率效应,严格地以各分区的质量、动量守恒定律为基础,进一步改进了基于流体动力比拟的工程分析方法。应用改进的工程分析方法数值模拟了陶瓷材料的抗侵彻过程,模拟结果与实验结果符合良好。应用量纲分析方法得到了无量纲形式的侵彻相似律模型,并建立了考虑应变率效应时相似律模型的修正公式。
     数值模拟了SHPB实验中高强度碳化钨垫块所引起的试件轴向应力不均匀现象,并提出了一种合理的添加垫块形式,数值模拟结果显示,新型组合垫块下试件中轴向应力不均匀现象被基本清除;同时应用一维应力波理论得到了修正实验数据的处理方法。这些工作为陶瓷及其它高硬度、高强度材料的动态性能实验数据的准确获取奠定了基础。
     以细观分析和物理统计思想为基础,建立了陶瓷材料的拉伸型损伤演化方程以及压剪耦合型损伤演化方程,所建立的演化方程物理概念清晰,待定参数少。应用所得到的JH-2本构模型及参数、拉伸型损伤演化方程、半径回归算法,对LGG实验过程中平板撞击下陶瓷靶板材料的自由面速度时程曲线进行了数值模拟,通过优选得到了损伤演化方程参数;应用所得到的损伤演化方程及参数、所建立的陶瓷材料的双幂次屈服准则、本构计算的严格增量算法对同一问题进行了数值模拟,模拟结果与实验结果符合良好,证明了所建立的屈服准则、所应用的本构增量算法和所采用的损伤演化方程及参数的合理性。
Ceramic materials have excellent physical, mechanical properties, widely used in military armor protection and civil engine et al, and had played an extremely important role in defense and high-tech sector. Study of the mechanical properties, impact properties as well as the damage and failure of ceramic materials become a new trend for protective works at home and abroad. Generally speaking, the study of the ceramic materials is mostly preliminary and scattered, and there is a large gap between domestic research and foreign countries. This article by means of more comprehensive study of the combination of experimental, theoretical and numerical simulation work, study the basic static and dynamic mechanical properties of ceramic materials, as well as damage and failure characteristics, profoundly reveals the mechanism of resistance to penetration of the ceramic material.
     Thesis carry out the static and dynamic behaviors of the the AD95and AD86/10two kinds of ceramic materials experiments using experimental apparatus (MTS, SHPB, LGG and penetration). Using MTS experimental apparatus obtained the parameters of the strength, Poisson's ratio, Young's modulus and the stress-strain curve of the material in the lower strain rate. Using the SHPB experimental apparatus obtained the yield strength of the two kinds of ceramic materials under medium-high strain rate, and found that the strain rate hardening effect. Using the LGG experimental device obtained the free surface velocity-time curve and the spall strength under high strain rates. Using anti-rod penetrated experimental device obtained the thickness protection factor and quality protection factor of the two kinds of materials.
     Making use of the basic material parameters and the experimental data obtained the ceramic materials'JH-2constitutive model parameters. Two yield criterions were established through theoretical analysis which contain both material strain rate effect and pressure related effects about ceramic materials. Compared the calculation process and the advantages and disadvantages of the radius regression with strict incremental algorithm through analysis. Take the established yield criterion for example, the strict calculation formula of incremental algorithm was deduced in details.
     Through taking into account the strain rate effect of the projectile and target materials, further improved the engineering analysis method based on the hydrodynamic analogy. The improved engineering analysis method was applied to numerical simulation of the resistance to penetration process of ceramic materials, the simulation results were in good agreement with the experimental results. Dimensional analysis method was applied to get no dimensional form similarity law of model, and established the correction law of similarity when considering the strain rate effect.
     Numerical simulated axial stress uneven phenomenon of ceramic specimen under SHPB experiment with high strength tungsten carbide inserts, and put forward a reasonable inserts form. The numerical simulation results showed that under the new combination inserts form the axial stress uneven phenomenon of specimen is basically eliminated. Application of one-dimensional stress wave theory got the correction method of experiment data.
     The tensile damage evolution equation and the compression-shear coupling damage evolution equation of ceramic materials were established. The physical concept of the evolution equations is clear and the undetermined parameters are few. We simulated the free surface velocity time history curve of ceramic materials under plate impact experimentation, using the above-mentioned JH-2constitutive model and parameters, the tensile damage evolution equation and the radius regression algorithm. The parameters in damage evolution equation are obtained by optimization. Application of the damage evolution equation and the parameters, the double exponential yield criterion and the strict incremental algorithm, we simulated the same LGG experiment. The simulation results were good agree with the experimental results, proved that the yield criterion, the strict incremental algorithm and the damage evolution equation are reasonable.
引文
[1]Sharma V, Nemat-Nasser S, Vecchio K S.1994. Dynamic-compression fatigue of hot-pressed silicon-nitride[J]. Experimental mechanics,34(4):315-323
    [2]Nlkkila A P, Mantyla T A.1989. Cyclic fatigue of silicon nitrides[C]//A Collection of Papers Presented at the 13th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2:Ceramic Engineering and Science Proceedings, Volume 10, Issue 7/8. John Wiley & Sons, Inc.,646-656
    [3]Gust W H, Royce E B.1971. Dynamic Yield Strengths of B4C, BeO, A12O3 Ceramics[J]. Journal of Applied Physics,42(1):276-295
    [4]Griffith A A.1924. Theory of rupture, in Proc. First international congress applied mechanics, Delft,55-63
    [5]Irwin G R.1958. Fracture in Handbuch tier Physik, vol[J]. Springer-Verlag Berlin, G6ttingen, Heidelberg,6:551-590
    [6]Tracy C A.1987. A compression test for high strength ceramics[J]. Journal of testing and evaluation,15:14-19
    [7]Subhash G, Ravichandran G.1998. Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression[J]. Journal of materials science,33(7): 1933-1939
    [8]Nemat-Nasser S, Isaacs J B, Starrett J E.1991. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,435(1894):371-391
    [9]Ravichandran G, Subhash G.1994. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society,77(1):263-267
    [10]Subhash G, Ravichandran G.2000. Split-Hopkinson Pressure Bar Testing of Ceramics[J]. Materials Park, OH: ASM International,2000:497-504
    [11]Chen W, Song B.2011. Split Hopkinson (Kolsky) bar: design, testing and applications[M]. Springer Science+Business Media
    [12]Chen W, Subhash G, Ravichandran G.1994. Evaluation of ceramic specimen geometries used in split Hopkinson pressure bar[J]. Dymat Journal,1(3):193
    [13]黄良钊,张安平.1999.Al2O3陶瓷的动态力学性能研究[J].中国陶瓷,35(1):13-15
    [14]Grady D E, Moody R L.1996. Shock compression profiles in ceramicsf[R]. Sandia National Labs., Albuquerque, NM (United States)
    [15]Yuan G, Feng R, Gupta Y M.2001. Compression and shear wave measurements to characterize the shocked state in silicon carbide[J]. Journal of Applied Physics,89(10): 5372-5380
    [16]Sundaram S, Clifton R J.1998. The influence of a glassy phase on the high strain rate response of a ceramic[J]. Mechanics of materials,29(3):233-251
    [17]Rosenberg Z, Yaziv D, Yeshurun Y, et al.1987. Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges[J]. Journal of applied physics, 62(3):1120-1122
    [18]Rosenberg Z.1993. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials[J]. Journal of applied physics,74:752
    [19]Staehler J M, Predebon W W, Pletka B J, et al.1993. Testing of High-Strength Ceramics with the Split Hopkinson Pressure Bar[J]. Journal of the American Ceramic Society,76(2): 536-538
    [20]Rajendran A M, Cook W H.1988. A comprehensive review of modeling of impact damage in ceramics[R]. DAYTON UNIV OH RESEARCH INST
    [21]W.H.Gust and E.B.Royce,1971. Dynamic Yield Strengths of B4C, BeO, A12O3 Ceramics, J.Appl.Phys,42(1):176-295
    [22]Lynch N J.1999. Constant kinetic energy impacts of scale size KE projectiles at ordnance and hypervelocity[J]. International journal of impact engineering,23(1):573-584
    [23]Orphal D L, Franzen R R, Piekutowski A J, et al.1996. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s[J]. International journal of impact engineering,18(4):355-368
    [24]Westerling L, Lundberg P, Lundberg B.2001. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. International journal of impact engineering,25(7):703-714
    [25]Rosenberg Z, Dekel E, Hohler V, et al.1997. Hypervelocity penetration of tungsten alloy rods into ceramic tiles:experiments and 2-D simulations[J]. International journal of impact engineering,20(6):675-683
    [26]Reaugh J E, Holt A C, Welkins M L, et al.1999. Impact studies of five ceramic materials and pyrex[J]. International journal of impact engineering,23(1):771-782
    [27]Anderson C E, Royal-Timmons S A.1997. Ballistic performance of confined 99.5%-Al203 ceramic tiles[J]. International journal of impact engineering,19(8): 703-713
    [28]Bruchey W J, Horwath E J.1998. System considerations concerning the development of high-efficiency ceramic armors[C]//Proceeding of 17th International Symposium on Ballistics. Midrand, South Africa,167-174
    [29]Mr.Richard Delagrave.Mr.Richard Delagrave.1998. Applying Em Computed Form DOP Testing Results to the Design of Actual Ceramic Armour Systems[C]//Proceeding of 17th International Symposium on Ballistics. Midrand, South Africa,153-160
    [30]W. Chen.1995. Dynamic failure behavior of ceramics under multiaxial compression[D]:[Ph. D.]. California Institute of Technology, Pasadena, California
    [31]Subhash G, Ravichandran G.1998. Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression[J]. Journal of materials science,33(7):1933-1939
    [32]Curran D R, Seaman L, Cooper T.1991. Constitutive modeling of fragmented material[J]. Le Journal de Physique IV,1(C3): C3-899-C3-902
    [33]Curran D R, Seaman L, Cooper T, et al.1993. Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets[J]. International Journal of Impact Engineering,13(1):53-83
    [34]Klopp R W, Shockey DA.1991. The strength behavior of granulated silicon carbide at high strain rates and confining pressure[J]. Journal of applied physics,70(12):7318-7326
    [35]Kachanov L M.1958. On the time to failure under creep conditions, Izv[J]. AN SSSR, Otd. Tekhn.Nauk,8: 26-31
    [36]Dougill J W, Lau J C, Burt N J.1976. Towards a Theoretical Model for Progressive Failure and Softening in Rock, Concrete, and Similar Materials[J]. Mech. in Engng., ASCE-EMD, 335-355
    [37]Dragon A, Mroz Z.1979. A continuum model for plastic-brittle behaviour of rock and concrete[J]. International Journal of Engineering Science,17(2):121-137
    [38]Krajcinovic D, Fonseka G U.1981. THE CONTINUOUS DAMAGE THEORY OF BRITTLE MATERIALS. PT.1. GENERAL THEORY[J]. J. Appl. Mech.,48(4): 809
    [39]J.勒迈特著,倪金刚,陶春虎译.1996.损伤力学教程[M].科学出版社
    [40]Budiansky B, O'connell R J.1976. Elastic moduli of a cracked solid[J]. International Journal of Solids and Structures,12(2):81-97
    [41]Tuler F R, Butcher B M.1968. A criterion for the time dependence of dynamic fracture[J]. International Journal of Fracture Mechanics,4(4):431-437
    [42]Gilman J J, Tuler F R.1970. Dynamic fracture by spallation in metals[J]. International Journal of Fracture Mechanics,6(2):169-182
    [43]Davison L, Stevens A L.1972. Continuum measures of spall damage[J]. Journal of Applied Physics,43(3):988-994
    [44]Seaman L, Curran D R, Shockey D A.1976. Computational models for ductile and brittle fracture[J]. Journal of Applied Physics,47(11):4814-4826
    [45]Batdorf S B.1975. Fracture statistics of brittle materials with intergranular cracks[J]. Nuclear Engineering and Design,35(3):349-360
    [46]Seaman L, Curran D R, Murri W J.1985. A continuum model for dynamic tensile microfracture and fragmentation[J]. Journal of applied mechanics,52(3):593-600
    [47]Taylor L M, Chen E P, Kuszmaul J S.1986. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering,55(3):301-320
    [48]Rajendran A M, Kroupa J L.1989. Impact damage model for ceramic materials[J]. Journal of Applied Physics,66(8):3560-3565
    [49]Johnson G R, Holmquist T J.1990. A computational constitutive model for brittle materials subjected large strains, high strain rate and high pressures[C]. Proceedings of the EXPLOMET Conference. San Diego, CA
    [50]Holmquist T J, Templeton D W, Bishnoi K D.2001. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering,25(3):211-231
    [51]Rajendran A M.1992. High Strain Rate Behavior of Metals Ceramics, and Concrete[R]. DAYTON UNIV OH RESEARCH INST
    [52]Rajendran A M.1994. Modeling the impact behavior of AD85 ceramic under multiaxial loading[J]. International journal of impact engineering,15(6):749-768
    [53]Rajendran A M, Dietenberger M A, Grove D J.1989. A void growth-based failure model to describe spallation[J]. Journal of applied physics,65(4):1521-1527
    [54]白以龙,柯芋久,夏蒙梦.1991.固体中微裂纹系统统计演化的基本描述1)[J].力学学报,23(3):290-298
    [55]柯孚久,白以龙,夏蒙棼.1990.理想微裂纹系统演化的特征[J].中国科学A辑,6:621-631
    [56]白以龙.1992.冲击载荷下材料的损伤和破坏.冲击动力学进展(王礼立等编),中国科学技术大学出版社,34-57
    [57]Tuler F R, Butcher B M.1968. A criterion for the time dependence of dynamic fracture[J]. International Journal of Fracture Mechanics,4(4):431-437
    [58]Klepaczko J R.1990. Dynamic crack initiation, some experimental methods and modeling[J]. Crack Dynamics in Metallic Materials. Springer-Verlag, Vienna,255-453
    [59]Hanim S, Klepaczko J R.1999. Numerical study of spalling in an aluminum alloy 7020-T6[J]. International journal of impact engineering,22(7):649-673
    [60]Rajendran A M, Dietenberger M A, Grove D J.1989. A void growth-based failure model to describe spallation[J]. Journal of applied physics,65(4):1521-1527
    [61]Munroe C E.1888. Modern explosives[J]. Scribners Magazine,3:563
    [62]Birkhoff G, MacDougall D P, Pugh E M, et al.1948. Explosives with lined cavities[J]. Journal of Applied Physics,19(6):563-582
    [63]Pack D C, Evans W M.1951. Penetration by High-Velocity (Munroe1) Jets: I[J]. Proceedings of the Physical Society. Section B,64(4):298
    [64]Alekseevskii V P.1966. Penetration of a rod into a target at high velocity[J]. Combustion, Explosion, and Shock Waves,2(2): 63-66
    [65]Tate A.1967. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids,15(6): 387-399
    [66]Tate A.1969. Further results in the theory of long rod penetration*[J]. Journal of the Mechanics and Physics of Solids,17(3):141-150
    [67]Anderson Jr C E, Walker J D.1991. An examination of long-rod penetration[J]. International journal of impact engineering,11(4): 481-501
    [68]孙庚辰,吴锦云等.1981.长杆弹垂直侵彻半无限厚靶地简化模型[J].兵工学报,4:1-8
    [1]Sharma V, Nemat-Nasser S, Vecchio K S.1994. Dynamic-compression fatigue of hot-pressed silicon-nitride[J]. Experimental mechanics,34(4):315-323
    [2]Nlkkila A P, Mantyla T A.1989. Cyclic fatigue of silicon nitrides[C]//A Collection of Papers Presented at the 13th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2:Ceramic Engineering and Science Proceedings, Volume 10, Issue 7/8. John Wiley & Sons, Inc.,646-656
    [3]Gust W H, Royce E B.1971. Dynamic Yield Strengths of B4C, BeO, A12O3 Ceramics[J]. Journal of Applied Physics,42(1):276-295
    [4]G. Subhash, G. Ravichandran.1998. Mechanical behavior of a hot pressed aluminum nitride under uniaxial compression[J]. Journal of Materials Science,33:1933-1939
    [5]黄良钊,张安平.1992.Al2O3陶瓷的动态力学性能研究[J].中国陶瓷,35(1):12-15
    [6]Grady D E, Moody R L.1996. Shock compression profiles in ceramics[R]. Sandia National Labs., Albuquerque, NM (United States)
    [7]S. Sundaram and R. J. Clifton.1998. The Influence of a Glassy Phase on the High Strain Rate Response of a Ceramic[J]. Mechanics of Materials 29(3),233-251
    [8]A. J. Rosakis and G. Ravichandran.2000. Dynamic failure mechanics[J]. International Journal of Solids and Structures,37(1),331-348
    [9]Yuan G, Feng R, Gupta Y M.2001.Compression and shear wave measurements to characterize the shocked state in silicon carbide[J]. Journal of Applied Physics,89(10): 5372-5380
    [10]Rosenberg, Z., Yaziv, D., Yeshurun, Y., & Bless, S. J.1987. Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges. Journal of applied physics,62(3):1120-1122
    [11]Rosenberg Z.1993. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials[J]. Journal of applied physics,74:752
    [12]Staehler J M, Predebon W W, Pletka B J, et al.1993. Testing of High-Strength Ceramics with the Split Hopkinson Pressure Bar[J]. Journal of the American Ceramic Society,76(2): 536-538
    [13]A.M.Rajendran, and W.H.Cook, AD-A203477(1988)
    [14]李平.2002.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D]:[博士].北京:北京理工大学
    [15]Kolsky H.1949. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,62(11):676
    [16]Subhash G, Ravichandran G.2000. Split-Hopkinson Pressure Bar Testing of Ceramics[J]. Materials Park, OH: ASM International,2000:497-504
    [1]Costin L S.1983. A microcrack model for the deformation and failure of brittle rock[J]. Journal of Geophysical Research:Solid Earth,88(B11):9485-9492
    [2]Dienes J K.1978. A statistical theory of fragmentation[C]//19th US Symposium on Rock Mechanics (USRMS):51-55
    [3]Dienes J K.1983. On the stability of shear cracks and the calculation of compressive strength[J]. Journal of Geophysical Research:Solid Earth,88(B2):1173-1179
    [4]Dienes J K.1985. A statistical theory of fragmentation processes[J]. Mechanics of Materials, 4(3):325-335
    [5]Dienes J K.1996. A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity[M]//High-Pressure Shock Compression of Solids Ⅱ. Springer New York,366-398
    [6]Addessio F L, Johnson J N.1990. A constitutive model for the dynamic response of brittle materials[J]. Journal of applied physics,67(7):3275-3286
    [7]Rajendran A M.1994. Modeling the impact behavior of AD85 ceramic under multiaxial loading[J]. International journal of impact engineering,15(6):749-768
    [8]Rajendran A M, Grove D J.1996. Modeling the shock response of silicon carbide, boron carbide and titanium diboride[J]. International Journal of Impact Engineering,18(6):611-631
    [9]Zuo Q H, Addessio F L, Dienes J K, et al.2006. A rate-dependent damage model for brittle materials based on the dominant crack[J]. International journal of solids and structures, 43(11):3350-3380
    [10]Zuo Q H, Disilvestro D, Richter J D.2010. A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading[J]. International Journal of Solids and Structures,47(20):2790-2798
    [11]Johnson G R, Holmquist T J.1994. An improved computational constitutive model for brittle materials[C]//AIP Conference Proceedings.309:981
    [12]Johnson GR, Holmquist TJ.1990. A computational constitutive model for brittle materials subjected to large strains,high strain rates and high pressures. Proceedings of the EXPLOMET Conference. San Diego, CA
    [13]李平.2002.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D]:[博士].北京:北京理工大学
    [14]Anderson C E, Johnson G R, Holmquist T J.1995. Ballistic experiments and computations of confined 99.5%Al2O3 ceramic tiles[C]//Proceedings of the 15th International Symposium on Ballistics. Israel, Jerusalem,2: 65-72
    [15]Johnson G R, Cook W H.1983. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands:International Ballistics Committee,21: 541-547
    [16]J.勒迈特著,倪金刚,陶春虎译.1996.损伤力学教程[M].科学出版社
    [17]Drucker D C.1951. A More Fundamentla Approach to Plastic Stress-strain Relations [M].Brown University. Division of Applied Mathematics, United States. Office of Naval Research, et al.
    [18]Ильюшин,A.A.,Пластичность,(中译本:伊留辛著,王振常译.1958.塑性[M].建筑工业出版社)
    [19]王仁,黄文彬,黄筑平.1992.塑性力学引论(修订版)[M].北京大学出版社
    [20]黄克智,黄永刚.1999.固体本构关系[M].清华大学出版社
    [21]殷有泉,曲圣年.1982.弹塑性耦合和广义正交法则[J].力学学报,1:63-70
    [22]王自强.2000.理性力学基础[M].科学出版社
    [23]俞茂鋐.1999.工程强度理论[M].高等教育出版社
    [24]李永池,唐之景,胡秀章.1988.关于Drucker公设和塑性本构关系的进一步研究[J].中国科学技术大学学报,18(3):339-345
    [25]Li Y C, Wang X J, Huang C Y.1998. Further study on the constitutive relations in dynamic plasticity and the application to stress waves, Research and application in dynamic deformation and fracture of solids. Hefei, Press of USTC,111-119
    [26]李永池,王红五,江松青,等.2000.含损伤材料热塑性本构关系的普适表述[M].徐秉业,黄筑平.《塑性力学和地球动力学进展(王仁院士八十寿辰庆贺文集)》.北京:万国学术出版社
    [27]Li Y C, Guo Y, Zhu L F, et al.2003. Thermoplastic constitutive relation suitable to dynamic problems in anisotropic and damaged materials[J]. The Chinese Journal of Mechanics,19(1): 69-72
    [28]李永池.2012.张量初步和近代连续介质力学概论[M].中国科学技术大学出版社
    [29]李永池,谭福利,姚磊等.2004.含损伤材料的热粘塑性本构关系及其应用[J].爆炸与冲击,24(4):289-298
    [1]Rosenberg Z, Yeshurun Y.1985. Determination of the dynamic response of AD-85 alumina with in-material Manganin gauges[J]. Journal of applied physics,58(8):3077-3080
    [2]Rosenberg Z, Brar N S, Bless S J.1990. Determination of the strength of shock loaded ceramics using double impact techniques[J]. Shock compression of condensed matter-1989. Amsterdam:Elsevier:385-8
    [3]He H, Ahrens T J.1994. Mechanical properties of shock-damaged rocks[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon,31(5): 525-533
    [4]贺红亮.1997.冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征[D]:[博士].绵阳:中国工程物理研究院
    [5]He H, Jing F, Jin X.2001. Evaluating the damage in shock compressed glass coupling with VISAR measurement[J]. International journal of impact engineering,25(6): 599-605
    [6]G. R. Johnson and T. J. Holmquist,1992. in Shock Wave and High Strain Rates and High Pressures, M.A.Meyers, L.E.Murr, and K.P.Staudhammer(eds.),(Marcel Dekker Inc., New York):1075
    [7]Johnson G R, Holmquist T J.1994. An improved computational constitutive model for brittle materials[C]//AIP Conference Proceedings.309:981.
    [8]Tuler F R, Butcher B M.1968. A criterion for the time dependence of dynamic fracture[J]. International Journal of Fracture Mechanics,4(4):431-437
    [9]Johnson J N.1981. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics,52(4): 2812-2825
    [10]Johnson G R, Cook W H.1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering fracture mechanics,21(1): 31-48
    [11]陈刚,陈忠富,徐伟芳等.2007.45钢的J-C损伤失效参量研究[J].爆炸与冲击,27(2):131-135
    [12]Ikkurthi V R, Chaturvedi S.2004. Use of different damage models for simulating impact-driven spallation in metal plates[J]. International journal of impact engineering,30(3): 275-301
    [13]李永池,郭扬,谭福利等.2003.铝锂合金材料状态方程的研究[J].高压物理学报,2:000
    [14]蒋东,李永池,郭扬.2009.Tuler-Butcher模型中考虑已有损伤影响的一种修正[J].高压物理学报,23(004):271-276
    [15]Griffith A A.1921. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character,221:163-198
    [16]王红五.2001.含损伤热粘塑性本构关系的研究及在柱壳破裂问题中的应用[D]:[硕士],合肥:中国科学技术大学
    [17]美国ANSYS公司上海办事处ANSYS/LS-DYNA培训手册.2000
    [1]Yankelevsky D Z, Adin M A.1980. A simplified analytical method for soil penetration analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 4(3):233-254
    [2]Forrestal M J, Luk V K, Watts H A.1988. Penetration of reinforced concrete with ogive-nose penetrators[J]. International journal of solids and structures,24(1):77-87
    [3]Forrestal M J, Brar N S, Luk V K.1991. Penetration of strain-hardening targets with rigid spherical-nose rods[J]. Journal of applied mechanics,58(1):7-10
    [4]李永池,孙宇新,胡秀章等.2000.混凝土靶抗贯穿的一种新工程分析方法[J].爆炸与冲击,20(1):13-18
    [5]罗春涛.2006.计及应变率效应的侵彻力学工程分析方法和数值模拟[D]:[硕士].合肥:中国科学技术大学
    [6]吴立朋,李永池等.2009.一种计及应变率效应的新侵彻模型[J].弹道学报,21(3):1-4
    [7]Sternberg J.1989. Material properties determining the resistance of ceramics to high velocity penetration[J]. Journal of applied physics,65(9):3417-3424
    [8]Forrestal M J, Longcope D B.1990. Target strength of ceramic materials for high-velocity penetration[J]. Journal of Applied Physics,67(8):3669-3672
    [9]Florence A L, Gefken P R, Seaman L, et al.1992. Computational models for armor penetration[J]. SRI Project PYD-8521
    [10]Bishop R F, Hill R, Mott N F.1945. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society,57(3):147
    [11]Tate A.1967. A theory for the deceleration of long rods after impact[J], Journal of the Mechanics and Physics of Solids,15(6):387-399
    [12]Tate A.1969. Further results in the theory of long rod penetration*[J]. Journal of the Mechanics and Physics of Solids,17(3):141-150
    [13]Rosenberg Z, Marmor E, Mayseless M.1990. On the hydrodynamic theory of long-rod penetration[J]. International Journal of Impact Engineering,10(1):483-486
    [14]孙庚辰,吴锦云等.1984.长杆弹垂直侵彻半无限厚靶板的简化模型[J].兵工学报,4:1-8
    [15]王道荣.2002.高速侵彻现象的工程分析方法和数值模拟研究[D]:[博士].合肥:中国科学技术大学
    [1]Kolsky H.1949. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B,62(11):676
    [2]Subhash G, Ravichandran G.2000. Split-Hopkinson Pressure Bar Testing of Ceramics[J]. Materials Park, OH:ASM International,2000:497-504
    [3]Subhash G, Nemat-Nasser S.1993. Dynamic Stress-Induced Transformation and Texture Formation in Uniaxial Compression of Zirconia Ceramics[J]. Journal of the American Ceramic Society,76(1):153-165
    [4]Chen W, Subhash G, Ravichandran G.1994. Evaluation of ceramic specimen geometries used in split Hopkinson pressure bar[J]. Dymat Journal,1(3):193-210
    [5]Anderson Jr C E, O'Donoghue P E, Lankford J, et al.1992. Numerical simulations of SHPB experiments for the dynamic compressive strength and failure of ceramics[J]. International journal of fracture,55(3):193-208
    [6]Sunny G, Yuan F, Prakash V, et al.2009. Design of inserts for split-Hopkinson pressure bar testing of low strain-to-failure materials[J]. Experimental mechanics,49(4):479-490
    [7]李英雷,胡时胜,李英华.2004.A95陶瓷材料的动态压缩测试研究[J],爆炸与冲击,24(3):p233-239
    [8]李英雷.2010.装甲陶瓷的本构关系和抗弹机理研究[D]:[博士].合肥:中国科学技术大学
    [9]李平.2002.陶瓷材料的动态力学性能响应及其抗长杆弹侵彻机理[D]:[博士].北京:北京理工大学
    [10]Johnson G R, Holmquist T J.1994. An improved computational constitutive model for brittle materials[C]//AIP Conference Proceedings.309:981
    [11]胡玉龙,蒋凡.1996.装甲陶瓷的现状和趋势[J].兵器材料科学与工程,19(5):37-42
    [12]Fahrenthold E P.1991. A continuum damage model for fracture of brittle solids under dynamic loading[J]. Journal of applied mechanics,58:904-909
    [13]Espinosa H D, Zavattieri P D, Dwivedi S K.1998. A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials[J]. Journal of the Mechanics and Physics of Solids,46(10):1909-1942.
    [14]俞宇颖,陈大年等.2006.三角形波致LY12铝层裂的平板冲击实验研究[J].固体力学学报,27(3):261-267
    [1]Л.И.谢多夫著.沈青译.1982.力学中的相似方法与量纲理论[M].北京:科学出版社
    [2]Taylor G.1950. The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945 [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,201(1065):175-186
    [3]高举贤,郑哲敏等.1974.聚能射流侵彻过程模型律[J].力学,1:1-10
    [4]谈庆明.1992.高速冲击模型律.冲击动力学进展[M].303-320.王礼立、余同希、李永池编.合肥:中国科学技术大学出版社
    [5]王道荣.2002.高速侵彻现象的工程分析方法和数值模拟研究[D]:[博士].合肥:中国科学技术大学
    [6]Rosenberg Z, Dekel E, Hohler V, et al.1997. Hypervelocity penetration of tungsten alloy rods into ceramic tiles:experiments and 2-D simulations [J]. International journal of impact engineering,20(6):675-683
    [7]孙庚辰,吴锦云等.1984.长杆弹垂直侵彻半无限厚靶板的简化模型[J].兵工学报,4:1-8
    [8]Tate A.1967. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids,15(6):387-399