氯通道阻断剂对Aβ诱导细胞凋亡的下调作用及其与JNK信号通路的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease,AD)是一种中枢神经系统的退行性疾病,其原因和发病机制至今未明。β淀粉样蛋白(amyloid proteinβ, Aβ)的神经毒作用是导致AD的共同通路,大量研究表明Aβ诱导的细胞凋亡是AD发病的重要病理生理学机制。
     细胞膜氯通道的激活可能是介导细胞凋亡的重要离子机制,本实验利用氯通道的阻断剂DIDS和Phloretin研究Aβ25-35诱导PC12细胞凋亡这一AD模型中氯通道的作用。
     JNK信号通路是丝裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)中重要的通路之一,是参与应激诱导的细胞凋亡的重要信号转导机制,本实验初探Aβ25-35诱导PC12细胞凋亡过程中是否有JNK蛋白的磷酸化激活,以及氯通道阻断剂DIDS和Phloretin与JNK的磷酸化激活的关系。
     由于Aβ诱导神经元凋亡的机制十分复杂,至今尚未找到可以抑制细胞凋亡的关键性靶点。因此,阐明机制找到靶点,将为AD的防治带来希望。
     目的:
     1.观察氯通道阻断剂DIDS能否抑制Aβ25-35诱导的PC12细胞凋亡,了解氯通道在Aβ诱导PC12细胞凋亡过程中的作用。
     2.观察对VSOR Cl-通道有相对特异性阻断作用的Phloretin能否抑制Aβ25-35诱导的PC12细胞凋亡,从而了解VSOR Cl-通道是否参与下调Aβ毒性作用。
     3.探讨JNK在Aβ25-35诱导的PC12细胞凋亡中的作用,以及氯通道阻断剂与JNK的关系。
     方法:
     1.以传代培养的PC12细胞为研究对象,实验设立阴性组(正常对照组),阳性对照组(仅给Aβ25-35诱导细胞凋亡处理),及实验组(Aβ25-35诱导细胞凋亡+氯通道阻断剂DIDS或Phloretin)。
     2.噻唑兰(3-( 4, 5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bromide,MTT)比色法观察PC12细胞存活率;用荧光显微镜观察Hoechst33258荧光染色后的细胞核的形态学变化;采用荧光素检测乳酸脱氢酶(lactate dehydrogenase, LDH)水平,反映PC12细胞膜完整性的改变;DNA琼脂糖凝胶电泳,检测PC12细胞凋亡的发生。
     3.采用Western Blot印迹法检测Aβ25-35诱导PC12细胞凋亡时不同时间点P-JNK的表达和不同处理组P-JNK的表达。
     4.所有数据应用SPSS11.0统计软件进行数据分析处理。
     结果:
     1.实验结果验证了Aβ25-35作用于PC12细胞时细胞发生凋亡。并且发现DIDS和Phloretin能够有效地抑制Aβ25-35诱导的PC12细胞凋亡。
     2. 40μmol/L Aβ25-35作用于PC12细胞(作用24 h)后,MTT实验显示细胞存活率(58.4 %±9.3 %)降低,与阳性对照组相比细胞存活率在Aβ25-35+DIDS组(86.0%±7.2%)或Aβ25-35+ Phloretin组(94.1%±9.3%),均有增加,且差异有统计学意义(P < 0.01)。
     3. Hoechst33258荧光染色显示Aβ25-35作用于PC12细胞时,细胞出现明显的皱缩,胞核染色质断裂、聚集、固缩等典型的凋亡形态学变化,而实验组凋亡细胞明显减少。
     4. LDH释放水平:阴性组与Aβ25-35阳性对照组(433.1±41.5 U/L)比较差异有统计学意义(P < 0.01);Aβ25-35阳性对照组与Aβ25-35+Phloretin实验组(354.4±34.3 U/L)比较差异有统计学意义(P < 0.01);Aβ25-35阳性对照组与Aβ25-35 +DIDS实验组(366.7±28.3 U/L),比较差异有统计学意义(P < 0.01)。
     5. DNA琼脂糖凝胶电泳结果:Aβ25-35阳性组可以见到明显的DNA“梯带”,阴性组和实验组没有DNA“梯带”。
     6. Western Blot印迹结果:6 h时Aβ25-35诱导PC12 P-JNK蛋白表达量增高,与0 h比较差异有统计学意义(P < 0.01)。两个实验组与阳性对照组比较,P-JNK蛋白表达量的差异均有统计学意义(P < 0.01)。
     结论:
     本研究表明:氯通道阻断剂DIDS和Phloretin可以抑制Aβ25-35诱导的PC12细胞凋亡,而且,应用氯通道阻断剂可使P-JNK表达降低。因相对特异性的VSOR Cl-通道阻断剂Phloretin可以对Aβ诱导的PC12细胞凋亡起到保护作用,从而推测VSOR Cl-通道在Aβ诱导PC12细胞凋亡时可能被激活。且推测氯通道阻断剂对Aβ25-35诱导PC12细胞凋亡的下调作用是通过抑制JNK磷酸化实现的。
AD is a common degenerative disease of the central nervous system .Its causes and mechanism are still unclear. A number of experiments indicate that Aβinduced apoptosis is one of the pathophysiology mechanisms by which Aβinduces AD.
     Chloride channel is a kind of important channel in the cellular membrane by which apoptosis can be mediated. We will investigate what role the chloride channel plays when PC12 apoptosis is induced by Aβ25-35.
     MAPK signal transduction pathway can perform significant functions in cell apoptosis. JNK signal transduction pathway is an important branch of MAPK signal transduction pathway. We will try to find out what role JNK plays when PC12 cells apoptosis is induced by Aβ25-35 ,also ,we will try to find out the relationship between chloride channel blockers and JNK.
     The mechanisms by which Aβinduces cell apoptosis are very complex, People are still unclear about the key point that can be made use of to prevent cell apoptosis. So if the mechanism and the key point are known, it is possible that AD can be cured.
     Aims:
     1. To investigate whether DIDS can inhibite PC12 apoptosis induced by Aβ25-35.
     2. To investigate whether Phloretin , a relatively specific VSOR Cl- channel blocker , can inhibite PC12 apoptosis induced by Aβ25-35.
     3. To find out what role JNK plays when PC12 apoptosis is induced by Aβ25-35 and to find out the relationship between chloride channel blockers and JNK.
     Methods:
     1. Serial subcultivation PC12 cells were the objects for research , cells were divided into different groups: the negative control group(normal),positive group(treated with Aβonly) and experimental groups(treated with Aβ+chloride channel blockers DIDS or Phloretin).
     2. Cell survival rate was estimated by MTT , Fluorescence microscope was used to observe the morphological change of the nuclear after stained by Hoechst33258 , the integrity of cell member was surveyed by measuring released LDH level, apoptosis was further proved by agarose gel electrophoresis of DNA.
     3. The expressions of P-JNK of PC12 cells induced by Aβon different time points were detected by Western Blot.The expressions of P-JNK in different groups were detected by Western Blot.
     4. All data were analyzed by SPSS11.0.
     Results:
     1. The experiment results indicated that apoptosis occurred when PC12 cells were treated by Aβ. The experiment results also indicated that DIDS and Phloretin could protect cells from apoptosis induced by Aβ.
     2. MTT manifested low cell survival rate(58.4%±9.3%) when cells were exposed to 40μmol/L Aβ25-35, cell survival rates in experimental groups were : Aβ25-35+DIDS(86.0%±7.2%) and Aβ25-35+ Phloretin (94.1±9.3%), and the difference possessed statistical significance(P<0.01).
     3. Hoechst33258 displayed obvious cell shrinkage , and the breakage , aggregation , pyknosis of nuclear chromatin when cells were exposed to 40μmol/L Aβ25-35 and the number of cells with typical apoptosis morphological changes decreased in the experimental groups.
     4. The level of released LDH : the difference between the negative group(328.7±18.9 U/L) and positive group(433.1±41.5 U/L)possessed statistical significance (P < 0.01);the differences between the positive group and experimental groups (Aβ25-35+Phloretin:354.4±34.3 U/L and Aβ25-35 + DIDS:366.7±28.3 U/L) both possessed statistical significance(P < 0.01).
     5. Agarose gel electrophoresis of DNA manifested obvious DNA Ladder in the positive group , while none could be seen in the negative group or experimental groups .
     6. P-JNK expression after PC12 cells had been exposed to Aβ25-35 for 6h was increased compared with that of 0h and the difference possessed statistical significance(P < 0.01).Also ,the differences of P-JNK expressions between two experimental groups and the positive group meant statistical significance(P < 0.01).
     Conclusion:
     Both DIDS and Phloretin could prohibit Aβ25-35 induced PC12 apoptosis and the protective role may correlate with down regulating the phosphorylation of JNK. As Phloretin , a relatively specific VSOR Cl- channel blocker , could protect cells from apoptosis , it was supposed that VSOR Cl- channel was activated when PC12 cells were exposed to Aβ.Also, it was supposed that chloride channel blockers exerted protective role by inhibiting the phosphorylation of JNK.
引文
[1] Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A(2) in cortical neurons. J Neurochem .2008.
    [2] Rensink AA, Otte-Holler I, de Boer R, Bosch RR, ten Donkelaar HJ, de Waal RM, Verbeek MM, Kremer B. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiol Aging. 2004;25:93-103.
    [3] Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR. Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res . 2007;1143:11-21.
    [4] Nie BM, Jiang XY, Cai JX, Fu SL, Yang LM, Lin L, Hang Q, Lu PL, Lu Y. Panaxydol and panaxynol protect cultured cortical neurons against Abeta25-35-induced toxicity. Neuropharmacology . 2008;54:845-853.
    [5] Malin DH, Crothers MK, Lake JR, Goyarzu P, Plotner RE, Garcia SA, Spell SH, Tomsic BJ, Giordano T, Kowall NW. Hippocampal injections of amyloid beta-peptide 1-40 impair subsequent one-trial/day reward learning. Neurobiol Learn Mem. 2001;76:125-137.
    [6]刘辉,陈俊抛,田时雨,高曲文,韩燕.海马注射β淀粉样蛋白对大鼠学习记忆及局部神经元的损伤作用.中华神经科杂志. 2006;33:150-152.
    [7] Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in humancortical neurons. J Neurosci .2006;26:6011-6018.
    [8] Jentsch TJ, Gunther W. Chloride channels: an emerging molecular picture. Bioessays .1997;19:117-126.
    [9] Zifarelli G, Pusch M. CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol .2007;158:23-76.
    [10]Becq F. On the discovery and development of CFTR chloride channel activators. Curr Pharm Des .2006;12:471-484.
    [11]张勇,杨安钢,周士胜.氯离子通道家族研究进展.医学分子生物学杂志.2004;1:245-248.
    [12]Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev .2002;82:503-568.
    [13]Li C, Krishnamurthy PC, Penmatsa H, Marrs KL, Wang XQ, Zaccolo M, Jalink K, Li M, Nelson DJ, Schuetz JD, Naren AP. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell .2007;131:940-951.
    [14]Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev .2002;82:245-289.
    [15]龚卫琴,臧益民,王晓明,李源,Takahiro Shimizu,Yasunobu Okada. ClC-3基因敲除不影响心肌细胞肿胀激活性氯通道的PKC敏感性.第四军医大学学报.2004;25:982-986.
    [16]Tseng GN. Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol.1992; 262:C1056-1068.
    [17]Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci U S A .2000;97:9487-9492.
    [18]Shimizu T, Numata T, Okada Y. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci U S A .2004;101:6770-6773.
    [19]Jiao JD, Xu CQ, Yue P, Dong DL, Li Z, Du ZM, Yang BF. Volume-sensitive outwardly rectifying chloride channels are involved in oxidative stress-induced apoptosis of mesangial cells. Biochem Biophys Res Commun .2006;340:277-285.
    [20]Gruber AD, Schreur KD, Ji HL, Fuller CM, Pauli BU. Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. Am J Physiol .1999;276:C1261-1270.
    [21]Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU. Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl- channel proteins. Genomics .1998;54:200-214.
    [22]Yuan XJ. Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol .1997;272:L959-968.
    [23]Piper AS, Greenwood IA, Large WA. Dual effect of blocking agents on Ca2+-activated Cl(-) currents in rabbit pulmonary artery smooth muscle cells. J Physiol .2002;539:119-131.
    [24]Piper AS, Greenwood IA. Anomalous effect of anthracene-9-carboxylic acid on calcium-activated chloride currents in rabbit pulmonary artery smooth muscle cells. Br J Pharmacol .2003;138:31-38.
    [25]McCavera S, Walsh TK, Wolstenholme AJ. Nematode ligand-gatedchloride channels: an appraisal of their involvement in macrocyclic lactone resistance and prospects for developing molecular markers. Parasitology.2007; 134:1111-1121.
    [26]Yang J, Uchida I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience .1996;73:69-78.
    [27]Louiset E, McKernan R, Sieghart W, Vaudry H. Subunit composition and pharmacological characterization of gamma-aminobutyric acid type A receptors in frog pituitary melanotrophs. Endocrinology .2000;141: 1083-1092.
    [28]Siegwart R, Krahenbuhl K, Lambert S, Rudolph U. Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2. BMC Pharmacol .2003;3:13.
    [29]Belelli D, Muntoni AL, Merrywest SD, Gentet LJ, Casula A, Callachan H, Madau P, Gemmell DK, Hamilton NM, Lambert JJ, Sillar KT, Peters JA. The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology . 2003;45:57-71.
    [30]Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev .2004;84:1051-1095.
    [31]Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol.2006; 209:21-29.
    [32]Coca-Prados M, Anguita J, Chalfant ML, Civan MM. PKC-sensitive Cl- channels associated with ciliary epithelial homologue of pICln. Am JPhysiol .1995;268:C572-579.
    [33]Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M. Staurosporine induces apoptotic volume decrease (AVD) in ECV304 cells. Ann N Y Acad Sci .2003;1010:342-346.
    [34]Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M. Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl- conductance. Cell Death Differ.2004; 11:655-662.
    [35]Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T. Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch .2004;448:287-295.
    [36]Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidofsky SD. Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death. J Biol Chem.2000; 275:20556-20561.
    [37]Schumann MA, Gardner P, Raffin TA. Recombinant human tumor necrosis factor alpha induces calcium oscillation and calcium-activated chloride current in human neutrophils. The role of calcium/calmodulin-dependent protein kinase. J Biol Chem.1993; 268:2134-2140.
    [38]Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci U S A.1998; 95:6169-6174.
    [39]d'Anglemont de Tassigny A, Souktani R, Henry P, Ghaleh B, Berdeaux A. Volume-sensitive chloride channels (ICl,vol) mediate doxorubicin-induced apoptosis through apoptotic volume decrease incardiomyocytes. Fundam Clin Pharmacol.2004; 18:531-538.
    [40]Souktani R, Berdeaux A, Ghaleh B, Giudicelli JF, Guize L, Le Heuzey JY, Henry P. Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes. Am J Physiol Cell Physiol.2000; 279:C158-165.
    [41]Meng XJ, Carruth MW, Weinman SA. Leukotriene D4 activates a chloride conductance in hepatocytes from lipopolysaccharide-treated rats. J Clin Invest .1997;99:2915-2922.
    [42]Ullrich S, Berchtold S, Boehmer C, Fillon S, Jendrossek V, Palmada M, Schroeder TH, Pier GB, Lang F. Pseudomonas aeruginosa activates Cl- channels in host epithelial cells. Pflugers Arch .2003;447:23-28.
    [43]Browe DM, Baumgarten CM. Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl- current elicited by beta1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol .2004;124:273-287.
    [44]Varela D, Simon F, Riveros A, Jorgensen F, Stutzin A. NAD(P)H oxidase-derived H(2)O(2) signals chloride channel activation in cell volume regulation and cell proliferation. J Biol Chem .2004;279:13301-13304.
    [45]Hardy SP, Goodfellow HR, Valverde MA, Gill DR, Sepulveda V, Higgins CF. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J .1995;14:68-75.
    [46]Kunzelmann K, Slotki IN, Klein P, Koslowsky T, Ausiello DA, Greger R, Cabantchik ZI. Effects of P-glycoprotein expression on cyclic AMP and volume-activated ion fluxes and conductances in HT-29 colon adenocarcinoma cells. J Cell Physiol.1994; 161:393-406.
    [47]Verdon B, Winpenny JP, Whitfield KJ, Argent BE, Gray MA. Volume-activated chloride currents in pancreatic duct cells. J Membr Biol.1995; 147:173-183.
    [48]Robson L, Hunter M. Role of cell volume and protein kinase C in regulation of a Cl- conductance in single proximal tubule cells of Rana temporaria. J Physiol .1994;480 ( Pt 1):1-7.
    [49]Mitchell CH, Zhang JJ, Wang L, Jacob TJ. Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am J Physiol .1997;272:C212-222.
    [50]Hagiwara N, Masuda H, Shoda M, Irisawa H. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol .1992;456:285-302.
    [51]Du XY, Sorota S. Protein kinase C stimulates swelling-induced chloride current in canine atrial cells. Pflugers Arch.1999; 437:227-234.
    [52]Duan D, Fermini B, Nattel S. Alpha-adrenergic control of volume-regulated Cl- currents in rabbit atrial myocytes. Characterization of a novel ionic regulatory mechanism. Circ Res .1995;77:379-393.
    [53]Duan D, Winter C, Cowley S, Hume JR, Horowitz B. Molecular identification of a volume-regulated chloride channel. Nature.1997; 390:417-421.
    [54]Duan D, Horowitz N, Horowitz B, Hume JR. Molecular mechanism of hypotonic activation of cloned cardiac volume-regulated CLC-3 chloride channels (Abstract). Circ 96 (suppl I). 1997:I-729. Circ 96 (suppl I) .1997;I-729.
    [55]Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J .1993;12:1681-1692.
    [56]Sorota S. Tyrosine protein kinase inhibitors prevent activation of cardiac swelling-induced chloride current. Pflugers Arch. 1995;431:178-185.
    [57]Shi C, Barnes S, Coca-Prados M, Kelly ME. Protein tyrosine kinase and protein phosphatase signaling pathways regulate volume-sensitive chloride currents in a nonpigmented ciliary epithelial cell line. Invest Ophthalmol Vis Sci.2002; 43:1525-1532.
    [58]Du XY, Sorota S. Modulation of dog atrial swelling-induced chloride current by cAMP: protein kinase A-dependent and -independent pathways. J Physiol .1997;500 ( Pt 1):111-122.
    [59]Hall SK, Zhang J, Lieberman M. Cyclic AMP prevents activation of a swelling-induced chloride-sensitive conductance in chick heart cells. J Physiol .1995;488 ( Pt 2):359-369.
    [60]Heimlich G, Cidlowski JA. Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. J Biol Chem .2006;281:2232-2241.
    [61]Du XY, Sorota S. Cardiac swelling-induced chloride current is enhanced by endothelin. J Cardiovasc Pharmacol .2000;35:769-776.
    [62]Robay A, Toumaniantz G, Leblais V, Gauthier C. Transfected beta3- but not beta2-adrenergic receptors regulate cystic fibrosis transmembrane conductance regulator activity via a new pathway involving the mitogen-activated protein kinases extracellular signal-regulated kinases. Mol Pharmacol.2005; 67:648-654.
    [63]Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O. Green tea catechins prevent cognitive deficits caused by Abeta(1-40) in rats. J Nutr Biochem .2008.
    [64]Jesudason EP, Masilamoni JG, Ashok BS, Baben B, Arul V, Jesudoss KS,Jebaraj WC, Dhandayuthapani S, Vignesh S, Jayakumar R. Inhibitory effects of short-term administration of DL: -alpha-lipoic acid on oxidative vulnerability induced by Abeta amyloid fibrils (25-35) in mice. Mol Cell Biochem.2008; 311:145-156.
    [65]Shi Q, Gibson GE. Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord .2007;21:276-291.
    [66]Shibata N, Kobayashi M. [The role for oxidative stress in neurodegenerative diseases]. Brain Nerve.2008; 60:157-170.
    [67]Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol .2004; 164:123-131.
    [68]Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A.2004; 101:2070-2075.
    [69]Garrido JL, Godoy JA, Alvarez A, Bronfman M, Inestrosa NC. Protein kinase C inhibits amyloid beta peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J .2002;16:1982-1984.
    [70]Alkon DL, Sun MK, Nelson TJ. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer's disease. Trends Pharmacol Sci.2007; 28:51-60.
    [71]Behrens MM, Strasser U, Koh JY, Gwag BJ, Choi DW. Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase. Neuroscience.1999; 94:917-927.
    [72]Xie J, Guo Q, Zhu H, Wooten MW, Mattson MP. Protein kinase C iota protects neural cells against apoptosis induced by amyloid beta-peptide. Brain Res Mol Brain Res .2000;82:107-113.
    [73]Ma W, Zheng WH, Belanger S, Kar S, Quirion R. Effects of amyloid peptides on cell viability and expression of neuropeptides in cultured rat dorsal root ganglion neurons: a role for free radicals and protein kinase C. Eur J Neurosci .2001;13:1125-1135.
    [74]Wei W, Norton DD, Wang X, Kusiak JW. Abeta 17-42 in Alzheimer's disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain.2002; 125:2036-2043.
    [75]Jin LW, Saitoh T. Changes in protein kinases in brain aging and Alzheimer's disease. Implications for drug therapy. Drugs Aging.1995; 6:136-149.
    [76]Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging.2001; 18:685-716.
    [77]Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem .2001;8:721-738.
    [78]Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL. Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci .2004;1012:224-236.
    [79]Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci .2004; 5:863-873.
    [80]Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer's disease senile plaques. J NeurolSci .1998;158:47-52.
    [81]Pinero DJ, Hu J, Connor JR. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cell Mol Biol (Noisy-le-grand).2000; 46:761-776.
    [82]Pinero DJ, Li N, Hu J, Beard JL, Connor JR. The intracellular location of iron regulatory proteins is altered as a function of iron status in cell cultures and rat brain. J Nutr .2001;131:2831-2836.
    [83]Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J Neurochem .2000;74:270-279.
    [84]Sayre LM, Perry G, Smith MA. In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol .1999;309:133-152.
    [85]Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der Linden A. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer's disease. Magn Reson Med .2005;53:607-613.
    [86]Pannaccione A, Secondo A, Scorziello A, Cali G, Taglialatela M, Annunziato L. Nuclear factor-kappaB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic beta-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem ;2005;94:572-586.
    [87]Pannaccione A, Boscia F, Scorziello A, Adornetto A, Castaldo P, Sirabella R, Taglialatela M, Di Renzo GF, Annunziato L. Up-regulationand increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol .2007;72:665-673.
    [88]Yu HB, Li ZB, Zhang HX, Wang XL. Role of potassium channels in Abeta(1-40)-activated apoptotic pathway in cultured cortical neurons. J Neurosci Res.2006; 84:1475-1484.
    [89]Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med.2003; 9:1180-1186.
    [90]徐玮,邓钰蕾,汤荟冬,陈生弟. JNK信号转导通路在β-淀粉样蛋白25-35诱导PC12细胞凋亡中的作用机制.中华老年医学杂志.2005; 24:369-372.
    [91]徐玮,邓钰蕾,汤荟冬,陈生弟. JNK信号转导通路在Aβ25-35诱导大鼠原代海马神经元凋亡中作用机制的研究.中国神经科学杂志.2004;20:135-139.
    [92]Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci .2004;19:2711-2719.
    [93]Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron .2002;35:1067-1083.
    [94]Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase:implications for Parkinson's disease. FASEB J .2003;17:500-502.
    [95]Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A.2001; 98:14669-14674.
    [96]Ferrer I, Blanco R, Carmona M, Puig B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm .2001;108:1397-1415.
    [97]Hartzler AW, Zhu X, Siedlak SL, Castellani RJ, Avila J, Perry G, Smith MA. The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau. Neurobiol Aging.2002; 23:855-859.
    [98]Sun A, Liu M, Nguyen XV, Bing G. P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol .2003;183:394-405.
    [99]Otth C, Mendoza-Naranjo A, Mujica L, Zambrano A, Concha II, Maccioni RB. Modulation of the JNK and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer's disease. Neuroreport.2003; 14:2403-2409.
    [100] Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev .1999;79:1317-1372.
    [101] Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat.2002; 19:423-434.
    [102] Briet M, Vargas-Poussou R, Lourdel S, Houillier P, Blanchard A. How Bartter's and Gitelman's syndromes, and Dent's disease have provided important insights into the function of three renal chloride channels: ClC-Ka/b and ClC-5. Nephron Physiol.2006; 103:p7-13.
    [103] Barlassina C, Dal Fiume C, Lanzani C, Manunta P, Guffanti G, Ruello A, Bianchi G, Del Vecchio L, Macciardi F, Cusi D. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet .2007;16:1630-1638.
    [104] Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron .2001;29:185-196.
    [105] Schnur RE, Wick PA. Intragenic TaqI restriction fragment length polymorphism (RFLP) in CICN4, between the loci for X-linked ocular albinism (OA1) and microphthalmia with linear skin defects syndrome (MLS). Hum Genet.1995; 95:594-595.
    [106] Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV. A common molecular basis for three inherited kidney stone diseases. Nature .1996;379:445-449.
    [107] Proesmans M, Vermeulen F, De Boeck K. What's new in cystic fibrosis? From treating symptoms to correction of the basic defect. Eur J Pediatr ,2008.
    [108] Segal I, Yaakov Y, Adler SN, Blau H, Broide E, Santo M, Yahav Y, Klar A, Lerner A, Aviram M, Ellis I, Mountford R, Shteyer E, Kerem E, Wilschanski M. Cystic Fibrosis Transmembrane Conductance RegulatorIon Channel Function Testing in Recurrent Acute Pancreatitis. J Clin Gastroenterol ,2008.
    [109] Yuan J, Yankner BA. Apoptosis in the nervous system. Nature.2000; 407:802-809.
    [110] Takuma K, Yan SS, Stern DM, Yamada K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci .2005;97:312-316.
    [111] Fan HT, Morishima S, Kida H, Okada Y. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl(-) channels. Br J Pharmacol .2001;133:1096-1106.