百草枯诱导C57小鼠帕金森氏病的保护性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过建立百草枯(Paraquat,PQ)诱导的帕金森病(Parkinson’s disease,PD)小鼠模型,观察绿茶多酚及灸百会穴对百草枯诱导PD的保护作用,探讨其机制。方法:选用8周龄雄性C57BL/6小鼠65只随机分为阴性对照组、百草枯组、绿茶多酚组、灸百会穴组、及绿茶多酚+灸百会穴组,除阴性对照组外,每组均按10mg/kg给予PQ,用滴管经口腔染毒,生理盐水作为阴性对照,绿茶多酚组、灸百会穴组、及绿茶多酚+灸百会穴组给予保护措施。采用爬杆实验观察小鼠行为学改变,是否出现类帕金森病症状;8周后断头取脑,采用HE染色观察中脑黑质细胞变化,应用高效液相紫外荧光法测定脑多巴胺(DA)含量。结果:与阴性对照组相比,百草枯组出现震颤、竖毛、前腿抬高、竖尾、动作缓慢和减少等类帕金森症状明显,各实验组小鼠出现上述症状时间无明显差别,阴性对照组和给予保护措施组的小鼠行为改变与百草枯组相比均有统计学意义(P <0.01),但爬竿试验时间变化无统计学意义(P >0.05),病理显示:百草枯组与阴性对照及保护剂实验组比较黑质区多巴胺能神经元细胞数量减少明显,密度降低,但各保护剂组之间未见明显差别。高效液相结果示:与对照组相比,脑内DA的含量有所减少,且百草枯组减少明显,但差别无统计学意义(P >0.05)。结论:百草枯可诱导C57小鼠出现类帕金森病症状,使中脑黑质部多巴胺能神经元数目减少,其发病呈慢性进行性过程,绿茶多酚及灸百会穴对百草枯诱导的PD小鼠有一定的保护作用,其机制有待于进一步探讨。
Objective: To investigate the effect of green tea polyphenols and acupuncture on the behavior and the dopamine level of paraquat induced Parkinson’s disease mice model, and to explore the protection and its mechamism in those PD mice model. Methods: Eight-week-old male C57 mice were divided into 5 groups randomly: negative control, paraquat, green tea polyphenols, acupuncture,green tea polyphenols and acupuncture, dose of 10mg/kg paraquat exposed to all the groups except negative control. And with the exception of the negative control and paraquat group, the others treated with protective medium. The changes of behavior were observed at different periods with pole-test, to determine whether those mice have PD symptom. After 8 weeks, the mice were killed with decapitation, the changes of neurons of the substantia nigra in midbrain were observed with HE staining, And the level of dopamine in brain was measured with HPLC-UV. Results: The symptoms like tremor, piloerection, raising,ante-limb,slow-moving,and aberrant behavior in paraquat group were more obviously than others. Compared with control, the score of praxiology in paraquat group had statistical significance(P<0.05); but the appearance time of such symptoms and pole-test time had no statistical significance(P>0.05). Pathological changes showed that, dopaminergic neurons decreased and density losed obviously in paraquat group compared with control, but obvious differences were not found among protective additive groups. Compared with control group, the level of DA decreased and obviously in paraquat with HPLC-UV, but the difference had no statistical significance (P>0.05). Conclusion: The tests prompt that PQ can make C57 mice appear Parkinsonism symptom and decrease dopaminergic neurons in substantial nigra, and the process of the disease is chronic. Green tea polyphenols and acupuncture really improve the behavior of paraquat injury C57 mice, but the mechanism needs further investigation.
引文
[1] Zhang ZX, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xi’an and Shanghai[J]. Lancet, 2005, 365(9459): 595-597
    [2] Brooks AI, Chadwick CA, Gelbard HA, et al.Paraquat elicited neuro behavioral syndrome caused by dopaminergic neuron loss[J]. Brain Res, 1999, 823: 1210
    [3] Fredriksson A, Fredriksson M, Eriksson P. Neonatal Exposure to paraquat or MPTP induces permanentchanges in striatum Dopamine and Behavior in Adult Mice [J]. Toxicol A ppl Pharmacol, 1993, 122: 258-264
    [4] Thiruchelvam M, Brockel BJ, Richfield EK, et al. Potentiated and preferential effects of combined paraquat and maneb on nigrostriataldopamine systems:environmental risk factors for Parkinson’s disease[J] Brain Res ,2000 ,873 :225-234
    [5]丁正同,任惠民,蒋雨平,等.百草枯对小鼠黑质纹状体多巴胺能系统的影响[J].复旦学报(医学科学版), 2001 ,28 : 28-31
    [6]吕俊华,杨文豪,沈文娟,等.绿茶多酚对D2半乳糖与Aβ25-35诱导Alzheimer病小鼠抗氧化能力和钙稳态的影响[J].中国老年学杂志. 2006, 8(26), 1093-1095
    [7] Guo S, Bezard E, Zhao B. Protective effect of green tea polyphe2nols on the SH2SY5Y cells against 62OHDA induced apop tosisthrough the ROS2NO pathway [J]. Free Radic Biol Med, 2005; 39:86
    [8] Wei IH, Wu YC, Wen CY et al. Green tea polyphenol (2) 2ep igal2locatechin gallate attenuates the neuronalNADPH2d /nNOS exp res2sion in the nodose ganglion of acute hypoxic rats[J]. Brain Res, 2004; 999: 73-80
    [9]谢磊.百草枯中毒基础与临床新探[J].职业卫生与病伤, 2004, 19(2): 122-125
    [10] Bezard E,Jaber M,Gonon F,et al. Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1,2,3,6– tetrahydropyidine - induced neurodegeneration in the mouse[J]. Eur J Neurosci. 2000, 12: 2892-2900
    [11] Burke RE, Kholodilov CG. Programmed cell death: does it play a role in Parkinson’s disease [J]. Arm Neurol, 1998; 44(suppl1): 160-166
    [12] Olanow CW,Tatton WG.Etiology and pathogenesis of Parkinson’s disease[J]. Annu Rer Neurosci, 1999, 22: 123-144
    [13] Fonck C, Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+in rat brain synaptosomes and mitochondria [J]. Brain Res, 2003, 975(1-2): 214-221
    [14] Park TH, Kwon OS, Park SY, et al. N-methylated beta-carbolines protect PC12 cells from cytotoxic effect of MPP+ by attenuation of mitochondrial membrane permeability chaCGe [J]. Neurosci Res, 2003, 46(3): 349-358.
    [15] Mandavilli BS. DNA damage in brain mitochondria caused by agiCG and MPTP treatment [J]. Brain Res, 2000, 885(1): 15-52
    [16] Iwaasa M, Umeda S, Ohsato T, et al. 1-Methyl-4-phenylpyridinium ion,a toxin that can cause parkinsonism,alters branched structures of DNA[J]. J Neurochem, 2002, 82(1): 30-37
    [17] Chun HS, Gibson GE, DeGiorgio LA,et al. Dopaminergic cell death induced by MPP(+),oxidant and specific neurotoxicants shares the common molecular mechanism[J]. Neurochem, 2001, 76(4): 1010-1021
    [18] Muramatsu Y, Kurosaki R, Waranabe H, et al. Cerebral alterations in a MPTP-mouse model of Parkinson's disease--an immunocytochemical study [J]. Neural Transm, 2003, 110(10): 1129-1144
    [19] Chen XC,FaCG F,Zhu YG,et al. Protective effect of ginsenoside Rg1 on MPP+- induced apoptosis in SHSY5Y cells[J]. J Neural Transm, 2003,110(8): 835-845
    [20] Dennis J, Bennett JP Jr. Interactions amoCG nitric oxide and Bcl-family proteins after MPP+exposure of SH-SY5Y neural cells II: exogenous NO replicates MPP+ actions [J]. J Neurosci Res, 2003, 72(1): 89-97
    [21] Dennis J, Bennett JP Jr. Interactions amoCG nitric oxide and Bcl-family proteins after MPP+exposure of SH-SY5Y neural cells I: MPP+increases mitochondrial NO and Bax protein [J]. J Neurosci Res. 2003, 72(1): 76-88
    [22] Mandel S, Maor G, Youdim MB. Gene expression analysis in N-methyl -4-phenyl-1, 2, 3, 6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray: effect of R-apomorphine [J]. J Mol Neurosci, 2004, 24(3): 401-416
    [23] Mandel S,Reznichenko L,Amit T, et al. Green tea polyphenol(-)–epigallo catechin- 3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway.[J] Neurotox Res, 2003, 5(6): 419-424
    [24] Weinreb O,Mandel S,Amit T,et al. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkimson's diseases[J]. Nutr Biochem, 2004, 15(9): 506-516
    [25] Checkoway H, Powers K, Smith-Weller Tetal. Parkinson’sdisease risks associated with cigarette smoking, alcohol consumption, and caffeine intake [J]. Am J Epidemio, 2002, 155: 732-738
    [26] Guo S, Bezard E, Zhao B. Protective effect of green tea polyphe- nols on theSH-SY5Y cells against 6-OHDA induced apoptosis through the ROS-NO pathway [J]. Free Radic Biol Med, 2005, 39: 42-45
    [27] Wei IH, WuYC, Wen CY,et al. Green tea polyphenol (-)-epigal- locatechin gallate attenuates the neuronalNADPH-d/nNOS expres- sion in the nodose ganglion of acute hypoxic rats [J]. Brain Res, 2004, 999: 73-80
    [28] Mandel S, Reznichenko L, Amit Tet al. Green tea polyphenol (-)-epigallo catechin-3-gallate protects ratPC12 cells from apopto- sis induced by serum withdrawal independentofP13-Aktpathway [J]. Neurotox Res, 2003, 5: 419-424
    [29] LevitesY, Weinreb O, MaorG,et al. Green tea polyphenol (-)-epigallocatechin-3- gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration [J] J Neurochem, 2001, 78: 1073-1082
    [30]于恩华,汪亚晴.解剖学[M]:高等医药院校教材.北京:北京医科大学、中国协和医科大学联合出版社, 1999, 429-430
    [31]粟秀初,吴保仁,黄远桂.新编神经病学[M].西安:第四军医大学出版社, 2002, 278
    [32]吕莉君,范刚启.针刺对脑缺血动物模型的影响及机理研究述评[J].辽宁中医杂志, 1999, 29(4): 190
    [33]王凡,贾少微.针灸对缺血性脑血管病脑血流量影响的实验研究述评[J].中国针灸, 2001, 21(4): 250-252
    [34]陈英辉,黄显奋.累加电针对脑缺血大鼠皮层脑源性神经营养因子表达及脑梗塞体积的影响[J].针刺研究, 2000, 25(3): 165-167
    [35]赵宁侠,郭瑞林,任秦有.艾灸健康人百会穴对大脑中动脉血流速度的影响[J].中国针灸, 2003, 23(11): 679-680
    [36]赵宁侠,任秦有,郭瑞林.艾灸健康人百会穴对右侧大脑中、后动脉血流动力学影响的研究[J].针刺研究, 2004, 29(1): 59-61
    [37]任秦有,赵宁侠,郭瑞林.艾灸健康人百会穴对大脑后动脉血流速度的影响[J].浙江中医学院学报, 2004, 28(3): 48-49
    [38]丁为国,李丽欣,许红等.针刺百会穴对急性脑血肿大鼠局部脑血流量的影响[J]上海针灸杂志, 2003, 22(5): 7
    [39]许能贵,汪帼斌,佘世锋,等.针刺百会穴、大椎穴对局灶性脑缺血大鼠皮层源性神经营养因子表达的影响[J].广州中医药大学学报, 2004, 21(6): 439-442
    [40] Hyejin K, Erin M. Long-Lasting neurotrophin induced enhancementof synaptic transmission in the adult hippocampus [J]. Science, 1995, 267:1658
    [41]崔晓军,李伊为,陈东风,等.电针百会对脊髓损伤大鼠脊髓组织3种亚型NOS表达及NO含量的影响[J].中医药学刊, 2003, 21(8): 1270-1271
    [1] Ivar Mendezl.Rosavio Sanchez-Pernaute. Oliver Cooper.Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson′s disease[J]. Brain 2005.128(7): 1498-1510
    [2] Freed, C. R., Greene, P. E, Breeze, R. E, Tsai, W. Y, DuMouchel, W, Kao, R,Dillon, S., Winfield, H., Culver, S., Trojanowski, J. Q., Eidelberg, D. & Fahn, S.(2001) N. Engl. J. Med. 344, 710-719
    [3] Piccini, P., Lindvall, O., Bjorklund, A., Brundin, P., Hagell, P., Ceravolo, R.,Oertel, W, Quinn, N., Samuel, M., Rehncrona, S., Widner, H. & Brooks, D. J.(2000) Ann. Neurol. 48, 689-695
    [4] Tropepe V, Hitoshi S, Sirard C et al. Direct neural fate specification fromembryonic stem cells: a primitive mammalian neural stem cell stageacquired through a default mechanism[J].Neuron 2001; 30: 65-78
    [5] Thomas C. Schulz,a Scott A. Noggle,b,c Gail M. Palmarini,a Deb A.et al Differentiation of Human Embryonic Stem Cells toDopaminergic Neurons in Serum-Free Suspension Culture[J]. Stem Cells 2004; 22: 1218-1238
    [6] Tamir Ben-Hur,a Maria Idelson,b Hanita Khaneret al Transplantation of Human Embryonic Stem Cell–Derived NeuralProgenitors Improves Behavioral Deficit in Parkinsonian Rats[J] Stem. Cells 2004 ,22: 1246-1255
    [7] Lars M. Bjo rklund, Rosario Sa′nchez-Pernaute, Embryonic stem cells develop into functionaldopaminergic neurons after transplantationin a Parkinson rat model[J]. PNAS 2002, 99:2344-2349
    [8] Jae-Won Shim,1,4 Hyun-Chul Koh,2,3 Mi-Yoon Chang,1 Enhanced In Vitro Midbrain Dopamine NeuronDifferentiation, Dopaminergic Function, Neurite Outgrowth,and 1-Methyl-4-Phenylpyridium Resistance in MouseEmbryonic Stem Cells Over expressing Bcl-XL the joumal of Neuroscience[J], 2004, 24(4): 843-852
    [9]束汉生,曾永林,李涛,等.脑内移植治疗帕金森病的移植神经元调亡时程的研究[J].神经解剖学杂志[J], 2003. 19(2): 191-196
    [10] Yuan J, Yankner BA (2000) Apoptosis in the nervous system[J]. Nature 407: 802–809
    [11] Abe-DohmaeS, HaradaN, yamadaK, TanakaR (1993).Bcl-2 gene is highly expressed during heurogenesis in the central nervous system[J], Biochem Biophys Res Commun, 191: 915-921
    [12] Krajewska M, Mai JK, Zapata JM, Ashwell KWS, Schendel SL, Reed JC, KrajewskiS (2002) Dynamics of expression of apoptosis-regulatory proteinsBid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervoussystem[J]. Cell Death Differ 9: 145-157
    [13] Cecile Martinat, Jean-Jacques Bacci, Thomas Leete et al Cooperative transcription activation by Nurr1 andPitx3 induces embryonic stem cell maturation tothe midbrain dopamine neuron phenotype[J]. PNAS 2006; 103; 2874-2879
    [14] Chung, S., Hedlund, E., Hwang, M., Kim, D. W., Shin, B. S., Hwang, D. Y., JungKang, U., Isacson, O. & Kim, K. S. (2005) Mol. Cell.Neurosci. 28, 241-252
    [15] Castillo, S. O., Baffi, J. S., Palkovits, M., Goldstein, D. S., Kopin, I. J., Witta,J., Magnuson, M. A. & Nikodem, V. M. (1998) Mol. Cell.Neurosci. 11, 36-46
    [16] Woodbury D, SchwarzEJ, ProkopDJ, et al.Adult rat snd human bone marrow stromal cells differentiate into neurons[J].J NeurosciRes, 2000, 61(4):3 64-370
    [17] Mari Dezawa, 1 Hiroshi Kanno,2 Mikio Hoshino, Specific induction of neuronal cellsfrom bone marrow stromal cells andapplication for autologous transplantation [J]. Clin. Invest. 113: 1701-1710
    [18] Andreas Hermann1, Regina Gastl1, Stefan Liebau1, M. Efficient generation of neural stem cell-like cells fromadult human bone marrow stromal cells[J]. Journal of Cell Science 117, 4411-4422
    [19]叶民,陈生弟,汪锡金等体外诱导骨髓基质干细胞治疗帕金森病大鼠模型的研究[J].中华神经科杂志, 2005,38(10): 624-627
    [20] Kordower JH. In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson′s disease[J]. Ann Neurol, 2003, 53 Suppl3:S120-S132.
    [21]叶民,陈生弟,威晨,等.大鼠骨髓基质细胞分泌胶质细胞源性神经营养因子的研究[J].神经科学通报[J], 2005, 21; 23-27
    [22]Liy,chen J,wangle,et al.Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahychopyridine mouse model of parkinson′s disease[J]. Neurosci lett,2001,316(2):67-70
    [23]徐浩文,朱蔚文,叶钦勇,等.过表达Nurr1基因的骨髓间充质干细胞的诱导及移植治疗帕金森病的研究[J].中国临床解剖学杂志,2005,23(3): 259-263
    [24]李健.牛朝诗.骨髓间质干细胞移植治疗帕金森病的研究进展[J].国际神经病学神经外科学杂志, 2005, 32(5): 444-447
    [25] Park.KW, Eglitis MA, mouradian MM. Protection of nigral neurons by GDNF-engineered marrow cell transplantation[J].neurosci Res, 2001, 40(4):315-323
    [26]王屹,季凤清,孙海梅,等.人脐血非造血干细胞的基本特性[J].中国临床康复2006. 8(10): 50-54
    [27] Wagner W, Wein F, Seckinger A,et al.Comparative characteristics ofmesenchymal stem cells from human bone marrow, adipose tissue, andumbilical cord blood[J]. Exp Hematol 2005c 33(11): 1402-16
    [28] Paola Piccini, Nicola Paresel, Peter Hagell, Factors affecting the clinical outcome after neural transplantation in Parkinson′s disease[J]. Brain, 2005. 128(12): 2977-2986
    [29] Yamash ita YM, FullerM T, Jones DL, et al. Signaling in stem cellniches: lessons from dro soph ila germ line[J ]. J Cell Science, 2005, 118: 6652672.
    [30] W atts C, M cConkey H, Anderson L, et al. A natom ical perspec2tives on adult neural stem cells[J ].J A nat, 2005, 207: 1972208