超临界流体抗溶剂法制备布地奈德超微粉体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细微粒,特别是纳米级粒子的研制,在当前的高新技术中已成为一个热门领域,在材料、化工、轻工、冶金、电子、生物医学等领域得到广泛应用。超临界流体(SCF)技术制备超微粉体是一项新技术。采用超临界流体技术可以制备出颗粒小且粒径分布比较均匀的超微粉体。本课题细化的物料为布地奈德(Budsonide,BUD),是一具有高效局部抗炎作用的糖皮质激素,主要用于治疗哮喘,主要的给药方式为气雾剂和粉雾剂。由于气雾剂和粉雾剂要求药物的颗粒尺寸比较小,需对BUD进行微粉化处理。本课题的主要研究目的是制备出平均粒径为1-5μm、粒径分布较窄的BUD粉体,以提高其药物吸收率和治疗效果。论文中,对BUD的制备过程、产物的物相、形貌和粒度、过程影响因素及制粉机理进行了分析。
     由于BUD不溶于超临界CO_2,且其临界温度低(T_c =31.1℃)、无毒、不可燃、价格低廉,所以本实验采用超临界CO_2流体,并选择二氯甲烷(DCM)为溶剂,抗溶剂法(SAS)制备BUD微细粉体。具体的研究内容如下:
     借助XRD对产物的物相进行了分析,结果表明:用此实验方法得到的BUD粉体的晶形未发生改变。
     借助SEM对产物的形貌进行了分析,分析认为:随着颗粒生长时间的增加,颗粒的形貌和尺寸从由成核过程转变为由生长过程所控制,颗粒的形貌由球形颗粒向多面体晶体和大的块体转变。
     探索了粉体粒度的分析方法(显微镜法),并用此方法对产物的粒度进行了表征,并可计算颗粒的形状因子圆度。分析认为:本实验的结果达到了预期的要求。
     文中对SAS法制备BUD粉体的过程影响因素(排气位置、收集粉体的位置、溶液出口大小、超临界流体出口大小、溶液流量、溶液浓度、操作温度、操作压力)进行了分析。分析认为:排气位置设置在结晶釜底部能够使DCM和CO_2更好的混合,充分带走溶剂;溶液流量过大时,会导致粉体的分级沉积;随着溶液喷嘴口径的减小,得到的粉体颗粒粒径减小,粒径分布范围也变窄;CO_2出口比较大,粉体能够有效的沉积在釜壁上;当CO_2出口比较小,粉体不能沉积在结晶釜壁上,而被CO_2流体冲到了结晶釜的底部;CO_2出口大幸不岫苑厶宓淖钪招翁跋?减小CO_2出口大小,能使CO_2产生喷雾效果,对溶液起强制分散作用,能够得到尺寸较小的粉体颗粒,但同时强制分散溶液,所得液滴分布不均匀,最终获得的粉体颗粒的粒径分变宽。而溶液流量和溶液浓度对粉体的最终形态的影响比较复杂,具有两面性,一方面,随溶液流量和溶液浓度的增加,颗粒的粒径也随着增加,另一方面,有时适当的增加溶液流量和溶液浓度能得到更小的粉体颗粒;当温度较低时,颗粒尺寸随着压力的升高而增大,而当温度较高时,颗粒的尺寸随着压力的升高而减小;高压下升高温度能得到尺寸较小的颗粒,低压下则不然。
     对布迪奈德SAS法制粉的机理进行了探讨。分析认为,最终颗粒形态及尺寸取决于晶核初期尺寸、晶体的生长速率和晶体生长时间。
Micropaticles, especially the nanometer micropaticles, becomes a popular field in current high new technique, getting the extensive application in the realms, such as material, chemical engineering, light work, metallurgy, electronics and biomedical science, etc.Using the supercritical fluid( the SCF ) to get the ultrafine powder is a new technique by which wo could get ultrafine powder with small particle size (PS) and narrow particle size distribution (PSD). This work was to prepare the ultrafine powder of Budsonide (BUD). BUD, a potent anti-inflammatory corticosteroid is currently marketed as a dry powder inhaler and an aqueous nasal spray for the treatment of asthma. Dry powder inhaler and an aqueous nasal spray need small particle size, so it is need to micronize the BUD. The main purpose of this work was to prepare BUD powder 1-5μm PS and narrow PSD, in order to increase the absorptivity and curative effect of drug. This paper analysed the process of preparing of BUD, phase of production, morphorlogy and PS, influencing factor and mechanism of micronization.
     Because of the insoluble of BUD in supercritical CO_2 and low critical temperature (T_c=31.1℃), innocuity, apyrous and low price of CO_2, this work used CO_2 as supercritical fluid and Dichloromethane (DCM) as the solvent and the SAS method was used to prepare the BUD ultrafine powder. It contained as follows:
     Phase transformation was analyzed using XRD, and the result indicated that there was no phase transformation take place to BUD in the SAS experiment.
     The particle size (PS) and morphology was analyzed by SEM, and the results indicated that with the increase of the particle growth time, the particle size (PS) and morphology was controled by growth process instead of nucleation and the PS increased with the morphology change from sphere to polyhedral crystal and bulk.
     The distribution of the particle size was counted by microscope method which can also calculate the shap factor: circularity. It indicated that this work can prepared the prospective product.
     This paper also discussed the influence of exhaust position, collect position, size of the solution and CO_2 channels, the solution flow rate, solution concentration, temperature and pressure. The results indicated that: it was better to sit the exhaust position on the bottom of the precipitation column (PC); mass solution flow rate might induced classification precipitation; the particle size (PS) and particle size distribution (PSD) were smaller and narrower with the decrease of the solution channels; The powder will precipitate on the wall of the PC when the CO_2 channels is large, and the powder will be rushed to the bottom of the PC when decrease size of the CO_2 channels; The CO_2 channels also effected the final particle size and morphology, because the decreasing the size of CO_2 channels would make the CO_2 flow to spray which would force to disperse the solution, which would lead to gain smaller solution droplet and smaller particles, but the forced dispersal would lead to wider distribution of solution droplet which would lead to wider PSD; the effect of solution flow rate and concentration was more complex, it had two sides; one side, the PS increased with the increasing of the solution flow rate and solution concentration, on the other side, proper increasing the solution flow rate and solution concentration would gain smaller particles; when the temperature was low, the PS increased with increasing of the pressure, but when the temperature was high, the PS decreased with the increasing of the pressure; increasing the temperature would decrease the PS at high pressure but not at the low pressure.
     This paper also studied the mechanism of the preparation of micropaticles by SAS, and the study considered that the final particle size and morphology was determined by the critical nucleus size, paticle growth rate and the time of its growth.
引文
[1]王秀东.超临界流体技术制备药物微粒之设备和工艺研究[D].第二军医大学博士学位论文,2003
    [2]Sitaram P.Velaga.Preparation of Pharmaceutical Powders using Supercritical Fluid Technology[D].Acta Universitatis Upsaliensis Uppsala 2004
    [3]韩布兴.超临界流体科学与技术[M].北京:中国石化出版社,2005:2
    [4]刘燕,王威强,李爱菊.超临界流体技术制备超微材料方法[J].化学工程,2004,32(5):44-49
    [5]E.Reverchon and R.Adami.Nanomaterials and supercritical fluids[J].The Journal of Supercritical Fluids,2006,37(1):1-22
    [6]孙晓宇,王亭杰,金涌.RESS过程及其用于微细颗粒制备研究综述[J].化工进展,2002,21(1):29-33
    [7]Debenedetti P G,Tom J W,Yeo S D.Rapid expansion of supercritical solution(RESS):fundamentals and applications[J].Fluid Phase Equilib,1993,82:311-322
    [8]Gina R.Shaub,Joan F.Brennecke,and Mark J.McCready.Radial Model for Particle Formation from the Rapid Expansion of Supercritical Solutions[J].The Journal of Supercritical Fluids,1995,8(4):318-328
    [9]Michael Turk.Formation of small organic particles by RESS:experimental and theoretical investigations[J].Journal of Supercritical Fluids,1999,15(1):79-89.
    [10]B.Helfgen,M.Turk,K.Schaber.Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions[J].Powder Technology,2000,110(1-2):22-28
    [11]B.Helfgen,P.Hils,Ch.Holzknecht,et al.Simulation of particle formation during the rapid expansion of supercritical solutions[J].Aerosol Science,2001,32(3):295-319.
    [12]陈鸿雁,蔡建国,邓修,等.超临界溶液快速膨胀过程中喷嘴的流动模型[J].高校化学工程学报,2000,14(3):218-223
    [13]Lele A,Shine A D.Morphology of Polymers Precipitated from Supercritical Solvent[J].AIChE,1992,38(5):742-752
    [14]刘军,王靖岱,阳永荣.超临界快速膨胀技术制备超细聚苯乙烯[J].塑料工业,2003,1(11):52-53.
    [15]王靖岱,陈纪忠,阳永荣.超临界溶液快速膨胀法制备二氯二茂钛微粒及催化乙烯聚合[J].化工学报,2004,55(4):586-592.
    [16]Simon Mawson,Keith P.Johnston,James R,et al.Formation of Poly(1,1,2,2-tetrahydroperfluorodecyl acrylate)Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions[J].Macromolecules,1995,28(9):3182-3191
    [17]Y.-P.Sun,H.W.Rollins.Preparation of polymer-protected semiconductor nanoparticles through the rapid expansion of supercritical fluid solution[J].Chem.Phys.Lett,1998,288:585-588
    [18]Y.-P.Sun,R.Guduru,F.Lin,et al.T.Preparation of nanoscale semiconductors through the rapid expansion of supercritical solution(RESS)into liquid solution[J].Ind.Eng.Chem.Res,2000,39:4663-4669
    [19]Y.-P.Sun,P.Atorngitjawat,M.J.Meziani.Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution[J].Langmuir,2001,17(9):5707-5710
    [20]M.Turk,P.Hils,B.Helfgen,et al.Micronization of pharmaceutical substances improve bioavailability of poorly soluble pharmaceutical agents[J].Particle &Particle Systems Characterization,2002,19(5):327-335
    [21]P.Pathak,M.J.Meziani,T.Desai,et al.Sun.Nanosizing drug particles in supercritical fluid processing[J].J.Am.Chem.Soc,2004,126(35):10842-10843
    [22]Andy Hong-Jey Chiou,Ming-Kung Yeh Chang-Yi Chen and Da-Peng Wang.Micronization of meloxicam using a supercritical fluids process[J].The Journal of Supercritical Fluids,2007,42(1):120-128
    [23]Serge R Bitemo,洪镭,刘昆等.超临界连续GAS过程制备对苯二酚超细颗粒[J].华东理工大学学报,2001,27(4):338-340
    [24]Thies,Jochen;MAAller,et al.Size controlled production of biodegradable microparticles with supercritical gases[J].European Journal of Pharmaceutics and Biopharmaceutics,1998,45(1):67-74
    [25]Raouf Ghaderi,Per Artursson,Johan Carlfors.A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in dl-PLG microparticles using supercritical fluids[J].European Journal of Pharmaceutical Sciences,2000,10(1):1-9
    [26]刘学武,韩冰,李志义,等.超临界反溶剂过程制备BaCl2和NH4Cl超细颗粒 [J].化工科技,2003,11(6):4-7
    [27]F.Miguel,A.Martin,T.Gamse,et al.Supercritical anti solvent precipitation of lycopene Effect of the operating parameters[J].Journal of Supercritical Fluids,2006,36(3):225-235
    [28]Y.Gao,T.K.Mulenda,Y-F.Shi,et al.Fine particles preparation of Red Lake C pigment by supercritical fluid[J].Journal of Supercritical Fluids,1998,13(1-3):369-374
    [29]闻利群,张景林.超临界CO2抗溶剂法重结晶AP微细颗粒的研究[J].含能材料,2005,13(5):323-326
    [30]蔡建国,邓修.超临界CO2沉析HMX过程中过饱和度与颗粒尺寸的关系[J].华东理工大学学报(自然科学版),2005,31(1):9-12
    [31]E.Reverchon,G.Della Porta,D.Sannino,et al.Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor[J].Powder Technology,1999,102(2):127-134
    [32]E.Reverchon,G.Della Porta,I.De Rosa,et al.Supercritical antisolvent micronization of some biopolymers[J].Journal of Supercritical Fluids,2000,18(3):239-245
    [33]E.Reverchon,I.De Marco,G.Caputo,et al.Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation[J].Journal of Supercritical Fluids,2003,26(1):1-7
    [34]E.Reverchon,G.Della Porta,P.Pallado.Supercritical antisolvent precipitation of salbutamol microparticles[J].Powder Technology,2001,114(1):17-22
    [35]张岩,陈岚,李保国.超临界CO2抗溶剂法制备乙基纤维素微球试验[J].化学工程,2005,33(3):63-67
    [36]蔡建国,邓修.超临界CO2沉析HMX过程的颗粒形貌控制[J].人工晶体学报,2004,33(1):18-23
    [37]Ernesto Reverchon.Supercritical antisolvent precipitation of micro- and nanoparticles [J].Journal of Supercritical Fluids,1999,15(1):1-21
    [38]E.Reverchon,G.Della Porta,A.Di Trolio,et al.Supercritical antisolvent precipitation of nanoparticles of superconductor precursors[J].Ind.Eng.Chem.Res,1998,37(3):952-958
    [39]A.Tenorio,M.D.Gordillo,C.M.Pereyra,et al.Screening design of experiment applied to supercritical antisolvent precipitation of amoxicillin[J].The Journal of Supercritical Fluids,2008,44(2):230-237
    [40]R.Adami,E.Reverchon,E.Jarvenpaa,et al.Supercritical AntiSolvent micronization of nalmefene HC1 on laboratory and pilot scale[J].Powder Technology,2008,182(1):105-112
    [41]M.A.Tavares Cardoso,G.A.Monteiro,J.P.Cardoso,et al.Supercritical antisolvent micronization of minocycline hydrochloride[J].The Journal of Supercritical Fluids,2008,44(2):238-244
    [42]P.Chattopadhyay,R.B.Gupta.Supercritical CO2-Based Production of Fullerene Nanoparticles[J],Ind.Eng.Chem.Res.2000,39(7):2281-2289
    [43]Pratibhash Chattopadhyay and Ram B.Gupta.Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer[J].International Journal of Pharmaceutics,2001,228(1-2):19-31.
    [44]G.Muhrer,M.Mazzotti.Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent[J].Biotechnol.Prog.2003,19(2):549-556
    [45]M.A.Tavares Cardoso,V.Geraldes,J.M.S.Cabral,et al.Characterization of Minocycline Powder Micronized by a Supercritical Antisolvent(SAS)Process[J].The Journal of Supercritical Fluids,In Press,Accepted Manuscript,Available online 2 March 2008
    [46]Markku Rantakyla Matti Jantti,Olli Aaltonen,et al.The effect of initial drop size on particle size in the supercritical antisolvent precipitation(SAS)technique[J].The Journal of Supercritical Fluids,2002,24(3):251-263
    [47]蒲曦鸣,康云清,陈爱政,等.超临界CO_2抗溶剂法制备聚乳酸药物缓释微球[J].功能材料,2007(4):549-552
    [48]贺文智,姜兆华,索全伶.超临界流体强制分散溶液制备天然胡萝卜素超细微粒[J].材料科学与工艺,2006(8):358-361
    [49]Iolanda De Marco and Ernesto Reverchon.Supercritical antisolvent micronization of cyclodextrins[J].Powder Technology,2008,183(2):239-246
    [50]Min-Soo Kim,Shun-Ji Jin,Jeong-Soo Kim,Hee Jun Park,et al.Preparation,characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent(SAS)process[J].European Journal of Pharmaceutics and Biopharmaceutics,In Press,Corrected Proof,Available online 18 January 2008
    [51]V.Pessey,R.Garriga,F.Weill,et al.Core-Shell Materials Elaboration in Supercritical Mixture CO2/Ethanol[J].Ind Eng Chem Res,2000,39(12):4714-4719
    [52]Justin D.Holmes,Kirk J.Ziegler,R.Christopher Doty,et al.Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions[J].J Am Chem Soc,2001,123(16):3743-3748.
    [53]Tae-Hoon Kim,Dae-Young Lim,Byung-Seok Yu,Jong-Heon Lee,et al.Effect of Stirring and Heating Rate on the Formation of TiO2 Powders Using Supercritical Fluid[J].Ind Eng Chem Res,2000,39(12):4702-4706.
    [54]张敬畅,朱分梅,曹维良.超临界流体干燥法(SCFD)制备纳米级铜粉[J].中国有色金属学报,2004,14(10):1741-1746
    [55]杨儒,张广延,李敏,等.超临界干燥制备纳米SiO2粉体及其性质[J].硅酸盐学报,2005,33(3):281-286
    [56]张敬畅,李青,曹维良.超临界流体干燥法制备TiO2/Fe2O3和TiO2/Fe2O3/SiO2复合纳米粒子及光催化性能[J].复合材料学报,2005,22(1):79-84
    [57]赵惠忠,计道珺,雷中兴,等.Al2O3-SiO2纳米复合粉体材料的超临界制备及其性能[J].耐火材料,2003,37(2):69-74
    [58]朱伯铨,孟卫松.前驱体-超临界流体干燥法制备纳米氧化铝粉体[J].稀有金属材料与工程,2005,34(z1):33-36
    [59]梁丽萍,侯相林,吴东.超临界CO2流体干燥合成ZrO2气凝胶及其表征[J].材料科学与工艺,2005,13(15):552-555
    [60]吴勘,赵郁彬,余锦晖.萃取-超临界法制备纳米TiO2[J].广州化工,2006,34(1):28-31
    [61]Chien-I Wu,Jiann-Wen Huang,Ya-Lan Wen,et al.Preparation of TiO2nanoparticles by supercritical carbon dioxide[J].Materials Letters,2008,62(12-13):1923-1926
    [62]Alireza Vatanara,Abdolhossein Rouholamini Najafabadi,Mostafa Khajeh,et al.Solubility of some inhaled glucocorticoids in supercritical carbon dioxide[J].J.of Supercritical Fluids,2005,33(1):21-25
    [63]H.Steckel,Thies,B.W.Mfiller.Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide[J].International Journal of Pharmaceutics,1997,152(1):99-110
    [64]Krishnamachari Y,Madan P,Lin S.Development of pH- and Time-dependent Oral Microparticles to Optimize Budesonide Delivery to Ileum and Colon[J],International Journal of Pharmaceutics,2007,338(1-2):238-247
    [65]Lengsfeld CS,Delplanque JP,Borocas VH,et al.Mechanism governing microparticle morphology during precipitation by a compressed antisolvent:atomization vs nucleation and growth[J].J Phys Chem B.2000,104(12):2725-2735
    [66]Nagesh Bandi,William Wei,Christopher B.Roberts.Preparation of budesonide-and indomethacin-hydroxypropyl-β-cyclodextrin(HPBCD)complexes using a single-step,organic-solvent-free supercritical fluid process[J].European Journal of Pharmaceutical Sciences,2004,23(2):159-168
    [67]山东大学.外混式超临界流体纳微材料制备喷嘴.公开号:CN1827228
    [68]Shan-Chun Chang,Ming-Jer Lee and Ho-mu Lin.The influence of phase behavior on the morphology of protein α-chymotrypsin prepared via a supercritical anti-solvent process[J].The Journal of Supercritical Fluids,2008,44(2):219-229
    [69]E.Reverchon,I.De Marco,G.Caputo and G.Della Porta.Pilot scale micronization of amoxicillin by supereritical antisolvent precipitation[J].The Journal of Supercritical Fluids,2003,26(1):1-7
    [70]Anneke M.Bouwman,Jaap C.Bosma,Pieter Vonk,et al.Which shape factor(s)best describe granules[J].Powder Technology,2004,146(1-2):66-72
    [71]徐瑞娟,康彬,黄辉,等.HMX晶体颗粒球形度的定量表征[J].含能材料,2006,14(4):280-283
    [72]贾梦虹,滕新荣,张鹏,等.超临界抗溶剂法制备缓释药物微粒[J].医药工程设计.2007,28(6):52-55
    [73]Ke Wu and Jing Li.Precipitation of A Biodegradable Polymer Using Compressed Carbon Dioxide as Antisolvent[J].The Journal of Supercritical Fluids,In Press,Accepted Manuscript,Available online 17 February 2008
    [74]A.Martin,M.J.Cocero.Numerical modeling of jet hydrodynamics,mass transfer,and crystallization kinetics in the supercritical antisolvent(SAS)process[J].J.Supercrit.Fluids,2004,32(1-3):203-219
    [75]E.Reverchon,I.De Marco and G.Della Porta.Tailoring of nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation[J].The Journal of Supercritical Fluids,2002,23(1):81-87
    [76]H.Krober and U.Teipel.Materials processing with supercritical antisolvent precipitation:process parameters and morphology of tartaric acid[J].The Journal of Supercritical Fluids,2002,22(3):229-235
    [77]Y.Pérez de Diego,F.E.Wubbolts,P.J.Jansens.Modelling mass transfer in the PCA process using the Maxwell - Stefan approach[J].The Journal of supercritical fluids,2006,37(1):53-62
    [78]Min-Soo Kim,Sibeum Lee,Jeong-Sook Park,et al.Micronization of cilostazol using supercritical antisolvent(SAS)process:Effect of process parameters[J].Powder Technology,2007,177(2):64-70
    [79]Joshi M S,Anstony A V.Nucleation in supersaturated potassium dihydrogen orthophosphate solutions[J].J Crystal Growth,1979,46:7-9
    [80]S.Bristow,T.Shekunov,B.Yu.Shekunov,et al.Analysis of the supersaturation and precipitation process with supercritical CO2[J].The Journal of Supercritical Fluids,2001,21(3):257-271
    [81]朱自强.超临界流体技术-原理和应用[M].北京:化学工业出版社,2000:529
    [82]A.Martin and M.J.Cocero.Micronization processes with supercritical fluids:Fundamentals and mechanisms[J].Advanced Drug Delivery Reviews,2008,60(3):339-350
    [83]I.Tsivintzelis,D.Missopolinou,K.Kalogiannis and C.Panayiotou.Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane[J].Fluid Phase Equilibria,2004,224(1):89-96