可溶性Aβ_(25-35)对新生大鼠海马CA3区锥体神经元延迟整流钾通道mRNA表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     Alzheimer's病(AD)是影响记忆和认知功能的进行性退化性神经病变,是痴呆最常见的原因。研究表明,β淀粉样蛋白(Aβ)增加是AD中枢病因性过程,凝聚态Aβ具有明确的神经毒性作用。但亦有研究提出,Aβ在纤维性沉积前即可溶性Aβ也可产生神经毒性作用。海马是学习和记忆的关键部位,直接参与记忆的获取和建立。海马CA3区与空间辨别性学习记忆关系密切。而学习和记忆存储的分子和生理机制研究表明,钾通道、蛋白激酶C、记忆相关蛋白Cp20、细胞内钙调节在学习和记忆机制中起重要作用,其中钾离子通道在学习和记忆中起着关键作用,提示钾通道在老年痴呆发病过程中具有重要意义。有研究认为可溶性Aβ_(25-35)对新生大鼠海马CA3区锥体神经元延迟整流钾电流(I_k)有明显抑制作用,其效应具有时间依赖性和电压依赖性,但具体作用机制不清。本实验以大鼠海马CA3区锥体神经元为研究对象,采用膜片钳与单细胞RT-PCR技术相结合的方法,研究可溶性Aβ_(25-35)对新生大鼠海马CA3区锥体神经元几种代表性延迟整流钾通道亚型mRNA表达的影响,从分子生物学的角度探讨I_k变化的分子机制。为研究Aβ在AD发病过程中的作用机制以及临床应用钾通道调节剂预防和治疗AD提供理论依据。
     方法:
     采用酶解和机械分离相结合的方法,急性分离新生大鼠海马CA3区锥体神经元。运用膜片钳,借助其电极形成的吸收通道提取单个细胞,然后对其进行单细胞水平的分子生物学研究。由于单个细胞中提取的mRNA数量很少,应用传统的单对引物对单细胞mRNA进行RT-PCR扩增,得到的产物结果不够理想,故本实验采用的巢式设计的两对PCR引物,进行两轮PCR扩增。RT-PCR扩增后凝胶电泳成像分析,观察可溶性Aβ_(25-35)对大鼠海马CA3区锥体神经元延迟整流钾离子通道亚型Kv1.2、Kv1.5、Kv2.1表达的影响。
     结果:
     1.延迟整流钾通道亚型Kv1.2,Kv1.5,Kv2.1在正常大鼠海马CA3区锥体神经元上均有不同程度的表达。其中,Kv2.1的表达水平较高。
     2.加入浓度为1.0、2.5、5.0μM可溶性Aβ_(25-35)1分钟后,大鼠海马CA3区锥体神经元延迟整流钾通道亚型Kv1.2mRNA的相对表达量与对照组相比明显降低,分别降低15.9%(P<0.01)、24.0%(P<0.01)、35.8%(P<0.01)。
     3.加入浓度为1.0、2.5、5.0μM可溶性Aβ_(25-35)1分钟后,大鼠海马CA3区锥体神经元延迟整流钾通道亚型Kv1.5mRNA的相对表达量与对照组相比明显降低,分别降低17.8%(P<0.01)、23.2%(P<0.01)、36.1%(P<0.01)。
     4.加入浓度为1.0、2.5、5.0μM可溶性Aβ_(25-35)1分钟后,大鼠海马CA3区锥体神经元延迟整流钾通道亚型Kv2.1 mRNA的相对表达量与对照组相比明显降低,分别降低17.2%(P<0.01)、23.7%(P<0.01)、36.9%(P<0.011。
     5.加入浓度为5.0μM可溶性Aβ_(25-35)孵育1、3、5、8、10分钟后,大鼠海马CA3区锥体神经元延迟整流钾通道亚型Kv2.1 mRNA的相对表达量与对照组相比明显降低,分别降低了38.7%(P<0.01)、43.5%(P<0.01)、53.3%(P<0.01)、65.6%(P<0.01)、73.7%(P<0.01)。
     结论:
     1.在正常新生大鼠海马CA3区锥体神经元细胞膜上,延迟整流钾通道亚型Kv1.2,Kv1.5,Kv2.1 mRNA均有不同程度的表达,其中以Kv2.1的表达较为丰富。
     2.可溶性Aβ_(25-35)对大鼠海马CA3区锥体神经元延迟整流钾通道亚型Kv1.2,Kv1.5,Kv2.1 mRNA的表达有较明显的抑制作用,这种抑制作用具有浓度依赖性和时间依赖性。
     3.可溶性Aβ_(25-35)对大鼠海马CA3区锥体神经元延迟整流钾通道亚型mRNA表达的抑制导致钾通道数量减少,这可能是其对延迟整流钾电流抑制作用的机制之一。
Object:
     Alzheimer's disease(AD)is a neurodegenerative disorder influencing functions of memory and cognition,and AD is the most common reason of dementia.Some researches indicate that the main pathological characteristic of AD is increased amyloidβ-peptide(Aβ),and the deposition of Aβin the brain has clear neurotoxicity. There are other researches showing that soluble Aβalso has neurotoxicity. Hippocampus is a key structure of learning and memory,which is directly related to the acquisition and foundation of learning and memory.Hippocampal CA3 area correlates to learning memory of spatial discrimination closely.While researches on the molecule and physiology mechanism of learning and memory show that potassium channel、PKC、memory-relating protein Cp20 and regulation of intracellular Ca~(2+)play an important role in the mechanism of learning and memory, especially that potassium channel plays a key role,and this suggests that potassium channel has significant effects on AD.Some studies indicate that soluble Aβ_(25-35)can inhibit I_k of the neurons of hippocampal CA3 area distinctly in newborn rats.The effect is time-dependent and voltage-dependent,but the specific mechanism remains unknown.We investigate the effect of soluble Aβ_(25-35)on the expression of mRNA of several K~+ channel of hippocampal CA3 area of newborn rats,using neurons of hippocampal CA3 area and taking the methods of patch clamp and single cell RT-PCR and research the mechanism of I_k change in the point of molecular biology. Our research provided theoretical proof to the mechanism of Aβin the AD disease and the precaution and cure of AD.
     Methods:
     Combining the methods of enzymic digestion and mechanical separation,we separated rat hippocampal CA3 pyramidal neurons from the slice of the brain tissue. After that,we use the patch clamp technique to get a single cell,and use the RT-PCR technique to amplify potassium channels' mRNA.Then we can record the effects of soluble Aβ_(25-35)on the mRNA expression of delayed rectifier potassium channel subtypes Kv1.2,Kv1.5 and Kv2.1.
     Results:
     1.In the rat hippocampal CA3 pyramidal neurons,delayed rectifier potassium channel Kv1.2,Kv1.5 and Kv2.1 mRNA are expressed in different levels,and Kv2.1 has a relatively high level expression.
     2.Compared to the control group,the expression level of kv1.2 mRNA fell 15.9% (P<0.01)、24.0%(P<0.01)and 35.8%(P<0.01)after addition of 1.0、2.5 and 5.0μM soluble Aβ_(25-35)for 1 minute.
     3.Compared to the control group,the expression level of kv1.5 mRNA fell 17.8% (P<0.01)、23.2%(P<0.01)and 36.1%(P<0.01)after addition of 1.0、2.5 and 5.0μM soluble Aβ_(25-35)for 1 minute.
     4.Compared to the control group,the expression level of kv2.1 mRNA fell 17.2% (P<0.01)、23.7%(P<0.01)and 36.9%(P<0.01)after addition of 1.0、2.5 and 5.0μM soluble Aβ_(25-35)for 1 minute.
     5.Compared to the control group,the expression level of kv2.1 mRNA fell 38.7% (P<0.01)、43.5%(P<0.01)、53.3%(P<0.01)、65.6%(P<0.01)、73.7%(P<0.01) after addition of 5.0μM soluble Aβ_(25-35)for 1、3、5、8 and 10 minutes.
     Conclusion:
     1.In the rat hippocampal CA3 pyramidal neurons,delayed rectifier potassium channel Kv1.2,Kv1.5 and Kv2.1 mRNA are expressed in different levels,and Kv2.1 has a relatively high level expression.
     2.The expression of Kv1.2、Kv1.5 and Kv2.1 mRNA were obviously inhibited by soluble Aβ_(25-35)and the inhibition effect was concentration- and time-depended.
     3.The number of potassium channel reduced because of the block effect of soluble Aβ_(25-35)on rat hippocampal CA3 pyramidal neurons.And this may be one of the mechanisms how soluble Aβ_(25-35)can inhibit electric current of potassium.
引文
[1]Barnham KJ,Masters CL,Bush AL.Neurodegenerative disease and oxidative stress[J].Nat Rev Drug Discov 2004,3(3):205-14.
    [2]Mattson MP.Pathways towards and away from Alzheimer's disease[J].Nature,2004,430:631-639.
    [3]Bossy-Wetzel E,Schwarzenbacher R,Lipton.Molecular pathways to neurodegener-ation[J].Nat Med,2004,10:S2-9.
    [4]Goate A,Chartier-Harlin MC,Mullan M,et al.Segregation of a missense mutation in the anyloid precursor protein gene with familial Alzheimer's disease [J].Nature,1991,349(6311):704-706.
    [5]Bird TD.Genetic factor in Alzheimer's disease[J].N Engl J Med,2005,352(5):862-864.
    [6]Schellenberg GD,Bird TD,Wijsman EM,et al.Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14[J].Science,1992,258(5082):668-671.
    [7]Strittmatter WJ,Sannder AM,Schmechel D,et al.Apolipoprotein E:high-avidity binding to beta-amyloid and increase freguency of type 4 allele in late-onset familial Alzheimer disease[J].Proc Natl Acad Sci USA,1993,90(5):1977-1981.
    [8]Vina J,Lloret A,Orti R,et al.Molecular bases of the treatment of Alzheimer's disease with antioxidants:prevention of oxidative stress[J].Mol Aspects Med,2004,25(1-2):117-123.
    [9]Blacker D,Wilcox MA,Laird NM,et al.Alpha-2 macroglobulin is genetically associated with Alzheimer's disease[J].Nat Genet,2000,19:357.
    [10]徐俊,钱采韶,方莹莹,等。AlZheimer病tau β-tubulin的表达[J]。中国神经病杂志,2002,19(2):88-89.
    [11]Selkoe DJ.Aging,amyloid,and Alzheimer's disease:a perspective in honor of Carl Corman[J].Neurochem Res,2003,28(11):1705-1713.
    [12]Revesz T,Ghiso J,Lashley T,et al.Cerebral amyloid angiopathies:a pathologic,biochemical,and genetic view[J].Neuropathol Exp Neurol,2003,62(9):885-898
    [13] Sinha S. The role of beta-amyloid in Alzheimer's disease[J]. Med Clin North Am, 2002, 86(3):629-639.
    [14] Koudinova NV, Berezov TT, Koudinov AR. Beta-amyloid: Alzheimer's disease and brain beta-amyloidoses [J]. Biochemistry, 1999, 64(7):752-757.
    [15] Fraser PE, Levesque L, Mclachlan DR. Biochemistry of Alzheimer's disease amyloid plaques[J]. Clin Biochem, 1993, 26(5):339-349.
    [16] Gitter BD, Boggs LN, May PC, et al. Regulation of cytokine secretion and amyloid precursor protein processing by proinflammatory amyloid beta(A beta)[J]. Ann NYA cad Sci, 2000, 917:154.
    [17] Hardy J, Dennis J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5508):353-356.
    [18] Yoshikao S, Sasaki H, Dohura K, et al. Genomic organization of the human amyloid beta-protein precursor gene[J]. Gene, 1990, 87:257-263.
    [19] Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein[J]. Neuroscience, 2006, 26 (27):7212-7221.
    [20] Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abtal-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci USA, 1998, 95:6448-6453.
    [21] Yankner BA, Duffy LK, Kirschner DA, et al. Neurotrophic and neurotoxic effects of amyloid β-protein, reversal by tachykinin neuropeptides[J].Science, 1990,250:279-281.
    [22] Canevari L, Abramov AY, Duchen MR. Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem Res, 2004, 29: 637-650.
    [23] Whitson JS, et al. β-amyloid protein promotes neuritic branching in hippocampal culture[J]. Neurosci Lett, 1990,110:319-324.
    [24] Selkoe D. Alzheimer's disease: gene, proteins, and therapy[J]. Physiol Rev, 2001, 81 (2):741-766.
    [25] Soto C, Castano EM. The conformation of Alzheimer's beta-peptide determines the rate of amyloid formation and its resistance to proteolysis[J]. Biochem, 1996, 314(2): 701-707.
    [26] Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimer's, priori, and Parkinson's disease and amyotrophic lateral sclerosis) [J]. Chem Rev, 2006, 106:1995-2044.
    [27] Iwata N, Tsubuki S, Takaki Y, et al. Identification of the major Abetal-2-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition [J]. Nat Med, 2000, 6(2): 143-150.
    [28] Miller BC, Eckman EA, Sambamurti K, et al. Amyloid-beta peptide levers in brain are inversely correlated with insulysin activity levels in vivo[J]. Proc Natl Acad Sci USA, 2003, 100(10):6221-6226.
    [29] Weller RO, Massey A, Kuo YM, et al. Cerebrovascular disease is a major factor in the failure of elimination of Abeta from the aging human brain: implications for therapy of Alzheimer's disease[J]. Ann NY Acad Sci, 2002, 977:162-168.
    [30] Carpentrer M, Robitaille Y, DesGroseillers L, et al. Declinning expression of neprilysin in Alzheimer's disease vasculature: possible involvement in cerebral amyloid angiopathy [J]. Neuropathol Exp Neurol, 2002, 61(10):849-856.
    [31] Hashimoto Y, Njikura T, Ito Y, et al. Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein[J]. Biol Chem, 2000,257(44):34541-34551.
    [32] Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal longterm potentiation in vivo[J]. Nature, 2002,416(6880): 535-539.
    [33] Giovannelli L, Casamenti F, Scali C, et al. Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis[J]. Neurosciense, 1995, 66(4):781-792.
    [34] Yankner BA, Duffy LK, Kirschner DA, et al. Neurotrophic and neurotoxic effects of amyloid β-protein,reversal by tachykinin neuropeptides[J]. Science, 1990,250:279-281.
    [35] Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits Abeta elevation, and amyloid plaque in transgene mice[J]. Science, 1996, 274(5284):99-102.
    [36] Frautschy SA, et al. Effects of injected Alzheimer beta-amyloid core in rat brain[J]. Proc Natl Acad Sci USA, 1991, 88(19):8362-8366.
    [37] Kammesheidt A, Boyce FM, Spanoyannis AF, et al. Deposition of beta/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer anyloid precursor in the brain[J]. Proc Natl Acad Sci USA, 1992, 89: 10857-10861.
    [38] Alvarez AR, Godoy JA, Mullendorff K, et al. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons[J]. Exp Cell Res, 2004, 297(1): 186-196.
    [39] Matsuoka Y, Picciano M, Malester B, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease[J]. Am J Pathol,2 2001,158(4:1345-1354.
    [40] Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts(RAGE) in Alzheimer's disease: identifcation of a cellular activation mechanism[J]. Exp Neurol, 2001,171(1):29-45.
    [41] Weiss JH, Pike CJ, Cotman CW. Ca~(2+) channel blockers attenuate beta-amyloid peptide toxicity to cortical neurins in culture[J]. Neurochem, 1994, 62(1):372-375.
    [42] Lovell MA, Ehmann WD, Butler SM, et al. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease[J]. Neurology, 1995,45(8):1594-1601.
    [43] Huang X, Atwood CS, Hartshort MA, et al. The A beta peotide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction[J]. Biochemistry, 1999, 38(24):7609-7616.
    [44] Kosik KS, Shimura H. Phosphorlated tau and the neurodegenerative foldopathies [J]. Biochim Biophys Acta, 2005 Jan; 1739(2-3):298-310.
    [45] Anderton BH, Dayanandan R, Killick R, et al. Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease[J]? Mol Med Today, 2000, 6(2):54-59.
    [46] Tomidokoro Y, Ishiguro K, Harigaya Y, et al. Abeta amyloidosis induces the initial stage of tau accumulation in APP(Sw) mice[J]. Neurosic Lett, 2001, 299(3): 169-172.
    [47] Reyes AE, Chacon MA, Dinamarca MC, et al. Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss[J]. Am Pathol, 2004, 164(6):2163-2174.
    [48] Casadesus G, Webber KM, Atwood CS, et al. Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta, 2006, 1762: 447-452.
    [49] Rudy B. Molecular diversity of ion channels and cell function[J]. Ann. N. Y. Acad. Sci. 1999, 868:1-12.
    [50] Klee R, Ficker, Heineman U. Comparison of voltage-dependent potassium current- sin rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3[J]. Neurophysiol, 1995, 74:1982-1995.
    [51] Takagi H, Kodama K, Saito M, et al .Presynaptic K~+ channel modulation is acru- cial ionic basis of neuronal damage induced by is chemia in rat hippocampal CAlpyr- amidal neurons[J]. Zoolog Sci, 2003, 20:7-11.
    [52] Murakoshi H, Trimmer JS. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K~+ current in rat hippocampal neurons[J]. Neurosci, 1999, 19:1728-1735.
    [53] Du J, Haak LL, Phillips-Tansey E, et al. Frequent-dependent regulation of rat hippocampal somato-dendritic excitability by the k~+ channel subunit kv2.1[J]. Physiol, 2000, 522(Pt 1):19-31.
    [54] Du J, Zerfas P, McBain CJ. The k+ channel, kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons[J]. Neuroscience, 1998, 84: 37-48.
    [55] Maletic-Savatic M, Lenn JS. Differential spatioternpral expression of k~+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro[J]. Neurosci, 1995, 15(5Pt2):3840-3851.
    [56] Levitan ES, Hershman KM, Sherman TG, et al. Dexamethasone and stress upreglate kv1.5 k~+ channel gene expression in rat ventricular mayocytes[J]. Neuropharmacol, 1996, 35:1001-1006.
    [57] Tsuar ML, Morgan Sheng, Lowenstein DH, et al. Differential expression of K~+ channel mRNAs in rat brain and down-regulation in the hippocampus folloqing seizure[J]. Neuron, 1992, 8:1055-1067.
    [58] Doyle DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: Molecular basis of K1 conduction and selectivity[J]. Science (Wash DC) 280:69-77.
    [59] Jhamandas JH, Cho C, Jasar B, et al. Cellular mechanisms for amyloid beta-protein activation of rat cholinergic basal forebrain neurons[J]. Neurophysiol. 2001,86(3):1312-1320.
    [60] Good TA, Smith DO, Murphy RM. B-amyloid peptide blocks the fast-inactivating k~+ current in rat hippocampal neurons[J]. Biophys, 1996, 70(1):296-304.
    [61] Qi JS, Ye L, Qiao JT. Amyloid beta-protein fragment 31-35 suppresses delayed rectifying potassium channels in membrane patches excised from hippocampal neurons in rats[J]. Synapse, 2004, 51(3): 165-172.
    [62] Jin HW, Wang XL. Effects of chronic exposure to beta-amyloid-peptide25-35 on voltage-gated potassium outward currents in cultured rat hippocampal neurons [J]. Yao Xue Xue Bao, 2001, 36:898-890.
    [63] Kuryshev YA, Gudz TI, Brown AM, et al. KChAP as a chaperone for specific K1 channels[J]. Am J Physiol Cell Physiol, 2000, 278:C931-C941.
    [64] Kramer JW, Post MA, Brown AM, et al. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 alphasubunits[J]. Am J Physiol, 1998, 274:C1501-1510.
    [65] Jaaffrd R, Meunier M. Role of the hippocampal formation in learning and memory[J]. Hippocampus, 1993,3: 203-217.
    [66] Mann DM. Pyramidal nevre cell loss in Alzheimer's disease[J]. Neurodegeneration, 1996, 5(4): 423-427.
    [67] Harding AJ, Lakay B, Halliday GM. Selective hippocampal neuron loss in dementia with Lewy bodies[J]. Ann Neurol, 2002, 51(1): 125-128.
    [68]Wagatsuma A, et al. Determination of the exact copy numbers of particular mRNAs in a single cell by quantitative real-time RT-PCR [J]. Exp.Biol, 2005, 208, 2389-2398.
    [69] Jensen BK, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifing cells: Lrigl is a regulator of stem cell quiescence [J]. PNAS, 2006,103,11958-11963.
    [70] Tehrani A, Wheeler-Schilling TH, Guenther, E. Coexpression patterns of mGLuR mRNAs in rat retinal ganglion cells: a single-cell RT-PCR study [J]. Invest. Ophthalmol. Vis. Sci. 2000,41, 314-319.
    [71] Schroder W, Seifert G, Huttmann K, et al. AMPA receptor-mediated modulation of inward rectifier k~+ channels in astrocytes of mouse hippocampus [J]. Mol Cell Neurosci, 2002,19(3): 447-458.
    [72] Henne J, Pottering S, Jeserich G. Voltage-gated potassium channels in retinal ganglion cells of trout: a combined biophysical, pharmacological, and single cell RT-PCR approach[J]. Neurosci Res, 2000, 62(5): 629-637.
    [73] Maletic-Savatic M, Lenn NJ, Trimmer JS. Differential spatiotemporal expression of K~+ channel polypeptides in rat hippocampal neurons developing in situ and in vitro[J]. Neurosic, 1995, 15(5): 3840-3851.
    [74] Ha TS, Jeong SY, Cho SW, et al. Functional characteristics of two BK_(Ca) channel variants differentially expression in rat brain tissues[J]. Biochem, 2000, 267(3): 910-918.
    [1]Neher E,Sakmann B.Single-channel currents recorded from membrane of denervated frog muscle fibres[J].Nature,1976,260(5554):799-802.
    [2]Hamill OP,Marty A,Neher E,et al.Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patche[J].Pflugers Arch,1981,391(2):85-100.
    [3]Eberwine J,Yeh H,Miyashiro K,et al.Analysis of gene expression in single Live neurons[J].PANS,1992,89:3010-3014.
    [4]Suchr NJ,Deitcher DL.PCR and patch-clamp analysis of single neurons[J].Neuron,1995,14(6):1095-1100.
    [5]Srinivasan Kanumilli,Elizabeth W.Tringham,C.Elizabeth Payne,Alternative splicing generates a smaller assortment of Cav2.1 transcripts in cerebellar Purkinje cells than in the cerebellum[J].Physiol Genomics,2006,24(2):86-96.
    [6] Mechaly I, Scamps F, Chabbert C,et al. Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells[J]. Neuroscience, 2005,130 (2), 389-396.
    [7] Lidong Liu, Dane R. Hansen, Insook Kim, et al. Expression and characterization of delayed rectifying K~+ channels in anterior rat taste buds[J]. Physiol Cell Physiol, 2005,289: C868-C880.
    [8] Whyment AD, Blanks AM, Lee K, et al. Histamine excites neonatal rat sympathetic preganglionic neurons in vitro via activation of H1 receptors[J]. Neurophysiol, 2006, 95(4): 2492-2500.
    [9] Julia E. Fries, Iwona M. Goczalik, et al. Identification of P2Y Receptor Subtypes in Human Mu¨ller Glial Cells by Physiology, Single Cell RT-PCR, and Immunohistochemistry [J]. Invest Ophthalmol Vis Sci, 2005, 46:3000-3007.
    [10] Sergeeva OA, Amberger BT, Vorobjev VS, et al. AMPA receptor properties and coexpression with sodium-calcium exchangers in rat hypothalamic neurons[J]. Neuroscience, 2004,19 (4), 957-965.
    [11] Huttmann K. Yilmazer-Hanke D, Seifert G, et al. Molecular and functional properties of neurons in the human lateral amygdala[J]. Molecular And Cellular Neurosciences, 2006, 31(2):210-217.
    [12] M. M. Shah, M. Mistry, S. J. Marsh, et al. Molecular correlates of the M-current in cultured rat hippocampal neurons[J]. Physiology, 2002, 544(1): 29-37.
    [13] Zhong CB; Pan YP; Tong XY, et al. Delayed rectifier potassium currents and Kv2.1 mRNA increase in hippocampal neurons of scopolamine-induced memory-deficient rats[J]. Neuroscience Letters, 2005, 373(2):99-104.
    [14] Mark Fry, Pauline M. Smith, Ted D. Hoyda, et al. Area Postrema Neurons Are Modulated by the Adipocyte Hormone Adiponectin[J]. The Journal of Neuroscience, 2006, 26(38):9695-9702.