铝胁迫诱导玉米DNA甲基化变异及其与铝毒性耐性基因型间差异的可能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上一个世纪,植物育种专家利用杂种优势这一重要生物学机制培育了很多新品种,可以提高作物产量15-60%,但是杂种优势在分子水平的认识还很缺乏。世界上40%以上的耕地因为铝离子毒性和土壤酸性的综合作用而限制了农作物的生长。在发展中国家,农作物比如玉米由于这种非生物胁迫——铝(Al)离子毒性作用而减产约30-40%。铝离子严重地阻碍了根部吸收水和营养的能力并削弱了作物的生长和其它机能。然而,玉米显示了非常高水平的表型和遗传多样性。而且,其他研究表明,在植物种内和种间都有一种自然变异的耐铝性机制。作物正常生长发育需要稳定的DNA胞嘧啶甲基化模式和染色体结构,但表观基因组对环境因素表现异常不稳定,并可以影响胚的正常发育。
     我们选取了12个玉米自交系,分别由两种铝毒耐受性和两种铝毒敏感性相互杂交的得到,分析它们的遗传学和表观基因学的变化,用于耐铝筛选以及DNA胞嘧啶甲基化和杂种优势的研究。我们利用扩增片段长度多态性(AFLP)和甲基敏感扩增片段多态性(MSAP)的分析方法进一步研究了基于表观遗传观点的杂种优势有关的铝筛选的可能性。这个研究同时也包括了利用标准的CIMMYT铝敏感玉米系和相互杂交系进行铝毒筛选的对比评估。最后,我们用铝离子毒性和低pH胁迫筛选研究了与植物生理学、杂种优势和DNA胞嘧啶甲基化相关的玉米表型和产量的农艺性状。这种方法可用于研究玉米铝毒性的杂种优势作用和解释表观遗传关键机制——DNA胞嘧啶甲基化----在杂种优势分子水平的研究。我们配制了150μMAl和pH 4.5的无机1/2 MS营养液,分别在4、24、48小时的记录杂交种的生长变化。
     通过对根进行苏木素染色,和耐受指数(RTi)的生理分析表明,耐铝玉米表现出了很强的对铝毒的适应和迅速的调整响应。MSAP分析了CCGG超甲基化和低甲基化水平,显示了总甲基化水平的变化范围为1.5-15%,其中,与铝毒相关的CG水平上有4.75%-5.30%的变化,CNG水平上有6.76%-7.31%的变化。这种CG和CNG表观遗传学的超甲基化和低甲基化变化可以通过由净种子根长度(NSRL) %分析和根生长反应具体表现出来。对于胚阶段的铝毒耐受性的选择性筛选导致了耐性自交系和敏感自交系的产量分别有15.07%和8.17%的增长,而低pH筛选导致了耐性自交系和敏感自交系的产量分别有3.03%和3.63%的增长。这个结果证实了以前的研究——不同品种间存在铝毒敏感性的区别,同时也显示了低pH在较低水平上对作物有独立的影响作用。由于亲本起源的杂种优势影响是杂交育种中值得考虑的一个重要因素,比如,铝毒导致的N5xN1和N1xN5的产量增长分别是23.90%和3.12%。但是低pH(pH4.0)的影响却很小(对N5xN1和N1xN5分别是2.62%和1.75)。由聚丙烯酰胺凝胶(PAGE)分析演化来的MSAP分析表明,与细胞壁和细胞膜相关的基因CSLD3 (CELLULOSE SYNTHASE-LIKE)、激酶KINASES、植物生长素auxins、ABC转运蛋白等都与玉米的铝毒耐受性和敏感性相关。铝耐受筛选在杂交育种中是有效的,并且玉米铝胁迫的基因组印记可能发生在胚阶段。
     这些研究从表观遗传学角度对玉米耐铝性的复杂机制提供了可能的解释。尤其是本研究中提出的如胞嘧啶甲基化和在玉米基因组中基因间区的亲源现象等的表观遗传调控机制加上逆转录转座子的插入和DNA转座子的积累催化了快速的基因顺序和基因内容的重组。这有可能决定着玉米杂种优势的分子基础的重要组成部分。我们也利用铝胁迫耐受水平和“铝胁迫回想记忆”比较了热带玉米和温带玉米对土壤中酸度和铝离子水平提高的适应能力。此外,这个研究结果对于其他热带作物如高粱、大米和小麦的改善和育种也是有益的,以培育能表达耐铝基因的杂种优势的基因型,并通过分子水平的研究,从表观遗传学角度揭示了酸性土壤耐铝育种计划的开展的理论基础。
Heterosis in crops has been one of the major mechanisms harnessed by breeders to increase grain yield by 15-60% over the last century, yet the molecular basis of heterosis still remains poorly understood. The combination of Aluminium toxicity with soil acidity is a major crop growth limiting factor in over 40% of the arable land in the world. Aluminium (Al) toxicity is particularly one of the most critical abiotic stresses which limit crop production in acid soils reducing maize yield by about 30-40% in developing countries. The Al ions dramatically damage the ability of roots to take water and nutrients therefore impairing crop growth and functions. However, maize and other plants exhibit considerable genotypic and phenotypic natural variation in Al tolerance both within and between species. The epigenome is particularly vulnerable to environmental factors and may become dysregulated during early seedling growth when DNA cytosine methylation patterning and chromatin structure are required for normal development.
     We investigated genetic and epigenetic variations in 12 maize inbred lines from which 2 Al tolerant and 2 Al sensitive inbreds were selected and used to make 12 reciprocal hybrids for Al screening, DNA cytosine methylation and heterotic studies. We further explored the possibility of heterotic links of such Al screening differences from an epigenetic perspective using Amplified Fragment Length Polymorphism (AFLP) and Methylation Sensitive Amplified Polymorphism (MSAP) analyses. These also included comparative evaluations involving Al toxicity screening using a standardized CIMMYT Al sensitive maize line and reciprocal hybrids. Finally, we used Al toxicity and low pH screening to study field traits on maize morphology and yield as related to their physiology, heterosis and DNA cytosine methylation. This approach was utilized to study the heterotic effect of toxicity of aluminum (Al) in maize in order to elucidate the molecular basis of heterosis using DNA cytosine methylation which is a key epigenetic mechanism. Heterotic morphological growth responses were measured after 4, 24 and 48 hrs exposure to 150μMAl and at pH 4.5 in inorganic half-strength MS nutrient solution.
     Root tolerance indexes (RTi) and physiological analysis via hematoxylin staining showed a high Al stress response and a rapid adjustment response to in tolerant lines. MSAP analysis of the CCGG hyper and hypo methylation patterns showed a range of 1.5-15% alteration in the total methylation patterns; the %CG level alteration (4.75-5.30) and % CNG (6.76-7.31) were as positively correlated to Al3+ toxicity. This dynamism of the CG and CNG epigenome hyper- and hypomethylation could be reflected in the Net Seminal Root Lengths (NSRL) % analyses and root growth responses. The selective screening of Al for tolerance even at embryonic stage increased the yield by 15.07% in Al tolerant inbred lines and also increased it by 8.17% in Al sensitive inbred lines; but, the screening for low pH was 3.03% in the Al sensitive inbred lines but 3.63% amongst the Al tolerant inbred lines. There results demonstrate and confirm past results that there are differences in Al sensitivity between cultivars but also show that low pH could be also influencing plants independently and at lower level. The influence of heterosis due to parent of origin was shown to be a significant factor to be considered in heterosis breeding, for example, the yield increase for N5xN1 in Al3+ was 23.90% while N1xN5 had 3.12% but, very little difference (2.62% vs 1.75 respectively) was observed due to pH 4.0. Polyacrylamide gel (PAGE) band variants from MSAP analysis found that cell wall and membrane related genes like CSLD3 (CELLULOSE SYNTHASE-LIKE), stress signals like KINASES, phytohormones such as auxins and protein transporters like the ABC transporters are involved in Al tolerance or sensitivity in maize. Al stress was effective in screening for heterosis and could be imprinted in maize at embryonic stage.
     Hence, these studies provide possible explanations on the complexity of Al tolerance mechanism from an epigenetic aspect in maize. Especially, this study proposes that the dynamisms in epigenetic regulation mechanisms like cytosine DNA methylation and parent of origin phenomenon in the intergenic regions in maize genome, plus the accumulation of retro-transposon insertions and DNA transposons which catalyze a rapid reshuffling of gene orders and gene contents are possible key components which determine the molecular basis of maize heterosis. It also uses the tropical maize Al tolerance level and“Al stress recall memory”to gauge the temperate maize ability to cope with increasing soil acidity and Al toxicity. Furthermore, the findings are profitable in the improvement and breeding of other tropical crops like sorghum, rice and wheat so as to produce genotypes which express Al tolerant genes heterotically and foster an epigenetic dimension in molecular Al tolerance breeding programs in acidic soils.
引文
[1]. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu. Rev. Plant Biol, 1995, 46, 237–260.
    [2]. Wood S, Sebastian K and Scherr S J. in Pilot Analysis of Global Ecosystems: Agroecosystems [M] (ed. Rosen, C.) 45–54 (International Food Policy Research Institute and the World Resources Institute, Washington, D.C., 2000.
    [3]. von Uexku¨ll H R and Mutert E. in Plant-Soil Interactions at Low pH: Principles and Management [M] (eds. Date, R.A. Grundon, N.J. Raymet, G.E. and Probert, M.E.) 5–19 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
    [4] Delhaize E., Ryan P R. Aluminum toxicity and tolerance in plants [J]. Plant Physiol, 1995, 107: 315–321.
    [5]. Kinraide T, Parker D. Assessing the phytotoxicity of mononuclear hydroxy-aluminum [J]. Plant Cell Environ, 1989, 12:478-487.
    [6]. Borrero J C, Pandey S, Ceballos H, et al. Genetic variances for tolerance to soil acidity in a tropical maize population [J]. Maydica, 1995, 40: 283–288.
    [7]. Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends Plant Sci, 2001, 6: 273–278.
    [8]. Moore D P. Physiological effects of pH on roots. In: The plant root and the environment [M], Ed. E. W. Carson, University Press of Virginia, Charlottesville, 1974, 135–151.
    [9]. Mona M A. Physiological Aspects of Aluminium Toxicity on Some Metabolic and Hormonal Contents of Hordeum Vulgare Seedlings [J]. Australian Journal of Basic and Applied Sciences, 2008, 2:549-560.
    [10]. Bennetzen J L and Hake S C (eds.), Handbook of Maize [M]: Its Biology, Springer Science, 2009, pp 291.
    [11]. Rao I M, Zeigler R S, Vera R, et al. Selection and breeding for acid soil tolerance in crops: upland rice and tropical forages as case studies [J]. BioScience, 1993, 43:454–465.
    [12]. Tice K R, Parker D R and DeMason D A. Operationally defined apoplastic and symplastic aluminium fractions in root tips of aluminiumintoxicated wheat [J]. Plant Physiol, 1992, 100: 309-318.
    [13]. Kochian L V, Hoekenga O A, Pi?eros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency [J]. Annu Rev Plant Biol, 2004, 55:459-493.
    [14]. Maron L G, Kirst M, Mao C, et al. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots [J]. New Phytologist, 2008, 179:116-128.
    [15]. Sasaki T, Yamamoto Y, Ezaki B, A wheat gene encoding an aluminum-activated malate transporter [J]. Plant J, 2004, 37: 645-653.
    [16]. Pi?eros M A, Can?ado G M A, Maron L G, et al. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1– an anion-selective transporter [J]. The Plant Journal, 2007, 53: 352– 367.
    [17]. Wenzl P, Patino G M, Chaves A L, et al. The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminumdetoxification in root apices [J]. Plant Physiol, 2001, 125:1473–84.
    [18]. Sivaguru M, Balu?ka F, Volkmann D, et al. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone [J]. Plant Physiol, 1999, 119:1072-1082.
    [19]. Sivaguru M, Horst W. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize [J]. Plant Physiol, 1998, 116:155-163.
    [20]. Miller T E, Iqbal N, Reader S M. et al. cytogenetic approach to the improvement of Aluminium tolerance in wheat, in: Putting Plant Physiology on the Map: Genetic Analysis of Development and Adaptive Traits [J]. Proceedings of the Second New Phytologist Symposium, Bangor, UK, April 1997, 137: 93–98.
    [21]. Kollmeier M, Dietrich P, Bauer C S, et al. Aluminum activates a citrate-permeable anion channel in the Alsensitive zone of the maize root apex: a comparison between an Al-sensitive and an Altolerant cultivar [J]. Plant Physiol, 2001,126, 397–410.
    [22]. Chinnusamy V and Zhu J. Epigenetic regulation of stress responses in plants [J]. Current Opinion in Plant Biology, 2009, 12: 1–7.
    [23]. Jones D L, Kochian L V and Gilroy S. Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures [J]. Plant Physiol, 1998, 116, 81-89.
    [24]. Pin?eros M A, Shaff J E, Manslank H S, et al. Aluminum resistance in maize cannot be solely explained by root organic acid exudation; A comparative physiological study [J]. Plant Physiol, 2005, 137: 231–241.
    [25]. Pi?eros M A, Magalhaes J V, Carvalho A V M, et al. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize [J]. Plant Physiology, 2002, 129: 1194–1206.
    [26]. Mariano E D, Keltjens W G. Evaluating the role of root citrate exudation as a mechanism of aluminium resistance in maize genotypes [J]. Plant and Soil, 2003, 256: 469–479.
    [27]. Ninamango-Cárdenas F E, Guimaraes C T, Martins P R, et al. Mapping QTLs for aluminum tolerance in maize [J]. Euphytica, 2003, 130: 223–232.
    [28]. Magnavaca R, Gardner C, Clark R. Evaluation of inbred maize lines for aluminum tolerance in nutrient solution. In: Gabelman HLB, ed. Genetic aspects of plant mineral nutrition [M]. Dordrecht, the Netherlands: Martinus Nijhoff, 1987, 255–265.
    [29]. Pandey S, Ceballos H, Magnavaca R, et al. Genetics of tolerance to soil acidity in tropical maize [J]. Crop Science, 1994, 34: 1511–1514.
    [30]. Richards K D, Schott E J, Sharma Y K, et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana [J], Plant Physiol, 1998, 116: 409–418.
    [31]. Mena S, Ortega A and Estrela J M. Oxidative Stress and Mechanisms of Environmental Toxicity [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2009, 674: 36-44.
    [32]. Eckardt N A. Deep sequencing maps the maize epigenomic landscape [J]. The Plant Cell, 2009, 21:1024–1026.
    [33]. Waterland R A, Jirtle R L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases [J]. Nutrition,2004, 20:63–68.
    [34] Rakyan V K, Chong S, Champ M E, et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission [J]. Proc Natl Acad Sci U S A, 2003, 100: 2538–2543.
    [35]. Dana C D, Radhika D, Jennifer R W, et al. Metastable Epialleles, Imprinting, and the fetal origins of adult diseases [J]. Pediatric Research, 2007, 61: 30-37.
    [36]. Lukens L N and Zhan S. The plant genome’s methylation status and response to stress: implications for plant improvement [J]. Current Opinion in Plant Biology, 2007, 10:317–322.
    [37]. Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations [J]. Plant Cell Physiol, 2002, 43:1106–1111.
    [38]. Rapp R A and Wendel J F. Epigenetics and plant evolution [J]. New Phytol, 2005, 168:81–91.
    [39]. Jiang H, Kang D C, Alexandre D, Fisher P B. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes [J]. Proceedings of the National Academy of Sciences, USA, 2000, 97: 12684–12689.
    [40]. Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress [J]. Physiol. Plant, 1996, 96: 21–28.
    [41]. Hamel F, Breton C, Houde M. Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor [J], Planta, 1998, 205: 531– 538.
    [42] Mao C H., Yi K., Yang L., et al. Identification of aluminiumregulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall component [J]. J. Exp. Bot, 2004, 55: 137.143.
    [43]. Fieldes M, Schaeffer S, Krech M, et al. DNA hypomethylation in 5-azacytidine-induced early flowering lines of flax [J]. Theor Appl Genet, 2005, 11:136-149.
    [44]. Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States [J]. Crop Sci, 1999, 39: 1622-1630.
    [45]. Tani E, Polidoros A N, Nianiou-Obeidat I, et al. DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids [J]. Maydica, 2005, 50:19-23.
    [46]. Guo M, Rupe M, Yang X, et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis [J]. Theor Appl Genet, 2006, 113:831-845.
    [47]. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry [J]. Nature, 1999, 401: 157-161.
    [48]. Xiong L Z, Xu C G, Shagi-Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. Mol. Genet. Genomics, 1999, 261:439–446.
    [49]. Alleman M, Sidorenko L, McGinnis K, et al. An RNA dependent RNA polymerase is required for paramutation in maize [J]. Nature, 2006, 442: 295-298.
    [1]. Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science [J], 2010, 15:57-71.
    [2]. Hinze L L and Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids [J]. Crop Science, 2003, 43: 46-56.
    [3]. Ayd?n N, G?kmen S, Y?ld?r?m A, et al. Estimating Genetic Variation among Dent Corn Inbred Lines and Topcrosses Using Multivariate Analysis [J]. Journal of Applied Biological Sciences, 2007, 1: 63–70.
    [4]. Rencher A C. Methods of multivariate analysis [M]. John Willey & Sons Inc. 1995. p. 627.
    [5]. Smith J S C, Chin E C L., Shu H, et al., An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree [J]. Theor Appl Genet, 1997, 95: 163-173.
    [6]. Ajmone-Marsan P, Castiglioni P, Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers [J]. Theoretical and Applied Genetics, 1998, 96: 219-227.
    [7]. Pejic I, Ajmone-Marsan P, Morgante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs [J]. Theoretical and Applied Genetics, 1998, 97: 1248-1255.
    [8]. Melchinger A E 1999. Genetic diversity and heterosis. [M] p.99-118. In J.G. Coors and S. Pandey (ed.) The genetics and exploitation of heterosis in crops. ASA, CSSA, and SSSA, Madison, WI.
    [9]. Phumichai C, Doungchan W, Puddhanon P, et al. SSR-based and grain yield-based diversity of hybrid maize in Thailand [J]. Field Crops Research, 2008, 108: 157-162.
    [10]. Dhliwayo T, Pixley K, Menkir A et al. Combining Ability, Genetic Distances, and Heterosis among Elite CIMMYT and IITA Tropical Maize Inbred Lines [J]. Crop Sci, 2009, 49:1201-1210.
    [11]. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems [J]. Aust. J. Biol. Sci, 1956, 9: 463-493.
    [12]. Hayman B I. The theory and analysis of the diallel crosses [J]. Genetics, 1954, 39: 798–809.
    [13]. Fry J D. Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED [M]. In A.R. Saxton (ed.) Genetic analysis of complex traits using SAS Books by Users Press, SAS Inst., Cary, NC, 2004: 7–39.
    [14]. Zhang Y and Kang M S. DIALLEL-SAS: A SAS program for Griffing’s diallel analyses [J]. Agron J, 1997, 89:176–182.
    [15]. Darwin C R. The Effects of Cross- and Self-fertilization in the Vegetable Kingdom [J], John Murry, 1876.
    [16]. Shull G H. The composition of a field of maize [J]. Amer. Breeders Assoc Rep, 1908, 4: 296–301.
    [17]. East E M. Inbreeding in corn [J]. In Reports of the Connecticut Agricultural Experiment Station for Years 1907–1908, Connecticut Agricultural Experiment Station, 1908,419–428.
    [18]. Duvick D N. Biotechnology in the 1930s: the development of hybrid maize [J]. Nat. Rev. Genet, 2001, 2: 69-74.
    [19]. East E M. Heterosis [J]. Genetics, 1936, 21: 375-397.
    [20]. Lippman Z B, Cohen O, Alvarez J P. et al. The making of a compound inflorescence in tomato and related nightshades [J], Current biology, 2008, 8: 1106-1108.
    [21]. Buckler E S, Holland J B, Bradbury P J. et al. The genetic architecture of maize flowering time [J]. Science, 2009, 325: 714–718.
    [22]. Manoharan V, Loganathan P, Tillman R W, Parfitt RL. Interactive effects of soil acidity and fluoride on soil solution Aluminium chemistry and barley (Hordeum vulgare L.) root growth [J]. Environmental Pollution, 2007, 145: 778-786.
    [23]. Loganathan P, Hedley M J, Grace N D. et al. Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine. [J]. a review. Australian Journal of Soil Research, 2003, 41: 501-532.
    [24]. Khan A A, Mcneilly T and Azhar F M. Stress Tolerance in Crop Plants [J]. Int. J. Agri. Biol2001, Vol. 3, No. 2.
    [25]. Foy C D. Plant adaptation to acid, aluminum-toxic soils [J]. Commun. Soil Sci. Plant Anal, 1988, 19, 959-987.
    [26]. McNeilly T. Metal toxicity [M]. In: Yeo, A.R. and T.J. Flowers (Eds.). Monographs on Theoretical and Applied Genetics, 1994, 21:145–74. Springer-Verlag, Berlin Heidelberg.
    [27]. Jackson T L and Reisenauer H M. Crop response to lime in western United States. In: Adams, F. (Ed.). Soil Acidity and Liming [M]. 1984, 333– 347. ASA, CSSA, SSSA, Madison, WI, USA.
    [28]. Breburda J. Development of agricultural yield levels and soil K-status in Eastern and Western Europe [J]. In: Development of K Fertiliser Recommendations, 1990: 17–35.
    [29]. von Uexküll H R and Mutert E. Global extent, development and economic impact of acid soils [J]. Plant Soil, 1995, 71: 1-15.
    [30]. FAO, 1998. World Agriculture Information Centre. FAOSTAT; www.fao.org/waicent/faostat.htm.)
    [31]. Kidd P S. Proctor J. Effects of aluminum on the growth and mineral composition of Betula pendula Roth [J]. J Exp Bot, 2000, 51:1057–66.
    [32]. Kidd P S, Proctor J. Why plants grow poorly on very acid soils: are ecologists missing the obvious? [J]. J Exp Bot, 2001, 52:791–9.
    [33]. Llugany M, Poschenrieder C, BarcelóJ. Monitoring of aluminum-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminum and proton toxicity [J]. Physiol Plant, 1995, 93: 265–71.
    [34]. Poschenrieder C, Llugany M, BarcelóJ. Short-term effects of pH and aluminum on mineral nutrition in maize varieties differing in proton and aluminum tolerance [J]. J Plant Nutr, 1995, 18:1495–507.
    [35]. Kinraide T B. Ion fluxes considered in terms of membrane-surface electrical potentials [J]. Aust J Plant Physiol, 2001, 28:605–16.
    [36]. Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internaldetoxification as clues to the mechanisms of aluminum toxicity and resistance: a review [J]. Environ. Exp. Bot, 2002, 48, 75–92.
    [37]. Poschenrieder C, GunséB, Corrales I, et al. A glance into aluminum toxicity and resistance in plants [J]. Science of the Total Environment, 2008, 400: 356-368.
    [38]. Zheng S, Yang J. Target sites of aluminum phytotoxicity [J]. Biologia Plantarum 2005, 49: 321–331.
    [39]. Ma J F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants [J]. International Review of Cytology, 2007, 264: 225–252.
    [40]. Zheng K, Pan J W, Ye L, et al. Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals [J]. Plant Physiology, 2007, 143: 38–49.
    [41]. Silva S, Pinto-Carnide O, Martins-Lopes P, et al. Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat [J]. Environmental and Experimental Botany, 2010, 68: 91–98.
    [42]. Marschner H. Mineral Nutrition of Higher Plants [M]. 2nd ed. Academic Press, London, 1995.
    [43]. Bellon M R. Participatory methods in the development and dissemination of new maize technologies. In: Pingali, P.L. (Ed.), CIMMYT 1999–2000 World Maize Facts and Trends [M]. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, DF, 2001, 4–20.
    [44]. Rhue R D, Grogan C O, Stockmeyer E W, et al. Genetic control of aluminium tolerance in corn [J]. Crop Sci, 1978, 18: 1063–1067.
    [45]. Miranda L T, Furlani P R, Miranda L E C. et al. Genetics of environmental resistance and super genes: latent aluminium tolerance [J]. Maize Genet. Coop. Newslett, 1984, 58: 46–48.
    [46]. Lima M, Furlani P R, de Miranda Filho J B. Divergent selection for aluminium tolerance in a maize (Zea mays L.) population [J]. Maydica, 1992, 37: 123–132.
    [47]. Pandey S, Ceballos H, Magnavaca R, et al. Genetics of tolerance to soil acidity in tropical maize [J]. Crop Sci, 1994, 34: 1511–1514.
    [48]. Borrero J C, Pandey S, Ceballos H. et al. Genetic variances for tolerance to soil acidity in tropical maize population [J]. Maydica, 1995, 40: 283–288.
    [49]. Salazar F S, Pandey S, Narro L, et al. Diallel analysis of acid-soil tolerant and intolerant maize populations [J]. Crop Sci, 1997, 37: 1457–1462.
    [50]. Calba H, Cazevieille P, Jaillard B.. Modelling of the dynamics of Al and protons in the rhizosphere of maize cultivated in acid substrate [J]. Plant and Soil, 1999, 209: 57–69.
    [51]. Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminium-induced growth inhibition. Physiol. Plant, 2001, 112: 353–358.
    [52]. Howeler R H and Cadavid L F. Screening of rice cultivars for tolerance to Al toxicity in nutrient solutions as compared with a field screening method [J]. Agron. J, 1976, 68: 551–5.
    [53]. Boye-Goni S R and Marcarian V. Diallel analysis of Aluminium tolerance in selected lines of grain sorghum [J]. Crop. Sci., 1985, 25: 749–52.
    [54]. Gourley L M, Rogers S A, Ruiz-Gomes C et al. Genetic aspects of aluminium tolerance in sorghum [J]. Plant and Soil, 1990, 123: 211–6.
    [55]. Camargo C E O. Wheat breeding. I. Inheritance of tolerance to aluminum toxicity in wheat [J]. Bragantia, 1981, 40: 33–45.
    [56]. Aniol A. Genetics of tolerance to aluminium in wheat (Triticum aestivum L. Thell) [J], Plant Soil, 1990, 123: 223–227.
    [57]. Bianchi-Hall C M, Carter T E, Rufty T W. et al. Heritability and resource allocation of aluminum tolerance derived from soybean PI 416937 [J]. Crop Sci, 1998, 38, 513-522.
    [58]. Reid D A. Genetic control of reaction to aluminum in winter barley [M]. In: BarleyGenetics II. Proc. 2nd. Int. Barley Genet. Symp. Nilan, R.A. (ed.). Pullman, WA: Washington State University Press, 1971, pp. 409-413.
    [59]. Kerridge P C and Kronstad W E. Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivum Vill., Host.) [J]. Agron. J, 1968, 60: 710-711.
    [60]. de Camargo C D O, Filho A W P F. Breeding bread wheat for tolerance to aluminium toxicity, in: Z. Bed?, L. Láng (Eds.), Wheat in a Global Environment [M], Kluwer Academic Publishers, The Netherlands, 2001, 655–664.
    [61]. Pinto-Carnide O, Guedes-Pinto H, Differential aluminium tolerance of Portuguese rye populations and north European rye cultivars [J] Agronomie, 2000, 20: 93–99.
    [62]. Arihara A, Kumagai R, Koyama H, et al. Aluminum-tolerance of carrot (Daucus carota L.) plants generated from selected cell cultures [J], Soil Sci. Plant Nutr, 1991, 37: 699–705.
    [63]. Miller T E, Iqbal N, Reader S M. et al. cytogenetic approach to the improvement of Aluminium tolerance in wheat, in: Putting Plant Physiology on the Map: Genetic Analysis of Development and Adaptive Traits [J]. Proceedings of the Second New Phytologist Symposium, Bangor, UK, April 1997, 137: 93–98.
    [64]. Nunez Z V M, Martinez C P, Navarez V J, et al. Using anther cultures to obtain homozygous lines of rice Oryza sativa with tolerance for aluminium toxicity [J]. Acta Agron., 1985, 35: 7–26.
    [65]. Barnabas B, Obert B, Kovacs G, Colchicine an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero [J]. Plant Cell Rep.,1999, 18: 858–862.
    [66]. de la Fuente J M, Ramirez R V, Cabrera P J L, Herrera E L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis [J], Science (Washington),1997, 276: 5466–5468.
    [67]. Delhaize E., Ryan P R. Aluminum toxicity and tolerance in plants [J]. Plant Physiol, 1995, 107: 315–321.
    [68]. Kinraide T, Parker D. Assessing the phytotoxicity of mononuclear hydroxy-aluminum [J]. Plant Cell Environ, 1989, 12:478-487.
    [69]. Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends Plant Sci, 2001, 6: 273–279.
    [70]. Mona M A. Physiological Aspects of Aluminium Toxicity on Some Metabolic and Hormonal Contents of Hordeum Vulgare Seedlings [J]. Australian Journal of Basic andApplied Sciences, 2008, 2:549-560.
    [71]. Bennetzen J L and Hake S C (eds.), Handbook of Maize [M]: Its Biology, Springer Science, 2009, pp 291.
    [72]. Moore D P. Physiological effects of pH on roots. In: The plant root and the environment [M], Ed. E. W. Carson, University Press of Virginia, Charlottesville, 1974, 135–151.
    [73]. Kinraide T B. Identity of the rhizotoxic aluminum species [J]. Plant Soil, 1991, 134:167-178.
    [74]. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J], Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995, 46: 237–260.
    [75]. Sivaguru M, Horst W. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize [J]. Plant Physiol, 1998, 116:155-163.
    [76]. Sivaguru M, Balu?ka F, Volkmann D, et al. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone [J]. Plant Physiol, 1999, 119:1072-1082.
    [77]. Illé? P, Schlicht M, Pavlovkin J. et al. Aluminum toxicity in plants: internalization of aluminum into cells of the transition zone in Arabidopsis root apices related to changes in plasmamembrane potential, endosomal behaviour, and nitric acid production [J]. J Exp Bot, 2006, 57:4201–13.
    [78]. Kochian L V, Hoekenga O A, Pi?eros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency [J]. Annu Rev Plant Biol, 2004, 55:459-493.
    [79]. Frantzios G, Galatis B, Apostolakos P. Aluminum effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I. Mitotic cells [J]. New Phytol, 2000, 145:211-224.
    [80]. Horst W J, Schmohl N, Kollmeier M. et al. Does aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? [J]. Plant Soil, 1999, 215:163-174.
    [81]. Schmohl N, Horst W J. Cell wall pectin content modulates aluminum sensitivity of Zea mays L. cells grown in suspension culture [J]. Plant Cell Environ, 2000, 23: 735-742.
    [82]. Henning E J. Aluminum toxicity in the primary meristem of wheat roots [M]. In Ph D. dissertation, Oregon State University, Corvallis, OR. 1975.
    [83]. Lee J, Pritchard M W. Aluminum toxicity expression on nutrient uptake, growth and root morphology of Trifolium repens L. cv. Grasslands Huia [J]. Plant Soil, 1984, 82: 101–106.
    [84]. Simon L, Kieger M, Sung S S, et al. Aluminium toxicity in tomato. Part 2. Leaf gas exchange chlorophyll content and invertase activity [J]. J. Plant Nutr, 1994, 17: 307–317.
    [85]. Mossor-Pietraszewska T, Kwit M and Legiewicz M. The influence of aluminium ions on activity changes of some dehydrogenases and aminotransferases in yellow lupine [J]. Biol. Bull. Poznan, 1997, 34, 47-48.
    [86]. Teraoka T F C, Schaedle M and Raynal D L. Effect of aluminum on the growth of sugar maple in solution culture [J]. Can. J For. Res, 1986, 16: 892-896.
    [87]. Rengel Z. Role of calcium in aluminum toxicity [J]. New Phytol, 1992, 121: 499–513.
    [88]. Liu D H, Jiang W S. Effects of Al3+ on root growth, cell division, and nucleoli in root tip cells of Zea mays L [J]. Israel J. Plant Sci, 2001, 49: 21–26.
    [89]. Matsumoto H. Biochemical mechanism of the toxicity of aluminum and the sequestration of aluminum in plant cells [M]; in Plant-Soil Interactions at Low pH (Wright, R.J., Baligar, V.C. & Murrmann, R.P., eds.),1991, pp. 825-838, Kluwer Academic Publishers, Dordrecht, Netherlands.
    [90]. Silva J R, Smyth T J, Moxley D F, et al. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy [J]. Plant Physiol, 2000, 123: 543-552.
    [91]. Klimashevsky E L, Dedov U M,. Localization of the mechanism of growth-inhibiting action of ATP in elongating cell walls [J]. Sov. Plant Physiol., 1975, 22: 1040–1046.
    [92]. Horst W J, Menary I B, Jackson M E. Effect of aluminium on root growth, celldivision rate and mineral element contents in roots of Vigna unguiculata L. [J] Pflanzenphysiol, 1983, 109: 95–103.
    [93]. Pan J, Zhu M, Chen H. Aluminum-induced cell death in root tip cells of barley [J]. Environ. Exp. Bot., 2001, 46: 71–79.
    [94]. Martinez-Estevez M, Loyola-Vargas V M, Hernandez-Sotomayor S M T. Aluminum increases phosphorylation of particular proteins in cellular suspension cultures of coffee (Coffea arabica) [J]. J. Plant Physiol., 2001, 158: 1375–1379.
    [95]. Zhang W H, Ryan P R, Tyerman S D. Malate-permeable channels and cation channels activated by aluminium in the apical cells of wheat roots [J]. Plant Physiol., 2001, 125: 1459–1472.
    [96]. Wetzel J B, Aref S, Baligar V C, et al. A lack of nuclear DNA content variability among wheat near isolines differing in aluminium response [J]. Ann. Bot, 1999, 83: 725–728.
    [97]. Nosko P, Brassard P, Kramer J R et al. The effect of aluminum on seed germination and early seedling establishment, growth and respiration of white spruce (Picea glauca) [J]. Can. J. Bot., 1988, 66: 2305-2310.
    [97]. Rayburn A L, Birabar D P, Bullock D G, et al. Nuclear DNA content in F1-hybrids of maize [J]. Heredity, 1993, 70: 294–304.
    [98]. Thornton F C, Schaedle M and Raynal D L. Effect of aluminum on the growth of sugar maple in solution culture [J]. Canadian Journal of Forest Research, 1986, 16:892-896.
    [99]. Blancaflo, E B, Jones D L and Gilroy S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J]. Plant Physiol, 1998, 118, 159-172.
    [100]. Jones D L, Kochian L V and Gilroy S. Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures [J]. Plant Physiol, 1998, 116, 81-89.
    [101]. Grabski S, Arnoys E, Bush B et al. Regulation of actin tension in plant cells by kinases and phosphatases [J]. Plant Physiol, 1998, 116: 279-290.
    [102]. Takabatake R and Shimmen T. Inhibition of electrogenesis by aluminum in characean cells [J]. Plant Cell Physiol, 1997, 38: 1264-1271.
    [103]. Yamamoto Y, Kobayashi Y and Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots [J].Plant Physiol, 2001, 125: 199-208.
    [104]. Lorenc-Plucinska G and Ziegler H Changes in ATP levels in Scots pine needles during aluminium stress [J]. Photosynthetica, 1996, 32, 141-144.
    [105]. Hamilton C A, Good A G and Taylor G J. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat [J]. Plant Physiol, 2001, 125, 2068-2077.
    [106]. Jiang H, Tang N, Zheng J et al. Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings [J]. BMC Plant Biology, 2009, 9:102.
    [107]. Rincón M and Gonzales R A. Aluminium partitioning in intact roots of aluminium-tolerant and aluminium-sensitive wheat (Triticum aestivum L.) cultivars [J]. Plant Physiol. 1992, 99: 1021-1028.
    [108]. Polle E, Konzak C F, Kittrick J A. Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots [J] Crop Sci, 1978,18: 823–827.
    [109]. Giaveno C D and Miranda-Filho J B. Rapid screening for aluminum tolerance in maize (Zea mays L.) [J]. Genetics and Molecular Biology, 2000, 23: 847-850.
    [111]. Tice K R, Parker D R and DeMason D A. Operationally defined apoplastic and symplastic aluminium fractions in root tips of aluminiumintoxicated wheat [J]. Plant Physiol, 1992, 100: 309-318.
    [112]. Fonseca Jr. N S, Sediyama M, Pereira M G. et al. Método de dete??o visual da sensibilidade ao alumínio em soja (Glycine max L. Merril) [J]. In: EMBRAPA: Anais do Seminário Nacional de Pesquisa de Soja, 1982, 2: 678-685.
    [113]. Spehar C R and Makita M. Tolerancia ao alumínio em plantulas de soja e sua utiliza??o [J]. Pesqui. Agropecu Bras, 1994, 29: 1927-1932.
    [114]. Liao H, Wan H, Shaff J. et al. Phosphorus and Aluminum Interactions in Soybean in Relation to Aluminum Tolerance. Exudation of Specific Organic Acids from Different Regions of the Intact Root System [J]. Plant Physiology, 2006, 141: 674–684.
    [115]. Braccini M C L, Braccini A L, Martinez H E P. et al. Técnicas de avalia??o da toxidez do alumínio em plantulas de feij?o (Phaseolus vulgaris L.) cultivadas em solu??o nutritiva [J]. Rev. Ceres, 1996, 43: 3-16.
    [116]. Kimani J M , Kimani P M, Githiri S M. et al. Mode of inheritance of common bean (Phaseolus vulgaris L.) traits for tolerance to low soil phosphorus (P) [J]. Euphytica, 2007, 155: 225–234.
    [117]. Gudu S, Maina A O, Onkware A O. et al. Screening of Kenyan Maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya [J]. Seventh Eastern and southern Africa Regional Maize Conference 11th -15th February, 2001, 216-221.
    [118]. Poschenrieder C, BarcelóJ. Estrés por metales pesados [M]. pp 413-442 In: M. Reigosa, N. Pedrol, A. Sánchez (eds.) La Ecofisiología Vegetal. Una Ciencia de Síntesis. Ed. Paraninfo, Madrid, 2004, 413-442.
    [119]. Matsumoto H, Morimura S, and Takahashi E. Changes in activity and isoenzymes of invertase in cucumber leaves due to nitrogen status [J]. Plant Cell Physiol., 1976, 17:127-137.
    [120]. Ryan P, DiTomaso J, Kochian L. Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap [J]. J Exp Bot, 1993, 44:437-446.
    [121]. GunséB, Poschenrieder C, BarcelóJ. Water transport properties of roots and root cortical cells in proton and Al-stressed maize varieties [J]. Plant Physiol, 1997, 113: 595–602.
    [122]. Ahn S J, Sivaguru M, Chung G C. et al. Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasmamembrane in root apices of squash (Cucurbita pepo) [J]. J Exp Bot, 2001, 53:1959–66.
    [123]. GunséB, Poschenrieder C, BarcelóJ. The role of ethylene metabolism in the short-term responses to aluminum by roots of two maize cultivars different in Al-resistance [J]. Environ Exp Bot, 2002, 43:73–81.
    [124]. Massot N, Llugany M, Poschenrieder C, BarcelóJ. Callose production as indicator of aluminum toxicity in bean cultivars [J]. J Plant Nutr 1999; 22:1–10.
    [125]. Rengel Z, Zhang W H. Role of dynamics of intracellular calcium in aluminum-toxicity syndrome [J]. New Phytol, 2003, 159: 295–314.
    [126]. Kollmeier M, Felle H H and Horst W J. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduce basipetal auxin flow involved in inhibition of root elongation by aluminum? [J]. Plant Physiol, 2000, 122: 945-956.
    [127]. Doncheva S, Amenós M, Poschenrieder C. et al. Root cell patterning: a primary target for aluminum toxicity in maize [J]. J Exp Bot, 2005, 56:1213–20.
    [128]. Ramos-Díaz A, Brito-Argáez L, Munnik T, et al. Aluminum inhibits phosphatidic acid formationby blocking the phospholipase C pathway [J]. Planta, 2007, 225: 393–401.
    [129]. Tian Q Y, Sun D H, Zhao M G, et al. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. [J]. New Phytol, 2007, 174: 322–31.
    [130]. Delhaize E, Gruber B D, Ryan P R. The roles of organic anion permeases in aluminium resistance and mineral nutrition [J]. FEBS Letters, 2007, 581: 2255–2262
    [131]. Ofei-Manu P, Wagatsuma T, Ishikawa S, et al. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants [J]. Soil Sci. Plant Nut, 2001, 47: 359-375.
    [132]. Pellet, D M, Papernik L A and Kochian L V. Multiple aluminum-resistance mechanisms in wheat: Roles of root apical phosphate and malate exudation [J]. Plant Physiol., 1996, 112, 591-597.
    [133]. Basu U, Good A G, Aung T, et al. A 23-kDa, root exudate polypeptide co-segregates with aluminum resistance in Triticum aestivum [J]. Physiol. Plant, 1999, 106, 53-61.
    [134]. Archambault D J, Zhang G C and Taylor G J. Spatial variation in the kinetics of aluminium (Al) uptake in roots of wheat (Triticum aestivum L.) exhibiting differential resistance to Al - Evidence for metabolism-dependent exclusion of Al [J]. J. Plant Physiol, 1997, 151: 668-674.
    [135]. Degenhardt J, Larsen P B, Howell S H. et al. Aluminum resistance in the Arabidopsismutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH [J]. Plant Physiol, 1998, 117, 19-27.
    [136]. Miyasaka S C, Kochian L V, Slaff J E, et al.Mechanism of aluminium tolerance in wheat. An investigation of genotypic differences in rhizosphere pH, K+ and H+ transport, and root cell membranes potentials [J]. Plant Physiol., 1989, 91: 1188-1196.
    [137]. Miyasaka S C, Buta J G., Howell R K. et al. Mechanism of aluminium tolerance in snapbeans: Root exudation of citric acid [J]. Plant Physiol, 1991, 96: 737-743.
    [138]. Pellet D M, Grunes D L and Kochian L V. Organic acid exudation as an aluminium-tolerance mechanism in maize (Zea mays L.) [J]. Planta, 1995, 196: 788-795.
    [139]. Jorge R A, Arruda P. Aluminum-induced organic acids exudation by roots of analuminum-tolerant tropical maize [J]. Phytochemistry,1997, 45: 675–681.
    [140]. Kollmeier M, Dietrich P, Bauer C S. et al. Aluminum activates a citrate-permeable anion channel in the Al sensitive zone of the maize root apex: a comparison between an Al-sensitive and an Al tolerant cultivar [J]. Plant Physiol, 2001, 126: 397–410.
    [141]. Yang Z M, Sivaguru M, Horst W J, et al. Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max L. Merr.) [J]. Physiol Plant, 2000, 110: 72-77.
    [142]. Silva I R, Smyth T J, Paper C D, et al. Differential Al tolerance in soybean: an evaluation of the role of organic acids [J]. Physiologia Plantarum, 2001, 112: 200-201.
    [143]. Ma J F, Zheng S J, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L [J]. Plant Cell Physiology, 1997, 38: 1019-1025.
    [144]. Ishikawa S, Wagatsuma T, Sasaki R. et al. Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species [J]. Soil Sci Plant Nutr, 2000, 46: 751-758.
    [145]. Delhaize E, Craig S, Beaton C D. et al. Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices [J]. Plant Physiol, 1993, 103: 685–693. 146]. Ryan P R, Delhaize E, Randall P J. Characterization of Al stimulated malate efflux from the root apices of Al-tolerant genotypes of wheat [J]. Planta, 1995, 196: 103-110.
    [147]. Osawa H and Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex [J]. Plant Physiol. 2001, 126, 411-420.
    [148]. Ma J F and Miyasaka S C. Oxalate exudation by taro in response to Al [J]. Plant Physiology, 1998, 118, 861-865.
    [149]. Ma J F, Ryan P R and Delhaize E Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends Plant Sci. 2001, 6: 273–278.
    [150]. Zheng S J, Ma J, Matsumoto H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips [J]. Plant Physiol, 1998, 117: 745-751.
    [151]. Li X F, Ma J F, Matsumoto H. Pattern of aluminum induced secretion of organic acids differs between rye and wheat [J]. Plant Physiol, 2000, 123: 1537-1543
    [152]. Taylor G J. Current views of the aluminum stress response; The physiological basis of tolerance [J]. Curr Top Plant Biochem Physiol 1991, 10: 57-93.
    [153]. Foy C D. Tailoring plants to fit problem soils-progress and problems for future research. In: Moniz, A.C. et al. (Eds.). Plant-soil Interactions at low pH: Sustainable Agriculture and Forestry Production [J]. Brazilian Soil Science Society, 1997, 55–7.
    [154]. Watanabe T and Osaki M. Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils [J]. a review. Commun. Soil Sci. Plant Anal, 2002, 33: 1247-1260.
    [155]. Vazquez M D, Poschenrieder C, Corrales II, et al. Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety [J]. Plant Physiol, 1999, 119: 435-444.
    [156]. Aniol A. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution [J]. Plant Physiol. 1984, 75: 551-555.
    [157]. Basu U, Basu A and Taylor G J. Differential exudation of polypeptides by roots of aluminum-resistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminum stress [J]. Plant Physiol, 1994, 106: 151-158.
    [158]. Snowden K C, Richards K D, Gardner R C, et al. Aluminum-induced genes. Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips [J]. Plant Physiol, 1995, 107: 341–348.
    [159]. Richards K D, Schott E J, Sharma Y K, et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana [J], Plant Physiol, 1998, 116: 409–418.
    [160]. Mossor-Pietraszewska T. Effect of Aluminium on plant growth and metabolism [J]. Acta biochimica polonica, 2001, 48: 673-686.
    [161]. Chan S W, Henderson I R, Jacobsen S E. Gardening the genome. DNA methylation in Arabidopsis thaliana [J]. Nat. Rev. Genet, 2005, 6: 351-360.
    [162]. Matzke M A, and Birchler J A. RNAi-mediated pathways in the nucleus [J]. Nat. Rev. Genet., 2005, 6: 24–35.
    [163]. Mathieu O, Reinders J, Caikovski M, Smathajitt C, and Paszkowski J. Transgenerational Stability of the Arabidopsis Epigenome. Is Coordinated by CG Methylation [J]. Cell, 2007, 130: 851–862.
    [164]. Saze H, Mittelsten Scheid O, and Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant Gametogenesis [J]. Nat Genet, 2003, 34: 65–69.
    [165]. Kakutani T, Jeddeloh J A, Flowers S K. et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations [J]. Proc. Natl. Acad. Sci. USA, 1996, 93, 12406–12411.
    [166]. Finnegan E J, Peacock W J, and Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 8449–8454.
    [167]. Kankel M W, Ramsey D E, Stokes T L. et al. Arabidopsis MET1 cytosine methyltransferase mutants [J]. Genetics, 2003, 163: 1109–1122.
    [168]. Brzeski J and Jerzmanowski A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors [J]. J. Biol. Chem, 2003, 278: 823–828.
    [169]. Vongs A, Kakutani T, Martienssen R A, et al. Arabidopsis thaliana DNA methylationmutants [J]. Science, 1993, 260: 1926– 1928.
    [170]. Bernatavichute Y V, Zhang X, Cokus S, et al. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana [J]. PLoS One, 2008. 3: e3156.
    [171]. Aufsatz W, Mette M F, van der Winden J. et al. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA [J]. EMBO J, 2002, 21: 6832–6841.
    [172]. Lorincz M C, Dickerson D R, Schmitt M. et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells [J]. Nat. Struct. Mol. Biol, 2004, 11: 1068–1075.
    [173]. Li X, Wang X, He K. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression [J]. Plant Cell, 2008, 20: 259–276.
    [174]. Clarkson D T. The effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa [J]. Anal.Hort, 1965, 29: 309-315
    [175]. Wallace S U and Anderson I C. Aluminum toxicity and DNA synthesis in wheat roots [J]. Agron J, 1984, 76: 5-8.
    [176]. Sampson P, Clarkson D, and Davies D D. DNA synthesis in aluminum-treated root of barley [J]. Science, 1965, 148: 1476-1477.
    [177]. Matsumoto H, Morimura S, and Takahashi E. Binding of aluminum to DNA of DNP (deoxyribonucleoprotein) in pea root nuclei [J]. Plant Cell Physiol., 1977,18: 987-993.
    [178]. Cakmak I, Horst W J. Effect of aluminium on lipid peroxidation, superoxide dismutase catalase and peroxidase activities in root tips of soybean (Glycine max) [J]. Physiol. Plant, 1991, 83, 463–468.
    [179]. Ezaki B, Gardner R C, Ezaki Y. et al. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress [J]. Plant Physiol, 2000, 122: 657–665.
    [180]. Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress [J]. Physiol. Plant, 1996, 96: 21–28.
    [181]. Yamamoto Y, Kobayashi Y, Devi S R, et al. Oxidative stress triggered by aluminum in plant roots [J]. Plant Soil, 2003, 255: 239–243.
    [182]. Tamas L, Budikova S, Huttova J, Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production [J]. Plant Cell Rep. 2005, 24: 189–194.
    [183]. Tamas L, Huttova J, Mistrik I. et al. Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase in Alsensitive and Al-resistant barley cultivars are positively correlated [J]. Plant Soil, 2003, 250: 193–200.
    [184]. Tamas L, Huttova J, Mistrik I, Aluminum induced drought and oxidative stress in barley roots [J]. J. Plant Physiol. 2006, 163: 781–784.
    [185]. Tamas L, Simonovicova M, Huttova J. et al. Aluminum stimulated hydrogen peroxide production of germinating barley seeds [J]. Environ. Exp. Bot. 2004, 51: 281–288.
    [186]. Meriga B, Reddy B K, Rao K R. et al. Aluminium induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa) [J]. J. Plant Physiol., 2004, 161, 63–68.
    [187]. Simonovicova M, Huttova J, Mistrik I. Root growth inhibition by aluminum is probably caused by cell death due to peroxidasemediated hydrogen peroxide production [J]. Protoplasma, 2004, 224: 91–98.
    [188]. Jones D L, Blancaflor E B, Kochian L V. et al. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots [J]. Plant Cell Environ, 2006, 29: 1309–1318.
    [189]. Giannakoula A, MoustakasM., Syros T. et al. Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line [J]. Environmental and Experimental Botany, 2010, 67: 487–494.
    [190]. Darkóéva, Ambrus H, Stefanovits-Bányaiéva. et al. Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection [J]. Plant Science, 2004,166: 583–591.
    [191]. Boscolo P R S, Menossi M, Jorge R A. Aluminum induced oxidative stress in maize [J]. Phytochemistry, 2003, 62: 181–189.
    [192]. Elstner E F, Wagner G A and Schultz W. Activated oxygen in green plants in relation to stress situations [J]. Curr. Topics Plant Biochem. Physiol, 1988, 7: 159-187.
    [193]. Foyer C H and Harbinson J. Oxygen metabolism and the regulation of photosynthetic electron transport. - In Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants [M] (C.H. Foyer & P.M. Mullineaux, eds), 1994, 1-42. CRC Press, Boca Raton, FL ISBN 0-8493-5443-9.
    [195]. Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiol. Plant, 1988, 72: 681-689.
    [196]. Shimazaki K, Sugahara K. Inhibition site of the electron transport system in lettuce chloroplasts by fumigation of leaves with SO2- [J]. Plant Cell Physiol. 1980, 21: 125-135.
    [197]. Tanaka K, Kondo N. and Sugahara K. Accumulation of hydrogen peroxide in chloroplasts of SO2 fumigated spinach leaves [J]. Plant Cell Physiol, 1982, 23: 999-1007.
    [198]. Covello P S, Chang A, Dumbroff E B. et al. Inhibition of photosystem II precedes thylakoid membrane lipid peroxidation in bisulfite treated leaves of Phaseolus vulgaris [J]. - Plant Physiol, 1989, 90:1492-1497.
    [199]. Asada K. Formation and scavenging of superoxide in chloroplasts, in relation to injury by sulfur dioxide in studies on the effects of air pollutants on plants and mechanisms of phytotoxicity [J]. Res. Rep. Natl. Inst. Environ. Stud,1980, 11: 165-179.
    [200]. Mehlhorn H. Ethylene-promoted ascorbate peroxidase activity protects plants against hydrogen peroxide, ozone and paraquat [J]. Plant Cell Environ, 1990, 13: 971–976.
    [201]. Becana M, Consortium L. Oxidative stress as a response to salinity and aluminum [J]. Lotus Newsletter Volume, 2007, 37: 98.
    [202]. Matters G L and Scandalios J G. Effect of the free radical generating herbicideparaquat on the expression of superoxide dismutase(SOD) genes in maize [J]. Biochem. Biophys. Acta, 1986, 882: 29-38.
    [203]. Drumm-Herrel, H, Gerhauber U and Mohr H. Differential regulation by phytochrome of the appearance of plastidic and cytoplasmic isoforms of glutathione reductase in mustard (synapis albaL.) cotyledons [J]. Planta, 1989, 178: 103-109.
    [204]. Edwards E A, Enard C, Creissen G P and Mullineaux P M. Synthesis and properties of glutathione reductase in stressed peas [J]. Planta, 1994, 192: 137-143.
    [205]. Garvin D F, Carver B F. Role of genotypes tolerant of acidity and aluminium toxicity. In Z Rengel, ed, Handbook of Soil Acidity [J]. Marcel Dekker Inc, New York, 2003, 387–406.
    [206]. Stodart B J, Raman H, Coombes N, et al. Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions [J]. Genet Resour Crop Evol, 2007, 54: 759–766.
    [207]. Raman H, Ryan P R, Raman R, et al. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2008, 116: 343–354.
    [208]. Raman H, Zhang K, Cakir M, et al. Molecular mapping and characterization of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.) [J]. Genome, 2005, 48: 781–791.
    [209]. Sasaki T, Yamamoto Y, Ezaki B, A wheat gene encoding an aluminum-activated malate transporter [J]. Plant J, 2004, 37: 645-653.
    [210]. Hoekenga O A, Maron L G, Pi?eros M A. et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis [J]. Proc Natl Acad of Sci USA, 2006, 103: 9738-9743.
    [211]. Ryan P R, Raman H, Gupta S, et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots [J]. Plant Physiol, 2009, 149:340–351.
    [212]. Furukawa J, Yamaji N, Wang H. An Aluminum-Activated Citrate Transporter in Barley [J]. Plant Cell Physiol, 2007, 48: 1081–1091.
    [213]. Wang J P, Raman H, Zhou M X, et al. High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.) [J]. Theor. Appl. Genet, 2007, 115: 265–276.
    [214]. Magalhaes J V, Liu J, Guimara?es C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum [J]. Nat Genet, 2007, 39:1156–1161.
    [215]. Fontecha G., Silva-Navas J, Benito C, et al. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye ( Secale cereale L.) [J]. Theor. Appl. Genet, 2007, 114: 249–260.
    [216]. Collins N C, Shirley N J, Saeed M, et al.. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics, 2008, 179: 669–682.
    [217]. Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice asrevealed by QTL analysis using molecular markers [J]. Genetics, 1995, 140, 745–754.
    [218]. Li Z K, Luo L J, Mei H W. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield [J]. Genetics, 2001, 158: 1737–1753.
    [219]. Yu S B, Li J X, Tan Y F, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proc. Natl. Acad. Sci USA, 1997, 94: 9226–9231.
    [220]. Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J]. Genetics, 1992, 132: 823–839.
    [221]. Guo M, Rupe M A, Danilevskaya O N. et al. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm [J]. Plant J, 2003, 36: 30–44.
    [222]. Guo M, Rupe M A, Zinselmeier C. et al. Allelic variation of gene expression in maize hybrids [J]. Plant Cell, 2004, 16: 1707–1716.
    [223]. Stupar R M and Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid [J]. Genetics, 2006, 173: 2199–2210.
    [224]. Swanson-Wagner R A, DeCook R, Jia Y, et al. Paternal dominance of transeQTL influences gene expression patterns in maize hybrids [J]. Science, 2009, 326: 1118–1120.
    [225]. Birchler J A, Auger D L, and Riddle N C. In search of the molecular basis of heterosis [J]. Plant Cell , 2003, 15: 2236–2239.
    [226]. Cao X and Jacobsen S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 16491–16498.
    [1]. Hinze L L and Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids [J]. Crop Science, 2003, 43: 46- 56.
    [2]. Ayd?n N, Sabri G, Ahmet Y, et al. Estimating Genetic Variation among Dent Corn Inbred Lines and Topcrosses Using Multivariate Analysis [J]. Journal of Applied Biological Sciences, 2007, 1: 63–70,
    [3]. Rencher A C. Methods of multivariate analysis [M]. John Willey & Sons Inc., 1995, p. 627.
    [4]. Smith J S C, Chin E C L, Shu H, et al. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree [J], Theor. Appl. Genet, 1997, 95: 163-173.
    [5]. Ajmone-Marsan P, Castiglioni P, Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers [J]. Theoretical and Applied Genetics, 1998, 96: 219-227.
    [6]. Pejic I, Ajmone-Marsan P, Morgante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs [J]. Theoretical and Applied Genetics, 1998, 97: 1248-1255.
    [7]. Melchinger A E. Genetic diversity and heterosis. p. 99–118. In J.G. Coors and S. Pandey (ed.) The genetics and exploitation of heterosis in crops [M], 1999. ASA, CSSA, and SSSA, Madison, WI.
    [8]. Schwartz D. Maize Mutants for the 2Ist Century. Meeting Report [J]. The Plant Cell, 1991, 851-856.
    [9]. Dhliwayo T, Pixley K, Menkir A. et al. Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines [J]. Crop Sci, 2009, 49: 1301-1310.
    [10]. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems [J]. Aust. J. Biol. Sci, 1956, 9: 463-493.
    [11]. Hayman B I. The theory and analysis of the diallel crosses [J]. Genetics, 1954, 39:798–809.
    [12]. Fry J D. Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED [M], 2004, p. 7–39. In A.R. Saxton (ed.) Genetic analysis of complex traits using SAS Books by Users Press, SAS Inst., Cary, NC.
    [13]. Zhang Y and Kang M S. DIALLEL-SAS: A SAS program for Griffing’s diallel analyses[J]. Agron. J, 1997, 89:176–182.
    [14]. Delhaize E and Ryan P R (1995) Aluminum toxicity and tolerance in plants [J]. Plant Physiol, 1990, 107: 315–321
    [15]. Poschenrieder C, Gunse B, Corrales I, et al. A glance into aluminum toxicity and tolerance [J]. J Sci Total Environ, 2008, 400: 356–368.
    [16]. Miyake K. The toxic action of aluminum salts upon the growth of the rice plant [J]. J Biol Chem, 1916, 25:23–8.
    [17]. Zheng S, Yang J. Target sites of aluminum phytotoxicity. Biologia Plantarum [J], 2005, 49: 321–331.
    [18]. Ma J F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants [J]. International Review of Cytology, 2007, 264: 225–252.
    [19]. Zheng K, Pan J W, Ye L, et al. Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals [J]. Plant Physiology, 2007, 143: 38–49.
    [20]. Silva S, Pinto-Carnide O, Martins-Lopes P, et al. Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat [J]. Environmental and Experimental Botany, 2010, 68: 91–98
    [22]. Bellon M R. Participatory methods in the development and dissemination of new maize technologies [M]. In: Pingali, P.L. (Ed.), CIMMYT 1999–2000 World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico, DF, 2001, pp. 4–20.
    [23]. Kinraide T B and Parker D R. Assessing the phytotoxicity of mononuclear hydroxy-aluminum [J]. Plant, Cell and Environment, 1989, 12:479-487,.
    [21]. Marschner H. Mineral Nutrition of Higher Plants [M], 2nd ed. Academic Press, London, 1995.
    [25]. Miranda L T, Furlani P R, Miranda L E C, et al. Genetics of environmental resistance and super genes: latent aluminium tolerance [J]. Maize Genet. Coop. Newslett, 1984, 58: 46–48.
    [26]. Lima M, Furlani P R, de Miranda Filho J B. Divergent selection for aluminium tolerance in a maize (Zea mays L.) population [J]. Maydica, 1992, 37: 123–132
    [27]. Pandey S, Ceballos H, Magnavaca R, et al. Genetics of tolerance to soil acidity in tropical maize [J]. Crop Sci, 1994, 34, 1511–1514.
    [28]. Borrero J C, Pandey S, Ceballos H. et al. Genetic variances for tolerance to soil acidity in tropical maize population [J]. Maydica, 1995, 40, 283–288.
    [29]. Salazar F S, Pandey S, Narro L, et al. Diallel analysis of acid-soil tolerant and intolerant maize populations [J]. Crop Sci, 1997, 37, 1457–1462.
    [30]. Wheeler D M. Effect of root hair length on aluminium tolerance in white clover [J]. J. Plant Nutr, 1995, 18: 2305–2312.
    [31]. Llugany M, Poschenrieder C, Barcelo J. Monitoring of aluminum-induced inhibition of root elongation in 4 maize cultivars differing in tolerance to aluminum and proton toxicity [J]. Physiol. Plant, 1995, 93:265-271.
    [32]. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J],Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 237–260.
    [33]. Ciamporova M. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels [J]. Biol. Plant. Prague, 2002, 45: 161–171.
    [34]. Barcelo J and Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review [J]. Env Exp Bot, 2002, 48, 75–92.
    [34]. Mahoney G P. The effect of aluminium and manganese on sub clover and Lucerne [M], In "Trace Element Review papers, 1982". Agricultural Services Library, Department of Agriculture, Victoria.
    [36]. Jones D and Kochian L. Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots; a role in aluminum toxicity? [J]. Plant Cell, 1995, 7: 1913–1922.
    [37]. Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA apacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics [J]. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.
    [38]. Dong Z Y, Wang Y M, Zhang Z J. et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb [J]. Theor. Appl Genet, 2006,113:196–205.
    [39]. Wang Y M, Dong Z Y, Zhang Z J, et al. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb) [J]. Genetics, 2005, 170:1945–1956.
    [40]. Mattioni C, Casasoli M, Gonzalez M and Ipinza R. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species [J]. Theor Appl Genet, 2002, 104: 1064-1070.
    [41]. Rolf J F. NTSYS-pc Numerical taxonomy and multivariate analysis system [P], 1998.
    [41]. Sneath P H A, and Sokal R R. Numerical taxonomy-the principles and practice of numerical classification [P], 1973. (W. H. Freeman: San Francisco).
    [42]. Matzingar D F, Mann T J and Cockerham C C. Diallel crosses in Nicotiana tabaccum [J]. Crop Sci, 1962, 2: 383-386.
    [43]. Wvnne J C Emery D A and Rice P M. Combining ability analysis over environments in spring wheat [J]. Wheat Infor. Serv. Japan, 1970, 67: 21-24.
    [44]. Nei M, and Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. Proc. Natl. Acad. Sci. (USA), 1979, 76:5256–5273.
    [45]. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture [J]. Physiologia Plantarum, 1962, 15:473-479.
    [46]. Boye-Goni S R and Marcarian V. Diallel analysis of Aluminium tolerance in selected lines of grain sorghum [J]. Crop Sc, 1985, 25: 749–52.
    [47]. Gourley L M, Rogers S A, Ruiz-Gomes C, et al. Genetic aspects of aluminium tolerance in sorghum [J]. Plant and Soil, 1990, 123: 211–6.
    [49]. Miller D, de Ruijter N C A, Emons A M C. From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips [J]. Journal of Experimental Botany, 1997, 48:1881-1896
    [50] Kinraide T B. Identity of the rhizotoxic Aluminium species [J]. Plant soil, 1991, 134:167-178.
    [51]. Takeda K, Kariuda M and Itoi H. Blueing of sepal colour of Hydrangea macrophylla [J]. Photochemistry, 1985, 24: 2251–2254.
    [52]. Gudu S, Maina A O, Onkware A O, et al. Screening of Kenyan Maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya [J]. Seventh Eastern and southern Africa Regional Maize Conference 11th -15th February. 2001, 216-221
    [53]. Phumichai C, Doungchan W, Puddhanon P, et al. SSR-based and grain yield-based diversity of hybrid maize in Thailand [J], Field Crops Research, 2008, 108: 157-162.
    [54]. Balestre M, Von Pinho R G, Souza J C, et al. Potential of maize single-cross hybrids for extraction of inbred lines using the mean components and mixed models with microsatellite marker information [J]. Genetics and Molecular Research, 2008, 7: 1106-1118
    [55]. Rojas B A and Sprague G. F. A comparison of variance components in corn yield trials: III. General and specific combining ability and their interaction with locations and years [J]. Agron. J, 1952, 44: 462-466.
    [56]. Singh T P, Jha P B and Akthar S A. A diallel cross analysis of some quantitative traits in maize [J]. Mysore J. Agric. Sci, 1977, 11: 462-465.
    [57]. Castiglioni P, Ajmone-Marsan P, Van Wijk R. et al. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution [J]. Theoretical and Applied Genetics, 1999, 99: 425-434.
    [58]. Wu M and Dai J. Use of AFLP marker to predict the hybrid yield and yield heterosis in maize [J]. Acta Rotanica Sinica, 2000, 42: 600-604.
    [59]. Crossa J, Vasil S K, Beck D L. Combining ability study in diallel crosses of CIMMYT's tropical late yellow maize germplasm [J], Maydica, 35: 273-278.
    [60]. Zhang J F, Kimatu J N, Guo W L, et al. Habitat fragmentation causes rapid genetic differentiation and homogenization in natural plant populations– A case study in Leymus chinensis [J]. African Journal of Biotechnology, 2009, 8: 3440-3447
    [61]. Doncheva S, Ameno′s M, Poschenrieder C and Barcelo J. Root cell patterning: a primary target for aluminium toxicity in maize [J]. Journal of Experimental Botany, 2005, 56:1213–1220
    [62]. Snowden K C and Gardner R C. Five genes induced by aluminum in wheat (Triticum aestivum L) roots [J]. Plant Physio. 1993, 103: 855-861.
    [63]. Richards K D, Schott E J, Sharma Y K, et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana [J]. Plant Physiol, 1998, 116: 409–418
    [64]. Landell M G A. Comportamento da cana-de-a?úcar (Saccharum spp.) frente a níveis de alúmínio, em solu??o nutritiva [M]. FCAV/UNESP, PhD thesis, 1989.
    [65]. Howeler R H and. Cadavid L F. Screening of rice cultivars for tolerance to Al toxicity in nutrient solutions as compared with a field screening method [J]. Agron. J, 1976, 68: 551–5.
    [66]. Camargo C E O, Wheat breeding. I. Inheritance of tolerance to aluminium toxicity in wheat [J]. Bragantia, 1981, 40: 33–45.
    [67]. Aniol A. Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell) [J]. Plant Soil, 1990, 123: 223-227.
    [68]. Bianchi-Hall C M, Carter T E, Rufty T W, et al. Heritability and resource allocation of aluminum tolerance derived from soybean PI 416937 [J]. Crop Sci, 1998, 38, 513-522. 5.
    [69]. Foy C D. Plant adaptation to acid, aluminum-toxic soils [J]. Commun. Soil Sci Plant Anal, 1988, 19, 959-987.
    [70]. Reid A D. Genetic control of reaction to aluminium in winter barley [M]. In: Nilan, R. A. (Ed.) Barley Genetics II. Proc. 2nd Int. Barley Genetic Symposium,1970, pp. 409–13. Washington State University Press, Pullman.
    [71]. Kerridge P C and Kronstad W E. Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivum Vill., Host.) [J]. Agron. J, 1968, 60: 710-711.
    [72]. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nuc. Acids Res, 1995, 23: 4407-4414.
    [1]. Maron L G, Kirst M, Mao C, et al. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots [J]. New Phytologist, 2008, 179:116-128.
    [2]. Ma J F, Ryan P R and Delhaize E. Aluminium tolerance in plants and complexing role of organic acids [J]. Trends Plant Sci, 2001, 6:273-278.
    [3]. Mona M A. Physiological Aspects of Aluminium Toxicity on Some Metabolic and Hormonal Contents of Hordeum Vulgare Seedlings [J]. Australian Journal of Basic and Applied Sciences, 2008, 2:549-560
    [4]. Bennetzen J L and Hake S C (eds.), Handbook of Maize [M]: Its Biology, Springer Science, 2009, pp 291.
    [5]. Rao I M, Zeigler R S, Vera R, et al. Selection and breeding for acid soil tolerance in crops: upland rice and tropical forages as case studies [J]. BioScience, 1993, 43:454–465.
    [7]. Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate transporter [J]. Plant J, 2004, 37:645–653.
    [8]. Pi?eros M A, Can?ado G M A, Maron L G, et al. Not all ALMT1-type transporters mediate Al-activated organic acid responses: The case of ZmALMT1—An anion selective transporter [J]. Plant J, 2007, 53:352–367.
    [9]. Wenzl P, Patino G M, Chaves A L, et al. The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices [J]. Plant Physiol, 2001, 125:1473–84.
    [10]. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:237–60.
    [11]. Sivaguru M and Horst W J. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize [J]. Plant Physiology, 1998, 116:155–163.
    [12]. Miller D, de Ruijter N C A, Emons A M C. From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips [J]. Journal of Experimental Botany, 1997, 48:1881-1896.
    [13]. Moore D P. Physiological effects of pH on roots. In: The plant root and the environment [M], Ed. E. W. Carson, University Press of Virginia, Charlottesville, 1974, 135–151.
    [14]. Eckardt N A. Deep sequencing maps the maize epigenomic landscape [J]. The Plant Cell, 2009, 21:1024–1026.
    [15]. Waterland R A, Jirtle R L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases [J]. Nutrition, 2004, 20:63–68.
    [16]. Rakyan V K, Chong S, Champ M E, et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission [J]. Proc Natl Acad Sci U S A, 2003, 100:2538–2543.
    [18]. Lukens L N and Zhan S. The plant genome’s methylation status and response to stress: implications for plant improvement [J]. Current Opinion in Plant Biology, 2007, 10:317–322.
    [19]. Kakutani T Epi-alleles in plants: inheritance of epigenetic information over generations [J]. Plant Cell Physiol, 2002, 43:1106–1111.
    [20]. Cumming J R, Cumming B A, Taylor G J. Patterns of root respiration associated with the induction of aluminium tolerance in Phaseolus vulgaris L [J]. Journal of Experimental Botany, 1992, 43: 1075–1081.
    [20]. Rapp R A and Wendel J F. Epigenetics and plant evolution [J]. New Phytol, 2005, 168:81–91.
    [21]. Chinnusamy V and Zhu J. Epigenetic regulation of stress responses in plants [J]. Current Opinion in Plant Biology, 2009, 12: 1–7.
    [22]. Fieldes M, Schaeffer S, Krech M, et al. DNA hypomethylation in 5-azacytidine-induced early flowering lines of flax [J]. Theor Appl Genet, 2005, 11:136-149.
    [23]. Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States [J]. Crop Sci, 1999, 39: 1622-1630.
    [24]. Guo M, Rupe M, Yang X, et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis [J]. Theor Appl Genet, 2006, 113:831-845.
    [25]. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry [J]. Nature, 1999, 401: 157-161.
    [26]. Xiong L Z, Xu C G, Shagi-Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. Mol. Genet. Genomics, 1999, 261:439–446.
    [27]. Alleman M, Sidorenko L, McGinnis K, et al. An RNA dependent RNA polymerase is required for paramutation in maize [J]. Nature, 2006, 442: 295-298.
    [28]. Gudu S, Maina A O, Onkware A O, et al. Screening of Kenyan Maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya [J]. Seventh Eastern and southern Africa Regional Maize Conference 11th -15th February. 2001, 216-221.
    [29]. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 1962, 15:473-479.
    [30]. Kinraide T B. Identity of the rhizotoxic Aluminium species [J]. Plant soil, 1991, 134:167-178.
    [31]. Can?ado G M A, Loguercio L L, Martins P R, et al. Hematoxylin staining as aphenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.) [J]. Theor Appl Genet, 1999, 99:747–754.
    [32]. Kidwell K K and Osborn T C Simple plant DNA isolation procedures. Pages 1–13 in J. S. Beckman and T. C. Osborn, eds. Plant genomes: methods for genetic and physical mapping [M], 1992. Kluwer Academic Publishers, Amsterdam, the Netherlands.
    [33]. Dong Z Y, Wang Y M, Zhang Z J, et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb [J]. Theor. Appl Genet, 2006, 113: 196–205.
    [34]. Wang Y M, Dong Z Y, Zhang Z J, et al. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.) [J]. Genetics, 2005,170: 1945–1956.
    [35]. Mattioni C, Casasoli M, Gonzalez M, et al. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species [J]. Theor Appl Genet, 2002, 104:1064-1070.
    [36]. Sneath P H A and Sokal R R. Numerical taxonomy [P]. W.H. Freeman, san Francisco, Calif, 1973.
    [37]. Rohlf F J. NTSYSpc Numerical taxonomy and multivariate analysis system [P]. Exeter Publications, Setauket. New York, 1998.
    [38]. Hadgu K M, Rossing W A H, Kooistra L, et al. Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray [J]. Northern Ethiopia Food Sec, 2009, 1:83–97.
    [39]. Llugany M, Poschenrieder C, Barcelo J. Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity [J]. Physiologia Plantarum, 1995, 93:265–271.
    [41]. Rangel A F, Rao I M and Horst W J Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance [J]. Journal of Experimental Botany, 2007, 58:3895-3904
    [42]. Roy A K, Sharma A and Taludker G. Some aspects of aluminum toxicity in plants [J]. The Bot Review,1988, 54:145-147.
    [43]. Von Uexkull H R and Mutert E. Global extent, development and economic impact of acid soils. In: Date RA (ed) Plant-Soil interaction at Low pH: Principles and Management [M]. Klüwer Academic Publishers, Dordrecht, 1995, pp 5-19.
    [44]. Pandey S, Narro L, Friesen D K, et al. Breeding maize for tolerance to soil acidity [J]. Plant Breed Rev, 2007, 28:59-100.
    [45]. Mugai E N, Agong S G, Matsumoto H. Aluminium tolerance mechanisms in Phaseolus vulgaris L.: citrate synthase activity and TTC reduction are well correlated with citrate secretion [J]. Soil Sci Plant Nutr, 2000, 46: 939–950.
    [46]. Shen H, Yan X, Wang X, Zheng S. Exudation of citrate in common bean in response to aluminum stress [J]. J Plant Nutr, 2002, 25:1921–1932.
    [47]. Magalhaes J V, Liu J, Guimara?es C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum [J]. Nat Genet, 2007, 39:1156–1161.
    [48]. Can?ado Caniato F F, Guimaraes C T, Shaffert, R E, et al. Genetic diversity for aluminum tolerance in sorghum [J]. Theor Appl Genet, 2007, 114:863-876.
    [49]. Guo P, Bai G, Carver B, et al. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress [J]. Mol Genet Gen, 2007, 277:1-12.
    [50]. Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress [J]. J Biol Chem, 2002, 277:37741-37746.
    [51]. Kovarik A, Koukalova B, Bezdek M., et al. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress [J]. Theor Appl Genet, 1997, 95:301-306.
    [52]. Boscolo P R, Menossi M and Jorge R A. Aluminum-induced oxidative stress in maize [J]. Phytochemistry, 2003, 62:181-189.
    [53]. Mena S, Ortega A and Estrela J M. Oxidative Stress and Mechanisms of Environmental Toxicity [J]. Mutation Research/Genetic Toxicology and Environmental. Mutagenesis, 2009, 674:36-44.
    [54]. Tani E, Polidoros A N, Nianiou-Obeidat I, et al. DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids [J]. Maydica, 2005, 50:19-23.
    [55]. Hyten D L, Song Q, Zhu Y, et al. Impacts of genetic bottlenecks on soybean genome diversity [J]. Proc Natl Acad Sci USA, 2006, 103:16666-16671.
    [56]. Zhao X, Chai Y and Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids [J]. Plant science, 2007, 172: 930-938.
    [57]. Tariq M and Paszkowski J. DNA and histone methylation in plants [J], Trends Genet, 2004, 20:244–251.
    [58]. Alamillo J M, Saenz P, Garcia J A, Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco [J]. Plant journal, 2006, 48: 217-227
    [59]. Law J A and Jacobsen S E. Dynamic DNA Methylation [J]. Science, 2009, 323:1568-1569.
    [60]. Nobuta K, Cheng L, Roli S, et al. Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant [J]. Proc. Natl. Acad. Sci. USA, 2008, 105:14958– 14963.
    [61]. Tsaftaris A S and Poudoros A N. DNA methylation and plant breeding [J]. Plant Breeding Rev, 2000, 18:18-176.
    [1]. Havlin J L, Beaton J D, Tisdale S L, et al. Soil Fertility and Fertilizers: an Introduction to Nutrient Management [M], sixth ed. Prentice Hall, Upper Saddle River, NJ, 1999, pp 499.
    [2]. Bolan N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants [J]. Plant and Soil, 1991, 134: 189–207.
    [3]. Driscoll C T, Lawrence G B, Bulger A J, et al. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies [J]. BioScience, 2001, 51:180–198.
    [4]. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:237–60.
    [5]. Moore D P. Physiological effects of pH on roots [M]. In: The plant root and the environment, Ed. E. W. Carson, University Press of Virginia, Charlottesville, 1974, 135–151.
    [6]. Foy C D. Plant adaptation to acid, aluminum-toxic soils [J]. Commun. Soil Sci. Plant Anal, 1988, 19, 959-987.
    [7]. Delhaize E, Craig S, Beaton C D, et al. Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices [J]. Plant Physiol, 1993, 103: 685–693.
    [8]. Bradshaw A D and McNeilly T. Evolution and Pollution [M]. Edward Arnold, London, 1981.
    [9]. Gartside D W and McNeilly T. Genetic studies in heavy metal tolerant plants. I. Genetics of zinc tolerance in Anthoxanthum odoratum [J]. Heredity, 1974, 32: 287–99.
    [10]. Giaveno C D and Miranda-Filho J B. Rapid screening for aluminum tolerance in maize (Zea mays L.) [J]. Genetics and Molecular Biology, 2000, 23: 847-850.
    [11]. Gudu S, Maina A O, Onkware A O, et al. Screening of Kenyan Maize germplasm for tolerance to low pH and aluminium for use in acid soils of Kenya [J]. Seventh Eastern and southern Africa Regional Maize Conference 11th -15th February, 2001, pp 216-221.
    [12]. Cregan P D. Soil acidity and associated problems—Guidelines for farmer recommendations [J]. Department of Agriculture, NSW. Ag. Bulletin 7, October, 1980.
    [13]. Mahoney G P. The effect of aluminium and manganese on sub clover and Lucerne [J].In "Trace Element Review papers, 1982". Agricultural Services Library, Department of Agriculture, Victoria, 1982.
    [14]. Maron L G, Kirst M, Mao C, et al. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots [J]. New Phytologist, 2008, 179:116-128.
    [15]. Tolra R, Barcelo J, Poschenrieder C. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance [J]. Journal of Inorganic Biochemistry, 2009, 103:1486–1490.
    [16]. Barcelo J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review [J]. Environ. Exp. Bot, 2002, 48, 75–92.
    [17]. Rout G R, Samantaray S, Das P. Aluminium toxicity in plants: a review [J]. Agronomie, 2001, 21: 3–21.
    [18]. Abreo K, Jangula J, Jain SK, et al. Aluminium uptake and toxicity in cultured mouse hepatocytes [J]. Journal of the American Society of Nephrology, 1991, 1: 1299–1304.
    [19]. Macdonald T L, Martin R B. Aluminium ion in biological systems. Trends in Biochemical Sciences, 1988, 13, 15–19.
    [20]. Yamamoto Y, Kobayashi Y, Devi S R, et al. Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells [J]. Plant Physiol, 2002, 128: 63–72.
    [21]. Fyiad A A. Aluminium toxicity and oxidative damage reduction by melatonin in rats [J]. Journal of Applied Sciences Research, 2007, 3:1210–1217.
    [22]. Lima P D L, Leite D S, Vasconcellos M C, et al. Genotoxic effect of aluminium chloride in cultured human lymphocytes treated in different phases of cell cycle [J]. Food and Chemical Toxicology, 2007, 45, 1154–1159.
    [23]. Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations [J]. Plant Cell Physiol, 2002, 43:1106–1111.
    [24]. Rapp R A and Wendel J F. Epigenetics and plant evolution [J], New Phytol, 2005, 168:81–91.
    [25]. Chinnusamy V and Zhu J. Epigenetic regulation of stress responses in plants [J]. Current Opinion in Plant Biology, 2009, 12:1–7.
    [26]. Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States [J]. Crop Sci, 1999, 39:1622-1630.
    [27]. Eckardt N A. Deep sequencing maps the maize epigenomic landscape [J]. The Plant Cell, 2009, 21:1024–1026.
    [28]. Hoecker N, Keller B, Piepho H P, et al. Manifestation of heterosis during early maize (Zea mays L.) root development [J]. Theoretical and Applied Genetics, 2006, 112, 421-429.
    [29]. Rakyan V K, Chong S, Champ M E, et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission [J]. Proc Natl Acad Sci U S A, 2003, 100:2538–2543.
    [30]. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture [J]. Physiologia Plantarum, 1962, 15:473-479.
    [31]. Kinraide T B. Identity of the rhizotoxic Aluminium species [J]. Plant soil, 1991, 134:167-178.
    [32]. Furlani P R and Clark R B. Screening Sorghum for Aluminum Tolerance in Nutrient Solutions [J]. Agron J, 1981, 73:587-594
    [34]. Cancado G M A, Loguercio L L, Martins P R, et al. Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.) [J]. Theor Appl Genet, 1999, 99:747–754.
    [33]. Shaff J, Schultz B and Craft E. GEOCHEM-PC Version 1.0 [P]. Originally published in 1995, by Dave Parker, Bud Norvell, and Rufus Chaney, 2008.
    [35]. Kidwell K K and Osborn T C. Simple plant DNA isolation procedures. Pages 1–13 in J. S. Beckman and T. C. Osborn, eds. Plant genomes: methods for genetic and physical mapping [M]. Kluwer Academic Publishers, Amsterdam, the Netherlands, 1992.
    [36]. Dong Z Y, Wang Y M, Zhang Z J, et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb [J]. Theor. Appl Genet, 2006, 113:196–205.
    [37]. Wang Y M, Dong Z Y, Zhang Z J, et al. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.) [J]. Genetics, 2005, 170:1945–1956.
    [38]. Mattioni C, Casasoli M, Gonzalez M, et al. Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species [J]. Theor Appl Genet, 2002, 104:1064-1070.
    [39]. Sneath P H A and Sokal R R. Numerical taxonomy [P]. Freeman W H. San Francisco, Calif, 1973.
    [40]. Rohlf F J. NTSYSpc Numerical taxonomy and multivariate analysis system [P]. Exeter Publications, Setauket. New York, 1998.
    [41]. Abbe E C and Stein O L. The growth of the shoot apex in maize: embryogeny [J]. Am J Bot, 1954, 41: 285– 298.
    [42]. Feldman L. The maize root. In: The Maize Handbook [M] (Freeling M and Walbot V. eds.) Springer , New York,1994, pp. 29– 37 .
    [43]. Feix G, Hochholdinger F. and Park W J. Maize root system and genetic analysis of its formation [M]. In: Plant Roots the Hidden half (Y. Waisel , A. Eshel and U. Kafkafi eds.) Marcel Dekker , New York, 2002.
    [44]. Hochholdinger F, Woll K, Sauer M et al. Functional genomic tools in support of the genetic analysis of root development in maize (Zea mays L.) [J]. Maydica (50th anniversary edition), 2005, 50: 437–442.
    [45]. Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu. Rev. Plant Biol, 2006, 57: 233– 266.
    [46]. Watt M, Silk W K and Passioura J B. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere [J]. Ann. Bot, 2006, 97: 839– 855.
    [47]. McCully M E. Roots in soil: unearthing the complexities of roots and theirrhizospheres [J]. Ann. Rev. Plant Physiol. Plant Mol. Biol, 1999, 50: 697– 718.
    [48]. Welcker C, Boussuge B, Bencivenni C, et al. Are source and sinks strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. J. Exp. Bot, 2007, 58: 339-349.
    [49]. Tirosh I, Weinberger A, Carmi M, et al. A genetic signature of interspecies variations in gene expression [J]. Nature Genetics, 2006, 38: 830– 834.
    [50]. Choi J K and Kim Y. Epigenetic regulation and the variability of gene expression [J]. Nature Genetics, 2008, 40, 141– 147.
    [51]. López-Maury L, Marguerat S and B?hler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation [J]. Nature Reviews Genetics, 2008, 9, 583-593.
    [52]. Rangel A F, Rao I M and Horst W J. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance [J]. Journal of Experimental Botany, 2007, 58:3895-3904.
    [53]. Hanson J B in: Tinker, P B, and L?uchli, A (ed.) Advances in Plant Nutrition [M]. Praeger Special Studies– Praeger, 1984.
    [54]. Kaneko M, Yoshimura E, Nishizawa K N, et al. Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microscopy [J]. Soil Sci Plant Nutr, 1999, 45: 701–712.
    [55]. Teraoka T, Kaneko M, Mori S, et al. Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings [J]. J. Plant Physiol, 2002, 159: 17–23.
    [56]. Delmer D P. Cellulose biosynthesis: exciting times for a difficult field of study [J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 245–276.
    [57]. Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress [J]. J Biol Chem, 2002, 277:37741-37746.
    [58]. Llugany M, Poschenrieder C, Barcelo J. Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity [J]. Physiologia Plantarum, 1995, 93:265–271.
    [59]. Boscolo P R, Menossi M and Jorge R A. Aluminum-induced oxidative stress in maize [J]. Phytochemistry, 2003, 62:181-189.
    [60]. Schwartz D. Maize Mutants for the 2Ist Century. Meeting Report [J]. The Plant Cell, 1991, 851-856.
    [61]. Mena S, Ortega A and Estrela J M. Oxidative Stress and Mechanisms of Environmental Toxicity [J]. Mutation Research/Genetic Toxicology and Environmental. Mutagenesis, 2009, 674:36-44.
    [62]. Scandalios J G. Oxygen stress and superoxide dismutase [J], Plant Physiol, 1993, 101: 7–12.
    [63]. Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death [J]. Plant Physiol,2002,128:1271–1281.
    [64]. del Rio LA, Sandalio LM, Palma JM, et al. Metabolism of oxygen radicals in peroxisomes and cellular implication [J]. Free Radic. Biol. Med, 1992, 13: 557–580.
    [65]. Devi S R, Yamamoto Y, Matsumoto H. An intracellular mechanism of aluminium tolerance associated with high antioxidant status in cultured tobacco cells [J]. J. Inorg. Biochem, 2003, 97: 59–68.
    [66]. Panda S K, Singha L B, Khan M H Does Aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata)? [J]. Bulg. J. Plant Physiol, 2003, 29: 77–86.
    [67]. Yamaguchi Y, Yamamoto Y, Matsumoto H. Cell death process initiated by a combination of aluminium and iron in suspensioncultured tobacco cells [J], Soil Sci. Plant Nutr, 1999, 45: 647–657.
    [68]. Magalhaes J V, Liu J, Guimar?es C T, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum [J]. Nat Genet, 2007, 39:1156–1161.
    [69]. Li, Y.-Z., et al., Physiological responses and comparative transcriptional profiling of maize roots and leaves under imposition and removal of aluminium toxicity [J]. Environ. Exp. Bot. 2010, doi:10.1016/j.envexpbot.2010.03.009
    [70]. Alamillo J M, Saenz P, Garcia J A. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco [J]. Plant journal, 2006, 48:217-227.
    [71]. Tsaftaris A S and Poudoros A N. DNA methylation and plant breeding [J]. Plant Breeding Rev, 2000, 18:18-176.
    [72]. Dipple K M, Zhang Y H, Huang B L, et al. Glycerol kinase deficiency: evidence for complexity in a single gene disorder [J]. Hum Genet, 2001, 109:55–62.
    [73]. Clipsham R, McCabe E R. DAX1 and its network partners: exploring complexity in development [J]. Mol Genet Metab, 2003, 80:81–120.
    [74]. Kuleshov N N. World’s diversity of phenotypes of maize [J]. J. Agron, 1933, 25: 688–700.
    [75]. Walbot V. Maize genome in motion [J]. A report on the Maize Genetics Conference held in Washington DC, USA, 27 February-1 March, 2008. Genome Biology, 2008, 9:303.
    [76]. Dubreuil P, Dufour P, Krejci E, et al. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Science, 1996, 36: 790- 799.
    [77]. Gunse′B., Poschenrieder C., BarcelóJ. The role of ethylene metabolism in the short-term responses to aluminium by roots of two maize cultivars different in Al-resistance [J]. Environmental and Experimental Botany, 2000, 43: 73–81.
    [78]. Kollmeier M, Felle H H and Horst W J. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduce basipetal auxin flow involved in inhibition of root elongation by aluminum? [J]. Plant Physiol, 2000, 122: 945-956.
    [79]. Poschenrieder C, GunséB, Corrales I, et al. A glance into aluminum toxicity andresistance in plants [J]. Science of the Total Environment, 2008, 400: 356-368.
    [80] Kent W J. BLAT-The BLAST-Like Alignment Tool [P]. Genome Res, 2002, 4: 656-664.