大麦镉吸收与运转机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cadmium,Cd)是毒性最强和农田受污染最普遍的重金属之一,土壤镉污染不仅严重影响作物的产量和品质,并可通过食物链富集危害人体健康。对于已污染土壤,虽然曾提出过包括利用超积累植物进行生物修复降低土壤重金属含量等多种方法,但迄今均未能有效地应用于大面积土壤的治理;对于大面积污染程度中、轻度的农田,筛选耐镉且食用器官低积累作物品种和改进农艺与化学调控技术缓解镉毒、减少作物镉吸收与积累,是有效利用自然资源和保证农产品安全生产的重要途径,而深入开展作物镉耐性和积累基凶型差异机理的研究是开展相关作物育种和生产调控的基础。本研究在筛选镉耐性与积累不同大麦基因型的基础上,研究其镉吸收和积累的规律及基因型差异的生理机理,鉴定耐镉/低积累相关的目标蛋白和相关基因,进一步从分子水平上探讨大麦镉吸收与转运机制,同时探讨了外源一氧化氮(NO)和还原型谷胱甘肽(GSH)对大麦镉吸收/转移与耐镉性影响的基因型差异及生理机制,为低镉积累育种与生产提供理论依据和技术指导。主要研究结果如下:
     1.大麦耐镉与籽粒低镉积累基因型筛选
     分析评估600份大麦基因型籽粒镉含量及其与Zn、Mn等微量元素积累的相关性,筛选籽粒镉低积累基因型;同时研究镉胁迫对大麦生长影响的基因型差异。结果表明,相同栽培条件下,600个大麦基因型籽粒镉含量变化范围为0-1.21 mg Cd kg~(-1)DW,基因型间差异显著,且有47.2%的参试大麦基因型籽粒镉含量超过WHO规定的最大允许值。连续二年的验证试验结果显示,籽粒镉含量基因型差异的变化趋势完全一致,其中Beitalys和上89-128籽粒镉含量最低,较籽粒镉高积累基因型鄂大麦6号和浙农8号极显著低97.5%。此外,600份基因型籽粒Zn、Mn、Fe和Cu等微量元素含量基因型间也存在显著差异,相关性分析结果显示,Mn与Cd存在显著正相关,而Cd和Zn、Cu、Fe的相关性不显著。以不同类型与生长习性大麦基因型为材料,两次连续的水培镉胁迫试验,结果表明,大麦幼苗对镉耐性和积累基因型间存在显著差异:筛选获得耐镉基因型萎缩不知和吉啤1号,镉敏感基因型东17和苏引麦2号。进一步分析测定植株不同器官中镉含量发现,四个基因型对镉的吸收和转移差异显著,其中耐性基因型萎缩不知镉含量最高,吉啤1号最低;而敏感基因型中则以东17地上部和地下部积累的镉含量较低。
     2.大麦籽粒成熟期镉的转运与积累及环境因子的影响
     采用离体穗培养方法,研究大麦籽粒成熟期镉积累动态、再转移及分配规律及环境因素对籽粒镉积累的影响。结果表明,离体穗不同器官中镉含量都随培养液中镉处理水平提高而增加。三个镉水平下,处理15 d后离体穗各部位镉含量依次都为:芒>茎秆>籽粒>穗轴>颖壳;镉积累量以籽粒中占的比例最大,占各部份总积累的51.0%。镉积祟动态变化结果显示,籽粒镉积累随处理时间的延长而上升:离体穗其他各部位锅积累处理1-5 d显著上升,5-10 d时则急剧下降,而处理12.5 d后各部位镉积累量又显著回升。此外,去芒和茎环割显著降低离体穗籽粒镉含量,其中以去芒处理尤为显著;培养液中添加蔗糖和Zn及提高环境湿度均显著降低镉向发育籽粒中的转移。这些结果表明,芒、穗轴和颖壳可能参与了镉向籽粒的再转移,大麦成熟期镉的再分配也是影响最后籽粒质量的重要生理过程,提高环境湿度至RH90%或在培养液中加Zn,都能显著降低灌浆期大麦籽粒镉积累。
     3.大麦籽粒成熟期镉转运与积累的基因型差异
     以筛选获得的籽粒镉低/高积累基因型W6nk2/浙农8号为材料,离体穗培法研究木质部和韧皮部运输对大麦籽粒成熟期镉转移、分配的影响及基因型差异。结果表明,0.5μM Cd处理,W6nk2离体穗对镉的吸收能力显著低于浙农8号,而随着镉处理浓度的增加,W6nk2离体穗籽粒镉含量也大幅上升,培养液镉水平增至5μM Cd时,与浙农8号的籽粒镉含量无显著差异。提高环境湿度和去芒均显著抑制镉向浙农8号和W6nk2离体穗各部位的转移,尤其以浙农8号籽粒镉含量下降更为显著。低浓度镉处理下茎环割对两个基因型籽粒镉含量影响不显著,而高镉浓度处理下茎环割显著降低了两个基因型籽粒镉含量,其中对W6nk2影响尤为显著。这些结果表明,不同的木质部和韧皮部运输能力是导致两个大麦基因犁籽粒镉积累差异的主要原因,通过选育木质部运输能力较低的大麦品种,同时在籽粒成熟期提高环境湿度或者调控韧皮部运输均有利于降低籽粒镉的积累。
     4.大麦耐镉与低镉积累相关蛋白与基因特异表达分析
     利用基因芯片技术,分析了耐镉性和籽粒镉积累显著差异的大麦基因型幼苗在镉胁迫下转录组的变化,结果显示,镉胁迫分别诱导四个大麦基因型叶片转录水平发生变化,不同基因型间差异显著。其中籽粒镉低积累基因型W6nk2和敏感基因型东17中差异表达的基因数分别高于籽粒镉高积累基因型浙农8号和耐镉基因型萎缩不知。分别对两组基因型镉胁迫下差异表达基因比对发现,5μM Cd处理诱导W6nk2大量的运输载体相关基因上调表达,如ABC转运蛋白、ATPase、以及Zn、Fe离子运输载体等基因,说明W6nk2籽粒镉低积累特性可能与这些转运载体基因的上调表达相关。镉胁迫引起东17中大量光台作用、运输、信号转导等相关基因显著下调,特别是PC合成酶基因(PCS)表达的下调;但萎缩不知中并未检测到PCS的变化,同时部分抗氧化酶(如CAT等)基因上调表达,说明植物体内PCs的合成及抗氧化能力的提高对增强耐镉性具有重要的作用。蛋白双向电泳结果显示,镉胁迫引起不同耐镉性大麦幼苗蛋白质组水平发生变化,5μM Cd处理后两个基因型中共检测到112个差异表达的蛋白点。进一步通过质谱分析发现,镉胁迫诱导部分抗氧化酶、信号转导、运输以及光合和碳水化合物代谢等蛋白质表达发生变化,特别是H~+-转运二区室ATP酶和甘氨酸脱羧酶亚基在萎缩不知中表达上调,而在东17中保持不变,说明两者可能与大麦耐镉性紧密相关。
     5.外源NO和GSH对镉胁迫下大麦生长及微量元素吸收的影响及基因型差异
     以耐镉基因型萎缩不知和镉敏感基因型东17为材料,水培试验,研究外源NO(SNP)、GSH对镉吸收转移及耐镉性影响的基因型差异及生理机制。结果表明,5μMCd处理下,添加20 mg L~(-1) GSH均显著降低了大麦幼苗对镉的吸收和积累;两个基因型地上部和地下部镉含量在添加0.25 mM SNP后也显著下降,但地下部镉累积量却出现不同程度的提高,以敏感基因型东17根部镉积累量提高最为明显。NO和GSH均显著缓解大麦幼苗镉毒害症状,两个基因型株高、根长及生物量都比Cd处理显著提高,尤其对敏感基因型Dong17缓解效应更佳。表明GSH主要通过减少植物镉吸收和积累缓解镉毒害,而NO则可能存在其他缓解机制。
     6.外源一氧化氮对大麦镉毒害缓解效应及基因型差异
     研究了外源NO对镉胁迫大麦光合作用、细胞超微结构及活性氧代谢的影响及基因型差异。结果表明,添加0.25 mM SNP能显著缓解镉胁迫引起的叶绿体和根系细胞结构的损伤,基本恢复叶绿体片层结构的损伤,嗜锇颗粒的数量显著减少,淀粉粒积累增加:有效提高了根系分生组织细胞核膜的稳定性和完整性。外源SNP对镉胁迫引起的大麦氧化损伤有明显的缓解效应,显著减少了叶片O_2~(·-)和H_2O_2、MDA的累积,并能诱导地上部SOD、CAT及APX活性增强,敏感基因型的CAT和APX活性在Cd+NO处理下甚至显著高于对照。对基因表达水平分析结果显示,cAPX在Cd+NO处理后表达量显著回升,与其酶活测定结果一致,而POD和CAT1在表达水平与其酶活性变化并不一致。说明NO通过维持镉胁迫大麦叶绿体和根系细胞结构的稳定性并诱导抗氧化酶活性,有效预防和清除镉胁迫引起ROS的积累,维持体内氧化还原平衡与较高的光合速率,从而起到解毒作用。此外,镉胁迫诱导大麦体内NO激发,5μMCd处理1d后,萎缩不知及东17叶片NO含量迅速上升,但东17根系NO含量未发生变化:两个基因型叶片NOS活性同样受镉诱导应激上升,而NR活性仅在萎缩不知叶片中上升,东17中则下降。说明镉胁迫诱导NOS和NR活性的上升,增加NO合成,对提高大麦耐镉性具有重要作用。
Cadmium (Cd) is one of the most deleterious heavy metals to both plants and animalsand has no beneficial biological function in the aquatic or terrestrial organism, but can beabsorbed and accumulated easily by plants, while high accumulation of Cd in plants notonly affects crop yield and quality badly, but also gives rise to a threat on human health viafood chain. Although several approaches have been proposed to reduce soil Cd level,including the use of hyper-accumulating plants, none have been effectively applied.Considering large-scale medium/slightly contaminated farmlands such approaches asselection/breeding of crop genotypes/cultivars tolerant to Cd toxicity and with low Cdaccumulation in edible parts, the improvement of agronomic practice and application ofchemical regulators which can reduce plant Cd uptake would be a cost-effective andpractical substitute mode to fully utilize natural resource and guarantee safe foodproduction. Accordingly, the present study was carried out to elucidate the physiologicaland molecular mechanism of Cd uptake and translocation in barley, and to identify specificproteins and relevant genes for Cd- tolerance/low accumulation through proteome andgenome analysis, based on the selection of genotypes differing in Cd accumulation andtolerance. Meanwhile, we investigated the possibility to reduce Cd uptake andaccumulation in barley plants by application of exogenous nitric oxide (NO) andglutathione (GSH) and the protective effect of exogenous NO against Cd-induced growthinhibition, oxidative stress, and damage in ultrastructure and photosynthesis in the twoselected genotypes differing in Cd tolerance. The main results were summarized follows:
     1. Identification of barley genotypes with low grain Cd accumulation and tolerance toCd toxicity.
     The variation in grain Cd concentrations was evaluated among 600 barley genotypesgrown in the same field condition to select low Cd accumulating genotypes. The resultsshowed that there is considerable genotypic variation in grain Cd concentrations in barleygrain samples, with the mean concentration of 0.16 mg kg~(-1) DW and the variation of 0 (notdetected) to 1.21 mg kg~(-1) DW, and 47.2% of the grain samples exceeded the maximumpermissible concentration (MPC) for Cd in cereal grains. In addition, differences betweengenotypes over the two years were fairly consistent, and Beitalys and Shang 98-128 showedthe lowest grain Cd concentration, being 97.5% lower than that in the two highest Cdaccumulators E-barley 6 and Zhenong 8 in the second harvest year. The great genotypic differences in Cd concentrations indicated that it is possible to lower Cd content of barleythrough cultivar selection and breeding for use at sites where Cd concentration in grainexceeds the MPC. Significant genotypic difference was also found in microelementconcentrations. Correlation analysis showed that only Mn accumulation is synergetic withCd accumulation, despite slightly positive relationship between Cd and Zn, Cu, or Fe inaccumulation in barley grains.
     Two successive hydroponic experments were carried out to identify barley varietiestolerant to Cd toxicity via examing SPAD value, dry weight, plant height, root length andvolume, tillers per plant, and biomass accumulation. The results showed that SPAD value,dry weight, plant height, root length and volume, and biomass accumulation weresignificantly reduced in the plants grown in 20μM Cd compared with control. There was ahighly significant difference in the decline of these growth parameters among genotypes.Weisuobuzhi and Jipi 1 showed the least reduction in both experiments, suggesting theirhigh tolerance to Cd toxicity, while Dong 17 and Suyinmai 2 with the greatest decline andtoxicity symptoms appeared rapidly and severely, donoting as Cd-sensitive genotypes. Inaddition, significant genotype difference in Cd concentration was also found, withWeisuobuzhi containing the highest, and Dong 17 had lower Cd concentration comparedwith Suyinmai 2.
     2. Cadmium transiocation and accumulation in developing barley grains and asaffected by some environmental factors.
     In order to study the transport of Cd into the developing grains, detached ears oftwo-rowed barley cv. ZAU 3 were cultured in Cd stressed nutrient solution containing themarkers for phloem (rubidium) and xylem (strontium) transport. Cd concentration in eachpart of detached spikes increased with external Cd levels, and Cd concentration in variousorgans over the three Cd levels of 0.5, 2, 8 M Cd on 15-day Cd exposure was in the order:awn > stem > grain > rachis > glume, while the majority of Cd was accumulated in grainswith the proportion of 51.0% relative to the total Cd amount in the five parts of detachedspikes. Cd accumulation in grains increased not only with external Cd levels but the time ofexposure contrast to stem, awn, rachis and glume. Those four parts of detached spikeshowed increase Cd accumulation for 5 days, followed by sharp decrease till day 10 andincrease again after 12.5 days. Awn-removal and stem-girdling markedly decreased Cdconcentration in grains, and sucrose or zinc (Zn) addition to the medium and higher relativehumidity (RH) also induced dramatic reduction in Cd transport to developing grains. Theresults indicated that awn, rachis and glume may involve in Cd transport into developing grains, and suggested that Cd redistribution in maturing cereals be considered as animportant physiological process influencing the quality of harvested grains. Our resultssuggested that increasing RH to 90% and Zn addition in the medium at grain filling stagewould be beneficial to decrease Cd accumulation in grains.
     3. Genotypic difference of Cd transporting into the developing grains.
     Genotypic difference of Cd transport into the developing grains was investigated usingdetached ears of two barley genotypes cultured in nutrient solution containing 0.5 and 5μMCd. The results showed that Cd concentration in each part of ears in W6nk2 (low grain Cdaccumulation genotype) was extremely lower than these in Zhenong 8 (high accumulator)in 0.5μM Cd treatment. However, grain Cd concentration of W6nk2 increased obviouslywith external Cd levels, and even reached the level of Zhenong 8 in 5μM Cd treatment.Awn-removal, high relative humidity (RH) and sucrose addition markedly decreased Cdconcentration in grains of Zhenong 8. but affected slighter in Cd transport to the grains ofW6nk2. Stem girdling also reduced the Cd transport to developing grains in 5μM Cdtreatment, especially for the low kernel Cd accumulation genotype W6nk2, while no effecton Cd transport to developing grains of both genotypes in low Cd treatment. Our resultssuggested that the different ability of Cd translocation in the xylem and phloem sap mightcontribute to the difference in grain Cd accumulation of the two genotypes. The results alsosuggest that screening the cultivar with low xylem transport, and regulated the phloemtransport at grain filling stage would be beneficial to decrease Cd accumulation in grains.
     4. Identification of specific proteins and relevant genes for Cd- tolerance/lowaccumulation.
     To begin to unravel the as-yet poorly understood molecular mechanisms of Cd uptake,translocation and tolerance in barley plants, we compared gene expression in four barleygenotypes differing in Cd tolerance and accumulation using cDNA microarrays. BarleylAffymetrix GeneChip was used to analyze the transcriptional response of barley plantsexposure to 0 (control) and 5μM Cd. The results showed that there was significantdifference on expression response of genes related to Cd stress among four genotypes.Transcriptional levels of 514 and 658 genes in low Cd accumulation genotype W6nk2 andCd sensitive genotype Dong 17 altered after plants exposed to 5μM Cd for 15 d, while only413 and 305 genes altered in Zhenong 8 (high Cd accumulation genotype) and Weisuobuzhi(Cd tolerant genotype) under Cd stress. The up-regulated transcript levels of genes relatingto metal transporters in plants were observed, such as ABC transporter, P-type ATPase, iron-phytosiderophore transporter and zinc transporter protein ZIP1 in leaves of W6nk2after Cd exposure, which might contribute to its low Cd accumulation characterization.Compared to Cd tolerant genotype Weisuobuzhi, more metal transport, photosynthesis andsignal transduction related genes were detected in Cd sensitive genotype Dong 17 under Cdstress. Meanwhile, the transcript level of PCS was not changed in Weisuobuzhi butdown-regulated in Dong 17, in addition, some antioxidant enzymes (eg. CAT) wereup-regulated in Weisuobuzhi, indicating that increasing synthesize of PCs and the activityof antioxidant enzymes were important to Cd tolerance in barley plants. In the other hand,proteomic analysis was used to investigate the Cd stress-responsive proteins in differentbarley genotypes, significantly genotypic difference on expression response of proteinsrelated to Cd stress was also found in two barley genotypes. Mass spectrometry analysisand database searching helped us to identify 28 spots representing 17 different proteins,involving in regulation of antioxidant enzymes, signal transduction, metal transport andphotosynthesis. Two of them (c.f. H~(?)-transporting two-sector ATPase and putative glycinedecarboxylase subunit) were up-regulated in Weisuobuzhi but not changed in Dong 17,indicating that these two proteins might play an important role in Cd tolerance.
     5. Effect of external NO and GSH supply on plant growth and microelementsaccumulation of two barley genotypes under Cd stress.
     Hydroponic experiments was undertaken, using two selected genotypes Weisuobuzhi(Cd-tolerant) and Dong 17 (Cd-sensitive) exposed to 4 treatments of 0μM Cd (control),5μM Cd (Cd), 5μM Cd+0.25mM SNP (Cd+NO), and 5μM Cd+20 mg L~(-1) GSH (Cd+GSH),to study the genotypic difference in the effect of exogenous NO and GSH on barleygrowth, Cd and other nutrients uptake and translocation under Cd stress. The resultsindicated that addition of 20mgL~(-1) GSH (Cd+GSH) significantly reduced Cd uptake andaccumulation compared with Cd treatment and being emphasized in Dong 17. While0.25mM SNP added (Cd+NO) only reduced the concentration of Cd, but increased theaccumulation in roots of both genotypes, especially in Dong 17. Cadmium toxic symptomswas alleviated even more significantly in Dong 17 by NO and GSH application, and theincreases in plant height, root length and dry weight over its Cd treatment were muchhigher than that in Weisuobuzhi. It could be concluded that reduced Cd concentration andaccumulation in plants could be one of principal protective mechanism for the exogenousGSH in cytoprotection against Cd toxicity. GSH would be suitable for the edible cropsgrown in Cd soils to reduce Cd accumulation and alleviate phyto-toxicity of Cd.
     6. Mechanism of alleviation effects of NO application on Cd toxicity and its genotypicdifference.
     A greenhouse hydroponic experiment was carried out, using two barley genotypesdiffering in Cd tolerance, to evaluate the protective effect of exogenous NO againstCd-induced oxidative stress, and ultrastructure and photosynthesis damage. Addition of0.25 mM SNP in 5μM Cd culture medium significantly alleviated Cd-induced growthinhibition, and its beneficial effect was observed in all growth parameters especially for thesensitive genotype Dong 17. Exogenous NO dramatically depressed ROS and MDAaccumulation, compared with 5μM Cd treatment, meliorated Cd-induced damages on leafand root ultrastructure, and increased chlorophyll content, Pn, Gs and Tr, thus improvedphotosynthesis efficiency. Meanwhile, exogenous NO counteracted Cd-induced time- andgenotype- dependent response of antioxidant enzymes, via suppressing the Cd-induceddramatic increase of POD activities in shoots of both genotypes recovery to near the controlvalues, and by elevating depressed APX, and CAT activities in Dong 17 after 10, and 15 dtreatment. The examination of APX and SOD isoenzymes in leaves revealed NOsignificantly increased sAPX and MnSOD activities in the both genotypes, and stronglystimulated Cd-induced decrease in cAPX (the major isoenzyme in barley leaves) insensitive genotype, but down-regulated the increased level in Weisuobuzhi. The results ofRT-PCR showed that POD, CAT1 and cAPX responded to Cd stress at transcript level.External NO up-regulated root and leaf cAPX and leaf CAT1 expression in Dong 17 toachieve stimulation. It could be concluded that improved photosynthesis efficiency and themembrane-stabilizing/integrity effect could be principal protective mechanism for theexogenous NO in cytoprotection against Cd toxicity. The results also suggested a practicalpotential for NO as a potent antioxidant in plants and that its action may, at least in part, beexplained by its ability to directly and indirectly scavenge ROS.
引文
曹爱忠,李巧,陈雅平,邹晓文,王秀娥,陈佩度.利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究.作物学报,2006,32(10):1444-1452.
    戴礼洪,周莉,闫立金.土壤作物系统重金属污染研究.农业环境与发展,2007,6:84-88.
    代建丽.植物病程相关蛋白研究进展.科技探索,2008.2:123-125.
    顾继光,周启星.镉污染土壤的治理及植物修复.生态科学,2002,21(4):352-356.
    郭培国,Baum M,李荣华,Grando S,Varshney RK,Graner A,Ceccarelli S,Valkoun J.2007.用基因芯片技术分析干早胁迫下生殖生长期大麦的基因表达.广州大学学报(自然科学版),6(5):32-36.
    李莉云,靳苗静,刘茜,刘国振.植物类受体激酶的功能与底物鉴定.中国生物化学与分子生物学报,2008,24(2):113-119.
    刘传平,郑爱珍,田娜,沈振国.外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报,2004,27(4):26-30.
    卢良恕.中国大麦学.中国农业出版社,北京,1996.
    罗立新.镉对小麦细胞膜脂过氧化的效应.河南科学,1999,17:47-49.
    孙光闻,朱祝军,方学智,陈日远,刘厚诚.镉对小白菜光合作用及叶绿素荧光参数的影响.植物营养与肥料学报,2005,11(5):700-703.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.科学出版社,北京,2002.
    王新,吴燕玉.改性措施对复合污染土壤重金属行为影响的研究.应用生态学报,1995,6(4):440-444.
    王新,吴燕玉.重金属在土壤-水稻系统中的行为特性.生态学杂志,1997,16(4):10-14.
    王逸群,郑金贵,陈文列,陈文列.陈莲云.Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察.福建农林大学学报:自然科学版,2004,33(4):409-413.
    王勇刚,曾富华,吴志华.罗泽民.植物诱导抗病与病程相关蛋白.湖南农业大学学报(自然科学版),2002,28(2):177-182.
    韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1197-1203.
    邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异.应用生态学报.2002,13(12):1595-1599.
    许长成,赵世杰,邹奇.植物膜脂过氧化水平硫代巴比妥酸测定方法中的干扰因素.植物生理学通讯,1993,29(5):361-363.
    许卫锋,桑磉,陈云,谢虹.梁建生.抗坏血酸、谷胱甘肽参与的信号转导途径在提高植物食品营养品质中的作用.广州食品工业科技,2003,78:113-115.
    许州达,景瑞莲,甘强,增海攀,孙学辉,Hei L,路铁刚,刘国振.用水稻基因芯片筛选小麦耐早相关基因.农业生物技术学报,2007,15(5):821-827.
    谢纯政,刘海燕,李玲,梁炫强.植物病程相关蛋白PR10研究进展.分子植物育种,2008,6(5):949-953.
    杨居荣,贺建群,黄翌.1994.农作物Cd耐性的种内和种间差异.Ⅰ.种间差异.应用生态学报,5(2):192-196
    杨肖娥,杨明杰.镉从农业土壤向人类食物链的迁移.广东微量元素科学,1996,3(7):1-13.
    张志良,瞿伟菁.植物生理学试验指导.高等教育出版社,北京,2003,pp:41-43.
    Ahmadi N,Dellerme S,Laplaze L,Guermache F,Auguy F,Duhoux E,Bogusz D,Guiderdoni E,Franche C.The promoter of a metallothionein-like gene from the tropical tree Casuarina glauca is active in both annual dicotyledonous and monocotyledonous plants.Transgenic Res,2003,12:271-281.
    Aiba I,Hossain A,Kuo MT.Elevated GSH level increases cadmium resistance through down-regulation of Spl-dependent expression of the cadmium transporter ZIP8.Mol Pharmacol,2008,74:823-833.
    Alkorta I,Hernandez-Allica J,Becerril JM,Amezaga I,Albizu I,Onaindia M,Garbisu C.Chelate-enhanced phytoremediation of soils polluted with heavy metals.Rev Environ Sci Biotechnol,2004,3:55-70.
    Allan AC,Fluhr R.Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells.Plant Cell,1997,9:1559-1572.
    Alscher RG,Erturk N,Heath LS.Role of superoxide dismutase (SODs) in controlling oxidative stress in plants.J Exp Bot,2002,53:1331-1341.
    Antonovics J,Bradshaw AD,Turner RG.Heavy metal tolerance in plants.Adv Environ Sci Technol,1971,7:1-85.
    Arao T,Ae N.Screening of genotypes with low cadmium content in soybean seed and rice grains.Plant nutrition:food security and sustainability of agro-ecosystems through basic and applied research.Fourteenth International Plant Nutrition Colloquium.Germany:Hannover,2001,pp:292-293.
    Arao T,Ae N.Genotypic variations in cadmium levels of rice grain.Soil Sci Plant Nutr,2003,49:473-479.
    Arthur E,Crews H,Morgan C.Optimizing plant genetic strategies for minimizing environmental contamination in the food chain.Int J Phytoremediat,2000.2(1):1-21.
    Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons.Ann Rev Plant Physiol Plant Mol Biol,1999,50:601-639.
    Assunc(?)o AGL,Costa-Martins PDA,Folter SDE,Vooijs R,Schat H,Aarts MGM.Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens.Plant cell environ,2001,24:217-226.
    Awade A,Metz-Boutique MH,Le Ret M,Genot G Amiri I,Burkard G.The complete amino acid sequence of the pathogenesis-related (PR2) protein induced in chemically stressed bean leaves.Biochim Biophys Acta,1991,1077:241-244.
    Axelsen K,Palmgren M.Inventory of the superfamily of P-type ion pumps in Arabidopsis.Plant Physiol,2001,126:696-706.
    Baisak RD,Rana PBB,Acharya MK.Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress.Plant Cell Physiol,1994,35:489-495.
    Baker ATM,Walker PL.Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity.Chem Spec Bioavail,1989,1:7-17.
    Baker AJM,Reeves RD,HajarASM.Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C.Presl (Brassicacceae).New Phytol,1994,127:61-67.
    Bantignies B,Seguin J,Muzac I,Dedaldechamp F,Gulick P.Ibrahim R.Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots.Plant Mol Biol,2000,42(6): 871-881.
    Baszynski T,Wajda L,Krol M,Wolinska D,Krupa Z,Tukendorf A.Photosynthetic activities of cadmium-treated plants.Physiol Plantarum,1980.48:365-370.
    Batten GD.Slack K.Grain development in wheat (Triticum aestivum) ears cultured in media with different concentrations of phosphorus and sucrose.In:Plant Nutrition-Physiology and Applications (ML van Besusichem,ed.),Preoceedings of the I lth Intememational Plant Nutrition,Colloquium,1989,Wageningen.The Netherlands.Kluwer Academic Publishers,1990,pp:185-187.
    Beligini MV,Lamattina L.Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues.Planta,1999,208:337-334.
    Beligini MV,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypocotyl elongation,there light-inducible responses in plants.Planta,2000,210:215-221.
    Beligini MV,Lamattina L.Nitric oxide:a non-traditional regulator of plant growth.Trends Plant Sci,2001,6:508-509.
    Benavides MP,Gallego SM,Tomaro ML.Cadmium toxicity in plant.Braz J Plant Physiol,2005,17:21-34.
    Bernal MP,McGrath SP.Effect of pH and heavy metal concentration in solution culture on the proton release,growth and elemental composition.Plant Soil,1994.166:83-92.
    Besson-Bard A,Pugin A,Wendehenne D.New insights into nitric oxide signaling in plants.Annu Rev Plant Biol,2008,59:21-39.
    Besson-Bard A.Gravot A,Richaud P,Auroy P,Due C,Gaymard F,Taconnat L,Renou JP.Pugin A,Wendehenne D.Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.Plant Physiol,2009.149:1302-1315.
    Boominathan R.Doran PM.Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator Thlaspi caerulescens.Biotechnol Bioeng,2003,83:158-167Durner J.Wendehenne D,Klessig DF.Defense gene induction in tobacco by nitric oxide,cyclic GMP,and cyclic ADP-ribose.Proc Natl Acad Sci USA,1998,95:10328-10333.
    Bovet L,Eggmann T,Meylan-Bettex M,Polier J,Kammer P,Marin E,Feller U,Martinoia E.Transcript levels of AtMRPs after cadmium treatment:induction of AtMRP3.Plant Cell Environ,2003,26:371-381.
    Bovet L,Feller U.Martinoia E.Possible involvement of plant ABC transporters in cadmium detoxification:a cDNA sub-microarray approach.Environ Int.2005,31:263-267.
    Bowler C.Van Montagu M,Inze D.Superoxide dismutase and stress tolerance.Annu Rev Plant Physiol,1992,43:83-116.
    Broekaert W,Lee H,Kush A,Chua NH,Raikhel NV.Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis).Proc Natl Acad Sci USA,1990.87:7633-7637.
    Buckley WT,Buckley KE,Grant CA.Adsorption,absorption and translocation of cadmium in high-cadmium and low-cadmium accumulating lines of durum wheat.Proceeding of Fourth International Conference on the Biogeochemistry of Trace Elements (IK Iskandar,SE hargy,AC Chang,GM Pierzynski,eds),Berkeley,CA,1997,pp:129-130.
    Cakmak I,Welch RM,Erenoglu B,Romheld V,Norvell WA,Kochian LV.Influence of varied zinc supply on re-translocation of cadmium (Cd109) and rubidium (Rb86) applied on mature leaf of durum wheat seedlings.Plant Soil,2000a,219:279-284.
    Cakmak 1,Welch RM,Hart J,Norvell WA,Ozturk L,Kochian LV.Uptake and retranslocation of leaf-applied cadmium (Cd109) in diploid,tetraploid and hexaploid wheats.J Exp Bot,2000b,51:221-226.
    Caldo RA,Nettleton D,Peng JQ,Wise RP.Stage-specific suppression of basal defense discriminates barley plants containing fast-and delayed-acting Mia powdery mildew resistance alleles.Mol Plant Microbe In.2006,19(9):939-947.
    Carpentier SC,Witters E,Laukens K,Deckers P,Swennen R,Panis B.Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis.Proteomics,2005,5(10):2497-507.
    Cataldo DA,Garland TR,Wilding RE.Cadmium distribution and chemical fate in soybean plants.Plant Physiol,1981,68:835-839.
    Cataldo DA,Garland TR,Wildtmg RE.Cadmium uptake kinetics in intact soybean plants.Plant Physiol,1983,73:844-848.
    Chadha P,Das RH.A pathogenesis related protein,AhPRlO from peanut:an insight of its mode of antifungal activity.Planta,2006,225:213-222.
    Chan DY,Hale BA.Differential accumulation of Cd in durum wheat cultivars:uptake and retranslocation as sources of variation.J Exp Bot,2004,55:2571-2579.
    Chandok MR,Ytterberg AJ,van Wijk KJ.The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex.Cell,2003,113:469-482.
    Channey RL,Ryan LA.Risk based standards for arsenic,lead and cadmium in urban soils.DGCHEMA (Deutsche Ggesellschaft fur Chemisches Apparatewesen),Frankfurt,Germany,1994,p:129.
    Chaoui A,Mazhoudi S,Ghorbal MH,El Ferjani E.Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.).Plant Sci,1997,127:139-147.
    Charbonnel-Campaa L,Lauga B,Combes D.Isolation of a type 2 metallothionein-like gene preferentially expressed in the tapetum in Zea mays.Gene,2000,254:199-208.
    Chen F,Dong J,Wang F,Wu FB,Zhang GP,Li GM,Chen ZF,Chen JX,Wei K.Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements.Chemosphere,2007.67:2082-2088.
    Chen F,Wang F.Zhang GP,Wu FB.Identification of barley varieties torelent to cadmium toxicity.Biol Trace Elem Res,2008,121:171-179.
    Chen XY,Kim JY.Transport of macromolecules through plasmodesmata and the phloem.Physiol Plant,2006,126:560-571.
    Chesworth W.Geochemistry of Micronutrients.Micronutrients in Agriculture (JJ Mortvedt,FR Cox,LM Shuman,RM Welch,eds).2nd Soil Science (ed Madison).Society of America Inc,1991,pp:1-30.
    Choi YE,Harada E,Wada M,Tsuboi H,Morita Y,Kusano T,Sano H.Detoxification of cadmium in tobacco plants:formation and active excretion of crytals containing cadmium and calcium through trichomes.Planta,2001.213:45-50.
    Choudhary M,Bailey LD,Grant CA,Leisle D.Effect of Zn on the concentration of Cd and Zn in plant tissue of two durum wheat lines.Can J Plant Sci,1995,75:445-448.
    Chu Z,Ouyang Y,Zhang J,Yang H,Wang S.Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xal3.Mol Genet Genomics,2004,271(1):111-120.
    Cieslinski G,Van Rees KCJ,Huang PM,Kozak LM,Rostad HPW,Knott DR.Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type.Plant Soil,1996.182:115-124.
    Clark D,Durner J,Navarre DA,Klessig DF.Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase.Mol Plant Micro Inter,2000,13(12):1380-1384.
    Clarke JM,DePauw RM,Thiessen LL.Redistration of five pairs of durum wheat genetics stocks near-isogenic for cadmium concentration.Crop Sci,1997,37:297.
    Clarke A,Desikan R,Hurst RD,Hancock JT,Neill SJ.NO way back:nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures.Plant J,2000,24:667-677.
    Clarkson DT.Movement of ions across roots.In:Solute Transport in Plant Cells and Tissues (DA Baker,JL Hall,eds),Longman Scientific and Technical,Essex,1988,pp:521-304.
    Clarkson DT,Luttge U.Mineral nutrition.Divalent cations,transport and compartmentalization.Prog Bot,1989,51:93-112.
    Clemens S,Antosiewicz DM,Ward JM,Schachtman DP,Schroeder JI.The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.Proc Natl Acad Sci USA,1998,95:12043-12048.
    Clemens S,Kim EJ,Neumann D,Schroeder JI.Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.EMBO J,1999,18:3325-3333.
    Clemens S.Molecular mechanisms of plant metal homeostasis and tolerance.Planta,2001,212:475-486.
    Clemens S,Palmgren MG,Kr(a|¨)mer U.A long way ahead:understanding and engineering plant metal accumulation.Trends Plant Sci,2002,7:309-315.
    Clemens S.Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants.Biochimie,2006,88:1707-1719.
    Cobbett CS,May MJ,Howden R,Rolls B.The glutathione-deficient,cadmium-sensitive mutant,cad2-1,of Arabidopsis thaliana is deficient in y-glutamylcysteyne synthetase.Plant J,1998,16:73-78.
    Cobbett CS.Phytochelatins and their roles in heavy metal detoxification.Plant Physiol,2000,123:825-832.
    Cohen CK,Fox TC.Garvin DF,Kochian LV.The role of iron deficiency stress responses in stimulating heavy-metal transport in plants.Plant Physiol,1998,116:1063-1072.
    Connolly EL,Fett JP,Guerinot ML.Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation.Plant Cell.2002,14:1347-1357.
    Corticeiro SC,Lima AIG,de Almeida Paula Figueira EM.The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure.Enzyme Miceob Tech,2006,40:132-137.
    Couldridge C,Newbury,Ford-Lloyd B,Bale J,Prithard J.Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression.B Entomol Res,2007,97:523-532.
    Cruz-Ortega R,Ownby JD.A protein similar to PR (pathogenesis-related) proteins is elicited by metal toxicity in wheat roots.Physiol Plant,1993,89:211-219.
    Cui XP,Xu J,Asghar R,Condamine P,Svensson JT,Wanamaker S,Stein N,Roose M,Close TJ.Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit.Bioinformatics,2005,21(20):3852-3858.
    Cutler JM,Rains DW.Characterization of cadmium uptake by plant tissue.Plant Physiol,1974,54:67-71.
    Davis RD.Cadmium-a complex environmental problem.Part Ⅱ:Cadmium in sludges used as fertilizer.Experientia,1984,40:117-126.
    Decreux A,Messiaen J.Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation.Plant cell Physiol,2005,46(2):268-278.
    De Framond AJ.A metallothionein-like gene from maize (Zea mays):cloning and characterization.FEBS Lett,1991,290:103-106.
    Delledonne M,Xia YJ,Dixon RA,Lamb C.Nitric oxide function as a single in plant disease resisitance.Natrue,1998,394:585-588.
    Delledonne M,Zeier J,Marocco A,Lamb C.Signal interactions between nitric oxide an d reactive oxygen intermediates in the plant hypersensitivediBea8e resistance response.Proc NOd Acad Sci USA.2001,98:13454-13459.
    Delledonne M.NO news is good news for plants.Curr Opin Plant Biol,2005,8:390-396.
    Dixit V,Pandey V,Shyam R.Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv.Azad).J Exp Bot,2001,52:1101-1109.
    Djebali W,Gallusci P,Polge C,Boulila L,Galtier N,Raymond P,Chaibi W,Brouquisse R.Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.Planta,2008,227:625-639.
    Dunbar KR,McLaughlin MJ,Reid RJ.The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.).J Exp Bot,2003.54:349-354.
    Durner J,Wendehenne D,Klessig DF.Defense gene induction in tobacco by nitric oxide,cyclic GMP,and cyclic ADP-ribose.Proc Natl Acad Sci USA,1998,95:10328-10333.
    Durner J,Klessig DF.Nitric oxide as a signal in plants.Curr Opin Plant Biol,1999,2:369-374.
    Elbekai RH,El-Kadi AOS.The role of oxidative stress in the modulation of aryl hydrocarbon receptor regulated genes by As3+,Cd2+,and Cr6+.Free Radical Biol Med,2005,39:1499-1511.
    Evans IM,Gatehouse LN,Gatehouse JA.A gene from pea (Pisum sativum L.) with homology to metallothionein genes.FEBS Lett,1990,262:29-32.
    Farquar GD,Sharkey TD.Stomatal conductanceand photosynthesis.J Ann Rev Plant Physiol,1982,33:317-345.
    Feller U.Transfer of rubidium from the xylem to the phloem in wheat internodes.J Plant Physiol,1989,133:764-767.
    Florijin PJ,Van Beusichem ML.Uptake and distribution of cadmium in maize inbred line.Plant Soil,1993,150:25-32.
    Forster BP,Ellis RP,Thomas WTB,Newton AC,Tuberosa R,This D,El-Enein RA,Bahri MH,Salem MB.The development and application of molecular markers for abiotic stress tolerance in barley.J Exp Bot,2000,51:19-27.
    Foyer CH,Lelandais M,Kunert KJ.Photooxidative stress in plants.Physiol Plant,1994,92:696-717.
    Fusco N,Micheletto L,Corso GD,Borgato L,Furini A.Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassicajuncea L.J Exp Bot,2005,56:3017-3027.
    Gallego SM,Benavy des MP,Tomaro M.Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress.Plant Sci,1996,121:151-159.
    Garcia-Mata C,Lamattina L.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress.Plant Physiol,2001,126:1196-1204.
    Garcia-Mata C,Gay R,Sokolovski S,Hills A,Lamattina,Blatt M.Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways.Proc Natl Acad Sci USA,2003,100:11116-11121.
    Gekeler W,Grill E,Winnacker EL,Zenk MH.Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins.Z Naturforsch Teil C,1989,44:361-369.
    Gille G Singler K.Oxidative stress in living cells.Folia Microbiol.,1995,2:131-152.
    Gong JM,Lee DA,Schroeder IS.Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.PNAS,2003,100:10118-10123.
    Gorjanovie S,Suznjevic D,Beljanski M,Hranisavljevic J.Barley lipid-transfer protein as heavy metal scavenger.Environ Chem Lett,2004,2:113-116.
    Gould K,Lamotte O,Klinguer A,Pugin A,Wendehenne D.Nitric oxide production in tobacco leaf cells:a generalized stress response? Plant Cell Environ,2003,26:1851-1862.
    Grant CA,Buckley WT,Boiley LD,Selles F.Cadmium accumulation in crops.Cad J Plant Sci,1998,78:1-17.
    Gray CW,McLaren RG Roberts AHC.Cadmium concentration in some New Zealand wheat grain.NZJ Crop Hort Sci,2001,29:125-136.
    Green CE,Chaney RL,Bouwkamp J.Interactions between cadmium uptake and phytotoxic levels of zinc in hard red spring wheat,i Plant Nutr,2003.26:417-430.
    Greger ML,Kautskey T,Sandberg A.A tentative model of Cd uptake in Potamogeton petinatus in relation to salinity.Environ Exp Bot,1995,35:215-225.
    Greger M.Lofstedt M.Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat.Crop Sci,2004,44:501-507.
    Grill E,Winnacker EL and Zenk MH.Phytochelatins,a class of heavy metal-binding peptides from plants are functionally analogous to metallothioneins.Proc Natl Acad Sci USA,1987,84:439-443.
    Grupe M,Kuntze H.Zue Ermittlung der Schwermetallverfugbarkeit lithogen und anthropogen belasteter Standorte.1.Cd und Cu.Zeitschrift fur Pflanzenernahrung und Bodeenkunde,1988,151:319-324.
    Guo FQ,Okamoto M,Crawford NM.Identification of a plant nitric oxide synthase gene involved in hormonal signaling.Science,2003,302:100-103.
    Guo PG Baum M,Li RH,Grando S,Varshney RK,Graner A,Ceccarelli S,Valkoun J.Transcriptional analysis of barley genes in response to drought stress at the reproductive growth stage using affymetrix Barley 1 genechip.J Guangzhou Univ,2007,6(5):32-36.
    Ha SB,Smith AP,Howden R,Dietrich WM,Bugg S,O'Connell Ml,Goldsbrough PB,Cobbett CS.Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.Plant Cell,1999,11:1153-1163.
    Hagemeyer J,Waisel Y.Uptake of Cd2+ and Fe2+ by excised roots of Tamariz aphylla.Physoil Plant,1989,77:247-253.
    Halliwell B,Gutteridge LMC.Free radical in biology and medicine.3rd eds,Oxford University Press,New York,1999.
    Halloran TV.Transition metalls in control of gene expression.Science,1993,261:715-725.
    Hamer DH.Metallothionein.Annu Rev Biochem,1986,55:913-951.
    Han XY,Xu ZR.Research advance on mammalian metallothioneins.Chin J Vet Sci Technol,2003,33(11):28-32.
    Hardiman RT,Jacoby B.Absorption and translocation of Cd in bush beans.Physiol Plant,1984,61:470-474.
    Harris NS,Taylor GJ.Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation.J Exp Bot,2001,52:1473-1481.
    Harris NS,Taylor GJ.Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation.BMC Plant Biology,2004,4:4.
    Hart JJ,Welch RM,Norvell WA,Sullivan LA,Kochian LV.Characterization of cadmium binding,uptake,and translocation in intact seedlings of bread and durum wheat cultivars.Plant Physiol,1998,116:1413-1420.
    Hart JJ,Welch RM,Norvell WA,Kochian LV.Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings.Physiol Plantarum,2002,116:73-78.
    Haslett BS,Reid RJO,Rengel Z.Zinc mobility in wheat:Uptake and distribution of zinc applied to leaves or root.Ann Bot,2001,87:379-386.
    Hegediis A,Erdei S,Horvath G.Comparative studies of H202 detoxifying enzymes in green and greening barley seedlings under cadmium stress.Plant Sci,2001,160:1085-1093.
    Hendry GAF,Baker AJM,Ewart CF.Cadmium tolerance and toxicity,oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus.Acta Bot Need,1992,41:271-281.
    Hensel G,Kunze G,Kunze I.Expression of the tobacco gene CBP20 in response to developmental stage,wounding,salicylic acid and heavy metals.Plant Sci,1999,148:165-174.
    Herren T,Feller U.Transfer of zinc from xylem to phloem in the peduncle of wheat.J Plant Nutri,1994,17:1587-1598.
    Herren T,Feller U.Effect of locally increased zinc contents on zinc transport from the flag leaf lamina to the maturing grains of wheat.J Plant Nutri.1996,19:379-387.
    Herren T,Feller U.Transport of cadmium via xylem and phloem in maturing wheat shoots:Comparison with the translocation of zinc,strontium and rubidium.Annals Bot,1997,80:623-628.
    Hill KA,Lion LW,Ahner BA.Reduced Cd accumulation in Zea mays:a protective role for phytosiderophores? Environ Sci Technol,2002.36:5363-5368.
    Hirschi K,Korenkov V,Wilganowski N,Wanger GJ.Expression of arabidopsis CAX2 in tobacco.Altered metal accumulation and increased manganese tolerance.Plant Physiol,2000,124:125-133.
    Hollenbach B,Schreiber L,Hartung W,Dietz KJ.Cadmium leads to stimulated expression of the lipid transfer protein genes in barley:implications for the involvement of lipid transfer proteins in wax assembly.Planta,1997,203:9-19.
    Hsieh H,Liu W,Huang PC.A novel stress-inducible metallothionein-like gene from rice.Plant Mol Biol,1995,28:381-389.
    Hussain D,Haydon MJ,Wang Y,Wong E,Sherson SM,Young J,Camakaris J,Harper JF,Cobbett CS.P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis.Plant Cell,2004,16:1327-1339.
    Jalil A,Selles F,Clarke JM.Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat.J Plant Nutr,1994,17:1839-1858.
    Jarvis SC,Jones LHP,Hopper MJ.Cadmium uptake from solution by plants and its transport from roots to shoots.Plant Soil,1976,44:179-191.
    Jenner CF.Transport of tritiated water and 14C-labeIled assimilate into grains of wheat.I.Entry of THO through and in association with the stalk of the grain.Aust J Plant Physiol,1985,12:573-586.
    Jiang MY,Zhang JH.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves.J Exp Bot,2002,53:2401-2410.
    Ilda MM,Robert BM,Michael WP.Metallothionein gene expression in testicular interstitial cells and liver of rats treated with cadmium.Toxocology,1996,107:121-130.
    Kahle H.Response of roots of trees to heavy metals.Environ Exp Bot,1993,33:99-119.
    Kamer U,Cotter-Howells JD,Charnock JM,Baker AJM,Smith JAC.Free histidine as a metal chelator in plants that accumulate nickel.Nature,1996,379:635-638.
    Kang YJ,Enger MD.Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells.Cell Biol Toxicol,1987,3:347-360.
    Kang YJ.Exogenous glutathione decreases cellular cadmium uptake and toxicity.Drug Metab Dispos,1992,20:714-718.
    Kawashima I,Inokuchi Y,Chino M,Kimura M,Shimizu N.Isolation of a gene for a metallothionein-like protein from soybean.Plant Cell Physiol,1991,32:913-916.
    Kim DW,Rakwal R,Agrawal GK,Jung YH,Shibato J,Jwa NS,Iwahsshi Y,Iwahashi H,Kim DH,Shim IS,Usui K.A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.Electrophoresis,2005,26:4521-4539.
    Knox RE,Clarke JM,Houshmand S,Clarke FR.Chromosomal location of the low grain cadmium concentration trait in durum wheat.In:Proceedings of the Tenth International Wheat Genetics Symposium (NE Pogna,M Romano,EA Pogna,G Galterio,eds.),SIM1,Romeltaly:Paestum,2003.pp:977 979.
    Krishnamurti GSR,Cieslinski G,Huang PM,Van Rees KCJ.Kinetics of cadmium released from soils as influenced by organic acids:implication in cadmium availability.Environ Qual,1997,26:271-277.
    Lalor GC.Review of cadmium transfers from soil to humans and its health effects and Jamaican environment.Sci Total Environ,2008.400:162-172.
    Lamattina L,Beligni MV.Garcia-Mata C,Laxalt AM.Method of enhancing the metabolic function and the growing conditions of plants and seeds.US Patent,2001,US 6242384 B131.
    Leshem YY,Haramaty E.The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum foliage.J Plant Physiol,1996,148:258-263.
    Laspina NV,Groppa MD,Tomaro ML,Benavides MP.Nitric oxide protects sunflower leaves against Cd-induced oxidative stress.Plant Sci,2005,169:323-330.
    Lamattina L,Garcia-Mata C,Graziano M,Pagnussat G.Nitric oxide:the versatility of an extensive signal molecule.Ann Rev Plant Biol,2003,54:109-136.
    Lane B,Kajioka R,Kennedy T.The wheat germ Ec protein is a zinc-containing metallothionein.Biochem Cell Biol,1987,65:1001-1005.
    Ledger SE,Gardner RC.Cloning and characterization of 5 cDNAs for genes differentially expressed during fruit development of kiwi fruit (Actinidia deliciosa var deliciosa).Plant Mol Biol,1994,25:877-886.
    Leshem YY,Willis RBH,Ku VV-V.Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plant.Plant Physiol Biochem,1998,36:825-833.
    Li YM,Chaney RL,Schneiter AA,Miller JF,Elias EM,Hammond JJ.Screening for low grain cadmium phenotypes in sunflower,durum wheat and flax.Euphytica,1997,94:23-30.
    Lin CC,Kao CH.Effect of NaCl stress on H202 metabolism in rice leaves.Plant Growth Regul,2000,30:151-155.
    Liu DH,Kottke I.Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry.J Biosci,2004,29(3):329-335.
    Liu JG,Li KQ,Xu JK,Liang JS,Lu XL,Yang JC,Zhu QS.Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes.Field Crops Res,2003,83:271-281.
    Lombi E,Zhao FJ,McGrath SP,Young SD,Sacchi GA.Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype.New Phytol,2001,149:53-60.
    Longnecker NE,Robson AD.Distribution and transport of zinc in plants.In:zinc in Soils and Plants (AD Robson,ed.),Kluwer Academic Publishers,1993,pp:19-91.
    Lummerzheim M,Sandroni M,Castresana C,Oliveira D.de Montagu M,van Roby D,Timmerman B.Comparative microscopic and enzymatic characterization of the leaf necrosis induced in Arabidopsis thaliana by lead nitrate and by Xanthomonas campestris pv.campestris after foliar spray.Plant Cell Environ,1995,18:499-509.
    Lyons TJ,Gash AP,Gaither LA,Botstein D,Brown PO,Eide DJ.Genome-wide characterization of the Zaplp zinc-responsive regulon in yeast.Proc Natl Acad Sci USA,2000,97:7957-7962.
    MacNair MR.The genetics of metal tolerance in vascular plants.New Phytol,1993,124:541-559.
    Maitani T.Kubota H,Sato K,Yamada T.The composition of metals bound to class Ⅲ metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum.Plant Physiol,1996,100:1140-1150.
    Moraghan JT.Accumulation of cadmium and selected elements in flax seed grown on a calcareous soil.Plant Soil,1993,150:61-68.
    Marschner H.Mineral Nutrition of Higher Plants.Academic Press,London,1986,pp.674.
    Mata GC,Lamattina L.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress.Plant Physiol,2001,126:1196-1204.
    McGrath SP,Lombi E,Zhao FJ.What's new about cadmium hyperaccumulation? New Phytol,2001,149:2-3.
    McKenna IM,Chaney RL,Williams FM.The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach.Environ Poll,1993,79:113-120.
    Mclaughlin MJ,Maler NA,Freeman K,Tiller KG,Williams CMJ,Smart MK.Effect of potassic and phosphatic fertilizer type,fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes.FertRes,1995,40:63-70.
    Meda AR,Scheuermann EB,Prechsl UE,Erenoglu B,Schaaf G,Hayen H,Weber G,Wiren NV.Iron Acquisition by phytosiderophores contributes to cadmium tolerance.Plant Physiol,2007,143:1761-1773.
    Meier I,Hahlbrock K,Somssich IE.Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1.Plant Cell,1991,3:309-915.
    Mejare M,Biiiow L.Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals.Trends Biotechnol,2001,19:67-73.
    Mench M,Martin E.Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L.,Nicotiana tabacum L.and Nicotiana rustica L.Plant Soil,1991,132:187-196.
    Mendoza-Cozatl D,Loza-Tavera H,Hernandez-Navarro A and Moreno-Sanchez R.Sulfur assimilation and glutathione metabolism under cadmium stress in yeast,protists and plants.FEMS Microbiol Rev,2005,29:653-671.
    Mittler R.Oxidative stress,antioxidants andstress tolerance.Trends Plant Sci,2002,7(9):405-410.
    Moraghan JT.Accumulation of cadmium and selected elements in flax seed grown on a calcareous soil.Plant Soil,1993,150:61-68.
    Mortvedt JJ,Mays DA,Osborn G.Uptake by wheat of cadmium and other heavy metal contaminants in phosphate fertilizers.J Environ Qual,1981,10:193-197.
    Murphy A and Taiz L.Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes.Plant Physiol,1995,109:945-954.
    Neill S,Desikan R,Hancock J.Hydrogen peroxide signaling.Curr Opin Plant Biol.2002,5:388-395.
    Neill SJ,Desikan R,Hancock JT.Nitric oxide signaling in plants.New Phytol,2003,159(1):11-35.
    Nishzono H.The role of t he root cell wall in t he heavy metal tolerance of Athyrium yokoscense.Plant Soil,1987,101:15-20.
    Noctor G.Gomez L,Vanacker H,Foyer CH.Interactions between biosynthesis,compartmentation and transport in the control of glutathione homeostasis and signalling.J Exp Bot,2002,53:1283-1304.
    Oberlander HE,Piatti-Funfkirchen M,Roth K.Der Einfluss verschiedener Schwermetalle auf die Cadmiumaufnahme des Weizens.Bodenkultur,1989,40:295-303.
    Ochi T,Otsuka F,Takahashi K,Ohsawa M.Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells.Chem Biol Interact,1988,65:1-14.
    Okumura N,Nishizawa NK,Umehara Y,Mori S.An iron deficiency-specific cDNA from barley roots having 2 homologous cysteine-rich MT domains.Plant Mol Biol,1991,17:531-533.
    Oliver DP,Hannam R,Tiller KG,Wilhelm NS,Merry RH,Cozens GD.Heavy metals in the environment:The effects of zinc fertilization on cadmium concentration in wheat grain.J Environ Qual,1994,23:705-711.
    Oliver DP,Gartrell JW,Tiller KG,Correll R,Cozens GD,Youngberg BL.Differential responses of Australian wheat cultivars to cadmium concentration in wheat grain.Aust J Ag Res,1995,46: 873-886.
    Ortiz DF,Kreppel L,Speiser DM,Scheel G,McDonald G,Ow DW.Heavy metal tolerance in the fission yeast requires an ATPbinding cassette-type vacuolar membrane transporter.EMBO J,1992,11:3491-3499.
    Ortiz DF,Ruscitti T,McCue KF,Ow DW.Transport of metalbinding peptides by HMT1,a fission yeast ABC-type vacuolar membrane protein.J Biol Chem,1995,270:4721-4728.
    Ouziad F,Hildebrandt U,Schmelzer E,Bothe H.Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress.J Plant Physiol,2005,162:634-649.
    P(a|¨)(a|¨)kk(o|¨)nen E,Sepp(a|¨)nen S,Holopainen T,Kokko H,Karenlampi S,Karenlamp,L,Kangasjarvi J.Induction of genes for the stress proteins PR-10 and PAL in relation to growth,visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought.New Phytol,1998,138:295-305.
    Park JD,Liu Y,Klaassen CD.Protective effect of metallothionein against the toxicity of cadmium and other metals.Toxicology,2001,163:93-100.
    Park CJ,Kim KJ,Shin R,Park JM,Shin YC,Paek KH.Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway.Plant J,2004,37:186-198.
    Perfus-Barbeoch L,Leonhardt N,Vavasseur A,Forestier C.Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status.Plant J,2002,32:539-548.
    Pearson JN,Rengel Z,Jenner CF,Graham RD.Transport of zinc and manganese to developing wheat grains.Physiol Plant,1995,95:449-455.
    Pearson JN,Rengel Z,Jenner CF,Graham RD.Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears.Physiol Plant,1996,98:229-234.
    Penner GA,Clarke J,Bezte LJ,Leisle D.Identification of RAPD markers linked to a gene govening cadmium uptake in durum wheat.Genome,1995,38:543-547.
    Petjt CM,van de Geijin SC.In vivo measurement of cadmium transport and accumulation on the stem of intact tomato plants.I.Long distance transport and local accumulation.Planta,1978,138:137-143.
    Pinto MC,Tommasi F,Gara LD.Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells.Plant Physiol.2002,130:698-708.
    Prasad MNV.Cadmium toxicity and tolerance in vascular plants.Environ Exp Bot,1995,35:525-545.
    Prasun KD,Jacob ST.Activation of the metallothionein-1 gene promoter in response to cadmium and USF in vitro.Biochem Biophys Res Commun,1997,230:159-163.
    Przymusiriski P,RuciriSka R,Gwozdz EA.Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses.Environ Exp Bot,2004,52:53-61.
    Rascio N,Vecchia FD,Ferretti M.Merlo L,Ghisi R.Some effects of cadmium on maize plants.Arch Environ Contam Toxicol,1993,25:244-249.
    Rauser WE,Samarakoon AB.Vein loading in seedlings of Phaseolus vulgaris exposed to exess cobalt,nickel and zinc.Plant Physiol,1980,65:578-583.
    Rauser WE.Structure and function of metal chelators production by plants.Cell Biochem Biophys,1999,31:19-48.
    Rauser WE.Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure,the concentration of cadmium and the tissue.New Phytol,2003,158:269-278.
    Ricera-Becerril F,Metwally A,Martin-Laurent F,Van Tuinen D,Dietz KJ,Gianinazzi S,Gianinazzi-Pearson V.Molecular responses to cadmium in roots of Pisum Sativum L.Water Air Soil Pollut,2005,168:171-186.
    Rivetta A,Negrini N,Cocucci M.Involvement of Ca2+-calmoduIin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination.Plant Cell Environ,1997,20:600-608.
    Roberts LA,Pierson AJ,Panaviene Z,Walker EL.Yellow Stripel.Expanded roles for the maize iron-phytosiderophore transporter.Plant physiol,2004,135:112-120.
    Robinson NJ,Tommey AM,Kuske C,Jackon PJ.Plant metallothioneins.Biochem J,1993,295:1-10.
    Rodriguez-Serrano M,Romero-Puertas MC,Pazmifio DM,Testillano PS,Risueno MC,del Rio LA,Sandalio LM.Cellulear response of pea plants to cadmium toxicity:cross-talk between reactive oxygen species,nitric oxide and calcium.Plant Physiol,2009,DOI:10.1104/pp.108.131524 (Preview).
    Romero-Puertas MC,McCarthy I,Sandalio LM,Palma JM,Corpas FJ,Gomez M,del Rio LA.Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes.Free Radic Res,1999,31(Suppl.):S25-S32.
    Romero-Puertas M,Palma JM,Gomez M,Dong-Hee L,Sandalio LM.Cadmium causes the oxidative modification of proteins in pea plants.Plant Cell Environ,2002,25:677-686.
    Romero-Puertas MC,Perazzolli M,Zago ED,Dolledonne M.Nitric oxide signalling functions in plant-pathogen interactions.Cell Microbiol,2004a.6:795-803.
    Romero-Puertas MC,Rodriguez-Serrano M,Corpas FJ,Gomez M,Del Rio LA,Sandalio LM.Cadmium-induced subcellular accumulation of O2.-and H2O2 in pea leaves.Plant Cell Environ,2004b,27:1122-1134.
    Root RA,Miller RJ,Koeppe DE.Uptake of cadmium its toxicity,and effect on the iron ratio in hydroponocally grown corn.J Environ Qual,1975,4:473-476.
    Ruan HH,Shen WB,Ye MB,Xu RL.Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L.) leaves.Chin Sci Bull.2001,46(23):1993-1997.
    Salin ML.Toxic oxygen species and protective systems of the chloroplasts.Physiol Plant,1988,72:681-689.
    Salt DE,Rauser WE.MgATP-dependent transport of phytochelatin across the tonoplast of oat roots.Plant Physiol.1995,107:1293-1301.
    Sandalio LM,Dalurzo HC,Gomez M,Romero-Puertas MC,del Rio LA.Cadmium-induced changes in the growth and oxidative metabolism of pea plants.J Exp Bot,2001,52:2115-2126.
    Sanita di Toppi L,Gabbrielli R.Response to cadmium in higher plants.Environ Exp Bot,1999,41:105-130.
    Satarug S,Baker JR,Urbenjapol S,Haswell-Elkins M,Reilly PEB,Wiilianms DJ.A global perspective on cadmium pollution and toxicity in non-occupationally exposed population.Toxicol Lett,2003,137:65-83.
    Sawhney V,Sheoran IS,Singh R.Nitrogen fixation,photosynthesis and enzymes of ammonia assimilation and ureide biogenesis in nodules of mungbean (Vigna radiata) grown in presence of cadmium.Indian J Exp Biol,1990,28:883-886.
    Schena M,Shalon D,Davis RW,Brown PO.Quantitative monitoring of gene expression patterns with a complimentary DNA microarray.Science,1995,270:467-470.
    Sharifah BA,Hishashi O.Effects of lead,cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens Balsamina.Environ Exp Bot,1992,32(4):439-448.
    Shaw BR Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus.Biol Plant,1995,37:587-596.
    Shenker M,Fan TWM,Crowley DE.Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants.J.Environ.Qual,2001,30:2091-2098.
    Shevchenko A,Wilm M,Vorm O,Mann M.Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.Anal Chem,1996,68:850-858.
    Shim KS,Cho SK,Jeung JU.Identification of fungal (Magnaporfhe grisea) stress-induced genes in wild rice (Oryza minuta).Plant Cell Reports,2004,22(8):599-607.
    Shiu SH,Karlowski WM,Pan R,Tzeng YH,Mayer KFX,Li WH.Comparative analysis of the receptor-like kinase family in arabidopsis and rice.Plant Cell,2004,16 (5):1220-1234.
    Siedlecka A,Baszynski T.Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency.Physiol Plant,1993,87:199-202.
    Snowden KC,Gardner RC.5 genes induced by aluminium in wheat (Triticum aestivum L.) roots.Plant Physiol,1993,103:855-861.
    Somashekaraiah BV.Padmaja K,Prasad.Phytotoxicity of cadmium ions on germinating of seedling of mung been (Phaseolus vulgaris):involvement of lipid peroxides in chlorophyll degradation.Physiol Plant,1992,85:85-89.
    Song XS,Hu WH,Mao WH,Ogweno JO,Zhou YH,Yu JQ.Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L.Plant Physiol Bioch,2005.43:1082-1088.
    Stobart AK,Griffiths WT,Ameenb-Bukhari I,Sherwood RP.The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley.Physiol Plant,1985,63(3):293-298.
    Stohr C,Strube F,Marx G,Ullrich WR,Rockel P.A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite.Planta,2001.212:835-841.
    Stohs SJ,Bagchi D.Oxidative mechanisms in the toxicity of metal ions.Free Rad Biol Med,1995,18:321-336.
    Stolt JP,Sneller FEC,Bryngelsson T,Lundborg T,Schat H.Phytochelatin and cadmium accumulation in wheat.Environ Exp Bot.2003,49:21-28.
    Stolt P.Asp H,Hultin S.Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations.J Agron Crop Sci,2006,192:201-208.
    Street JJ,Lindsay WL.Sabey BR.Solubility and plant uptake by cadmium in soil amened with cadmium and sewage sludge.J Environ Qual,1977,6:72-77.
    Sun RL,Zhou QX,Sun FH,Jin CX.Antioxidative defense and proline/phytochelatin accumulation in anewly discovered Cd-hyperaccumulator,Solanum nigrum L.Environ Exp Bot,60:468-476.
    Suzuki N,Koizumi N,Sano H.Screening of cadmium-resonsive genes in Arabidopsis thaliana.Plant Cell Environ,2001,24:1177-1188.
    Tanaka K,Fujimaki S,Fujiwara T,Yoneyama T,Hayashi H.Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) treated with a nutrient solution containing cadmium.Soil Sci Plant Nutr,2003,49:311-313.
    Tanaka K,Fujimaki S,Fujiwara T,Yoneyama T,Hayashi H.Quantitative estimation of the contribution of the phloem in cadmium transport to grain in rice plants (Otyza sativa L.).Soil Sci Plant Nutri,2007,53:72-77.
    Tanhuanpaa P,Kalendar R,Schulman AH,Kiviharju E.A major gene for grain cadmium accumulation in oat (Avena sativa L.).Genome,2007,50:588-594.
    Thomine S,Lelievre F,Debarbieux E,Schroeder JI,Barbier-Brygoo H.AtNRAMP3,a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.Plant J,2003,34:685-695.
    Tsuji N,Hirayanagi N,Iwabe O,Namba T,Tagawa M,Miyamoto S,Miyasaka H,Takagi M,Hirata K,Miyamoto K.Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga,Dunaliella tertioletca.Phytochemistry,2003,62:453-459.
    Tukaj Z,Bascik-Remisiewicz A,Skowroriski T,Tukaj C.Cadmium effect on the growth,photosynthesis,ultrastructure and phytochelatin content of green microalga Scenedesmus armatus:A study at low and elevated C02 concentration.Environ Exp Bot,2007,60:291-299.
    Turner MA.Effect of cadmium treatment on cadmium and zinc uptanke by selected vetable species.J Environ Qual,1973,2(1):118-119.
    Uknes S,Mauch-Mani B,Moyer M.Potter S,Williams S,Dincher S,Chandler D,Slusarenko A,Ward E,Ryals J.Acquired resistance in Arabidopsis.The Plant Cell.1992,4:645-656.
    Vincent D,Lapierre C,Poller B,Cornic Q Negroni L,Zivy M.Water deficits affect caffeate O-methyltransferase,lignif.cation,and related enzymes in maize leaves:a proteomic investigation.Plant Physiol,2005,137:949-960.
    Van Assche F,Cligsters H.Effects of heavy metal on enzyme activity in plants.Plant Cell Environ,1990,13(2):195-206.
    Van der Zaal BJ,Neuteboom LW,Pinas JE,Chardonnens AN.Schat H,Verkleij JAC,Hooykaas PJJ.Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.Plant Physiol,1999,119:1047-1055.
    Verkleij JAC,Schat.Mechanisms of metal tolerance in higher plants.In Heavy mtal tolerance in plants:evolutionary aspects (AJ Shaw,ed).CRC Press,Boca Raton,1990,pp:179-193.
    Verret F,Gravot A,Auroy P,Leonhardt N,David P,Nussaume L,Vavasseur A,Richaud P.Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance.FEBS Lett,2004,576:306-312.
    Wagner GJ.Accumulation of cadmium in crop plants and its consequences to human health.Adv Agron,1993.51:173-212.
    Wagner TA,Kohorn BD.Wall-associated kinases are expressed throughout plant development and are required for cell expansion.Plant Cell.2001,13:303-318.
    Walter MH,Liu JW,Grand C,Lamb CJ.Hess D.Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens.Mol Gen Genet,1990,222:353-360.
    Wang YS,Yang ZM.Nitric Oxide Reduces Aluminum Toxicity by preventing oxidative stress in the roots of Cassia tora L.Plant Cell Physiol.2005,46:1915-1923.
    Watanabe T,Nakatsuka H,Shimbo S,Iwami O,Imai Y,Moon CS,Zhang ZW,Iguchi H,Ikeda M. Reduced cadmium and lead burden in Japan in the past 10 years.Int Arch Occup Environ Health,1996,68:305-314.
    Wenzel WW,Blum WEH,Brandstter A,Jochwer F,Koechl A,Oberforster HE,Riedler C,Roth K,Vladeva I.Effects of soil properties and cultivar on cadmium accumulation in wheat grain.Zeitschrift fur Pflanzenernahrung und Bodenkundle,1996,159:609-614.
    White MC,Chaney RL.Zinc,cadmium,and manganese uptake by soybean from two zinc-and cadmium-amended Coastal Plain soils.Soil Sci Soc Am J,1980,44:308-313.
    White MC,Chaney RL,Decker AM.Metal complexation in xylem fluid.Ⅲ.Electrophoretic evidence.Plant Physiol,1981,67:311-315.
    Whitelaw CA,Huquet JA,Thurman DA,Tomsett AB.Isolation and characterization of type Ⅱ metallothionein-like genes from tomato (Lycopersicon esculentum L.).Plant Mol Biol,1997,33:503-511.
    Wickliff C,Evans HJ,Carter KR,Russell SA.Cadmium effects on the nitrogen fixation systerm of red alder.J Environ Qual,1980,9:180-184.
    Wilson ID,Neill SJ,Hancock JT.Nitric oxide synthesis and signaling in plants.Plant Cell Environ,2007,31:622-631.
    Wolnik KA,Fricke FL,Capar SG Braude GL,Meyer MN,Satzger RD,Bonim E.Elements in major raw agricultureal crops in the United States,1.Cadmium and lead in lettuce,peanuts,potatoes,soybeans,sweet corn,and wheat.J Agric Food Chem,1983,31:1240-1244.
    Wong MK,Chuah GK,Ang KP,Koh LL.Interactive effects of lead,cadmium and copper combinations in the uptake of metals and growth of Brassica chinensis.Environ Exp Bot,1986.26:331-339.
    World Health Organization,Evaluation of certain food additives and of the contaminants mercury,lead and cadmium [A].FAO Nutrition Meetings Report Series No.51.WHO Technical Report Series 505[C].Food and Agriculture Organization of the United Nations.Rome.1972,p33.
    Wu FB,Wu LH,Xu FH.Chlorophyll meter to predict nitrogen sidedress requirements for short season cotton.Field Crops Res,1998,56:309-314.
    Wu FB,Zhang GP.Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings.Bull Environ Contam Toxicol,2002a,69:219-227.
    Wu FB,Zhang Gp.Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley.J Plant Nutri,2002b,25(12):2745-2761.
    Wu FB,Zhang GP.Phytochelatin and its function in heavymetal tolerance of higher plants.Chin J Appl Ecol,2003,14 (4):632-636.
    Wu FB,Zhang GP,Yu JS.Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes.Commun Soil Sci Plant Anal.2003.34(13):2003-2020.
    Wu FB,Dong J,Qian QQ,Zhang GP.Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes.Chemosphere,2005,60:1437-1446.
    Wu FB,Dong J,Cai Y,Chen F,Zhang GP.Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity.Sci Total Environ,2007,385:228-234.
    Yamasaki H,Sakihama Y Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:in vitro evidence for the NR-dependent formation of active nitrogen species.FEBS Lett,2000,468:89-92.
    Yang YJ,Cheng LM,Liu ZH.Rapid effect of cadmium on lignin biosynthesis in soybean roots.Plant Sci,2007,172:632-639.
    Yang TJW,Perry PJ,Ciani S,Pandian S,Schmidt W.Manganese deficiency alters the patterning and development of root hairs in Arabidopsis.J Exp Bot,2008,59(12):3453-3464.
    Yoshimura K,YabutaY,IshikawaT,Shigeoka S.Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses.Plant Physiol,2000,123:223-233.
    Yu CC,Hung KT,Kao CH.Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves.J Plant Physiol,2005,162:1319-1330.
    Yu LH,Umeda M,Liu JY,Zhao MM,Uchimiya H.A novel MT gene of rice plants is strongly expressed in the mode potion of the stem.Gene,1998,206:29-35.
    Yu Q,Rengel Z.Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins.Plant Sci,1999,142:1-1.
    Zeller S,Feller U.Long-distance transport of cobalt and nickel in maturing wheat.Eur J Agron,1999,10:91-98.
    Zenk MH.Heavy metal detoxification in higher plants.Gene,1996,179:21-30.
    Zhang GP,Fukami M,Sekimoto H.Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage.Field Crops Res,2002,4079:1-7.
    Zhang JB,Huang WN.Advances on physiological and ecological effects of cadmium on plants.Acta EcolSin,2000,20:514-523.
    Zhao Z,Chen G,Zhang C.Interaction between reactiove oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings.Aust J Plant Physiol,2001,28:1055-1061.
    Zhou J,Goldsbrough PB.Structure,organization and expression of the metalothionein gene family in Arabidopsis.Mol Gen Genet,1995,248:318-328.
    Zhu RK,Macfie SM,Ding ZF.Cadmium-induced plant stress investigated by scanning electrochemical microscopy.J Exp Bot.2005,56(421):2831-2838.
    Zientara K,Wawrzynska A Lukomska J,Lopez-Moya,J R,Liszewska F,Assuncao AGL,Aarts MGM,Sirkoa A.Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium,nickel,arsenic,cobalt and lead but not by zinc and iron.J Biotechnol.2009.139:258-263.