麻疯树BIBAC文库的构建和微粒体ω-3脂肪酸去饱和酶基因的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树{Jatropha curcas L.)是大戟科能源作物,主要分布于全球热带和亚热带地区,种仁中脂肪类物质含量高,约21%的饱和脂肪酸和70%以上的不饱和脂肪酸,种子油流动性好,被认为是最有可能成为替代化石能源的植物油之一。为深入开展麻疯树基因组学研究,图位克隆功能基因、构建高密度物理图谱和基因组大规模测序,基因组大片段文库是必不可少的基础工具和平台。基因工程技术是改变植物油成分、培育新品种的有效方法之一,植物微粒体co-3脂肪酸去饱和酶基因(FAD3)是脂肪酸去饱和酶基因家族一员,主要催化细胞中亚油酸到亚麻酸的反应,研究表明在非光合作用的组织中,FAD3蛋白主要为ω-3去饱和酶的功能,催化组织中约80%三烯脂肪酸的合成。因此,对麻疯树微粒体ω-3脂肪酸去饱和酶基因的研究,不仅可以加深对植物种子油脂合成途径的理解,也为利用基因工程改善麻疯树种子油成分提供了理论依据。
     麻疯树BIBAC文库,用BamHⅠ限制性内切酶对基因组DNA进行部分酶切,两次酶切片段选择后,连接载体pCLD04541,转化E.coliDH1OB感受态细胞,蓝白斑筛选阳性克隆。该文库含有30,720个克隆,随机挑选214个克隆进行插入片段的评估,发现片段大小主要集中在141-160kb范围,平均插入片段大小为131.9kb,80%的克隆都具有100kb以上的插入片段,文库空载率为7.9%,所以该文库实际含有插入片段的BIBAC克隆数大约为28,293个。麻疯树基因组约为416Mbp,因此该文库约覆盖麻疯树二倍体基因组8.9倍,理论上筛选出任意基因的几率在99%以上。对随机挑取的5个BIBAC克隆进行稳定性检测表明,插入片段可以在宿主大肠杆菌中稳定保存。
     将麻疯树BIBAC文库中27,648个克隆(8.0×)以4×4点阵形式制备了高密度杂交膜。每张膜(22.5cm×11.25cm)上含有9,216个BIBAC克隆,每个克隆含有两个拷贝,高密度杂交膜包含整个文库90%以上的克隆,覆盖麻疯树二倍体基因组8.0倍。从NCBI上已经公布的与麻疯树脂肪酸代谢相关基因中选取9个基因(FAD3, FAD6, FAD7, ACCase, KAS Ⅰ, KASⅡ, KASⅢ acyl-ACP thioesterase和chloroplast acyl-ACP thioesterase),根据序列信息共设计15对探针同麻疯树高密度杂交膜杂交进行筛选,除acetyl-CoA carboxylase基因外,其他8个基因都检测到了阳性克隆,平均每个基因可以得到5.3个阳性克隆,该结果说明所构建的麻疯树BIBAC文库能够满足基因克隆研究的需要,并将是构建物理图谱及大规模基因组测序的有力工具。
     对选取的9个麻疯树脂肪酸代谢相关基因进行Southern分析,结果表明这9个基因在麻疯树基因组中均为单拷贝。
     将Southern结果中含有FAD3基因的克隆22G19和含有FAD7基因的克隆64D4分别测序并进行数据拼接,同NCBI数据库进行比对后结果表明,麻疯树叶绿体ω-3脂肪酸去饱和酶基因(FAD7)长度约为2655bp,含有8个外显子和7个内含子,氨基酸525个,转录起始位点位于上游-424~--374bp区域,起始碱基为位于-385bp的G,启动子区域为-1730-385bp。顺式作用元件分析表明FAD7基因含有较多的光响应元件,其次为对低温和高温的响应元件,干旱响应元件和胚乳特异表达的顺式作用元件。麻疯树微粒体ω-3脂肪酸去饱和酶基因(FAD3)长度约为1797bp,含有8个外显子和7个内含子,氨基酸377个,转录起始位点位于上游-93-23bp区域,起始碱基为位于-54bp的A。顺式作用元件主要为光响应元件、抗逆响应元件、厌氧诱导响应元件和玉米蛋白代谢响应元件。
     从麻疯树叶片中克隆FAD3基因,该基因ORF为1134bp,编码377个氨基酸,分子量约为41.1kD,命名为JcFAD3。同源序列比对发现JcFAD3同油桐、白毛杨、蓖麻、大豆和亚麻的氨基酸序列相似性均较高。进化树分析表明,JcFAD3与油桐FAD3的亲缘关系最近。结构分析表明,JcFAD3氨基酸序列含有完整的Deltal2-FADS结构域和Membrane-FADS结构域,三个保守的组氨酸富集区分别位于94位(HDCGH),130位(HRTHH)和297位(HVIHH)。
     对JcFAD3基因在麻疯树根、茎、叶和叶柄的组织中进行表达分析,结果表明JcFAD3为组成型表达,根中的表达量最高,叶中的表达量最低。麻疯树种子形成过程中,JcFAD3在种子形成的初期和中期表达量逐渐降低,后期表达量上升。植物细胞中三烯酸的含量同植物对温度的敏感性有直接关系。本研究中将麻疯树分别进行4℃和40℃处理,结果发现JcFAD3在不同温度下均有表达,低温情况下,随着处理时间的增加,表达量呈上升趋势;高温情况下,表达量下降,且在整个高温处理阶段,表达量均较低。
     利用INVScl-pYes2.0酿酒酵母转化体系对JcFAD3基因进行酵母表达研究,气象色谱分析转基因酵母和对照酵母中的脂肪酸含量,结果表明,同对照酵母相比,转JcFAD3基因的酵母菌中多出一个亚麻酸的色谱峰,说明JcFAD3蛋白在酵母中得到了正确的表达,表达产物可以将底物亚油酸转化为亚麻酸。
     根据植物表达载体pVKH-35S-GUS的多克隆位点特征和麻疯树FAD3基因序列特征,构建了pVKH-JcFAD3过表达载体,采用农杆菌介导法转化野生型拟南芥,PCR鉴定表明获得5株阳性植株。对转JcFAD3基因的拟南芥和野生型拟南芥叶片分别提取脂肪酸,气相色谱分析结果表明,野生型拟南芥和转JcFAD3基因的拟南芥叶片中亚麻酸含量分别为21%和37.5%,说明JcFAD3在拟南芥中得到了正确表达,并提高了转基因拟南芥中亚麻酸的含量。
Jatropha curcas L., a member of the Euphorbiaceae, is bio fuel crop and widely distributed in tropical and subtropical areas all over the world. The Jatropha kernel contains high amounts of lipids which with21%saturated fatty acid and over70%unsaturated fatty acid and its seed oil with low viscosity, that it has been considered as one of the substitutes for fossil fuels. In order to investigate Jatropha curcus genome, gene cloning and characterization, physical mapping and large-scale genome sequencing of Jatropha L., Large-insert DNA libraries are fundamental and useful tools and platforms. Genetic engineering technology is one of the effective ways to alter seed oil composition and breed new varieties. Microsomal ω-3fatty acid desaturase (FAD3) of plant is a member of fatty acid desaturase family and catalyze the reaction of linoleic acid to linolenic acid, studies shown that FAD3protein is the major ω-3desaturase in non-photosynthetic tissues and it accounts for nearly80%of C18:3syntheses. Therefore, the study of Jatropha microsomal ω-3fatty acid desaturase will not only lead to a better understanding of seed oil syntheses but also provide the thesis for altering the Jatropha seed oil composition through genetic engineering.
     The BIB AC library of Jatropha L. which constructed by BamH I with the vector pCLD04541, consisting of30,720clones.214clones in the library have been random sampled and analyzed. Results showed that the library has an average insert size of131.9kbp and more than80%of the clones had inserts larger than100kb, which ranged from141to160kbp. As7.9%of its clones are estimated to none inserts, the BIBAC library had approximately28,293clones containing Jatropha L. genomic DNA inserts. Since the haploid Jatropha L. genome is around416Mbp, the library has a genome coverage equivalent to approximately8.9x haploid genomes and provides more than99%probability of identifying any single-copy gene. Five BIBAC clones were randomly picked and analyzed their stability. Results revealed that the insert DNA was stable in the vector for long terms of cultivation.
     A subset (8.0x) of the Jatropha L. BIBAC library double-spotted onto three high-density nylon filters, containing27,648clones in total with9,216clones on each filter, representing90%of the whole library. Then the filters were screened by overgos designed nine fatty acid metabolism related genes in Jatropha (FAD3, FAD6, FAD7, ACCase, KASⅠ, KASⅡ, KASⅢ, acyl-ACP thioesterase and chloroplast acyl-ACP thioesterase). The filters Hybridization results showed that from one to fourteen positive clones were identified for each gene, except acetyl-CoA carboxylase. A total of forty-two positive clones were identified, with an average of5.3positive clones per gene. This result indicates that the Jatropha BIBAC library is suitable for gene cloning and a powerful tool for physical map construction and genome sequencing.
     The Southern result of nine fatty acid metabolism related genes in Jatropha shows that all of the nine genes are single copy in Jatropha genome.
     Positive clones of clone22G19which contains FAD3gene and clone64D4which contains FAD7gene in Southern hybridization had been sequenced and data spliced, and NCBI blast shows that FAD7is2655bp, containing8exons and7introns and encoding525amino acids. The transcriptional start site is base G locating at-385bp and promoter area is-1730--385bp. Analysis of cis-acting element of FAD7promoter shows that FAD7has many light responsiveness elements, others were heat stress and low-temperature stress resposiveness, drought-inducibility and endosperm expression cis-acting elements. FAD3is1797bp, containing8exons and7introns and encoding377amino acids. The transcriptional start area is-93~-23and the start site is base A locating at-54bp. Analysis of cis-acting element of FAD3promoter shows that cis-acting elements in FAD3are mainly involved in light responsiveness and, defense and stress responsiveness, anaerobic induction, zein metabolism regulation and heat stress responsiveness.
     Jatropha FAD3gene was cloned from Jatropha leaves, it was named JcFAD3with an open reading fame of1134bp which encoding377amino acid residues with the predicted molecular mass of41.1kD. The deduced amino acid sequence showed high identities with FAD3from Vernicia fordii, Populus tomentosa, Ricinus communis, Glycine max and Linum usitatissimum by homologous sequences blast. The phylogenetic analysis of various FAD3indicated that JcFAD3was close to FAD3from Vernicia fordii. The structural analysis of FAD3protein shows that FAD3has Deltall2-like domain, Membrane-FADS domain and three conserved His motifs which are located at94(HDCGH),130(HRTHH) and297(HVIHH), respectively.
     The expression patterns of JcFAD3in different tissue of Jatropha were investigated by real-time PCR which showed that JcFAD3was expressed in all the organs of Jatropha and the expression level was the highest in the root and the lowest in the leaves. During the development of Jatropha seed, JcFAD3in the seed was expressed decreasingly in the early and middle stage and increasingly in the late stage. The amount of trienoic fatty acids in the cell are the direct result response to temperature in plant. After exposing Jatropha at4℃and40℃, respectively, it was found that JcFAD3expressed at different temperature and its expression was increased at low temperature while decreased at high temperature.
     INVScl-pYes2.0yeast transformation system was used to study JcFAD3gene expression in yeast cell and then the fatty acid contents in transformed yeast cell with empty vector and JcFAD3were also investigated by GC analysis, the result showed that a novel fatty acid methyl ester peak corresponding to linolenic acid methyl ester standard was detected in the yeast cell transformed with JcFAD3, which was absent in the yeast cell containing empty vector. This indicated that JcFAD3gene was expressed correctly and JcFAD3protein catalyzed linoleic acid to linolenic acid in yeast cell.
     The expression vector pVKH-JcFAD3was constructed based on the character of pVH-35S-GUS and JcFAD3gene and then transformed into wild-type Arabidopsis by Agrobacterium-mediated method.5transgenic plants with JcFAD3were obtained by PCR analysis. The fatty acid was isolated from wild Arabidopsis leaves and transgenic Arabidopsis showed there proportions were21%and37.5%in total fatty acids respectively which detected by GC analysis.
引文
[1]曹英萍,石金磊,李钟,明凤.水稻OsFAD6的克隆及其家族成员对非生物胁迫的响应.遗传,2010,32(8):839-847
    [2]陈书元,晁金泉,徐有明,等.甘蓝型油菜一新疆野生油菜二体异附加系BAC文库的构建.中国油料作物学报,2008,30(2):137-142
    [3]邓志军,程红焱,宋松泉.麻疯树种子的研究进展.云南植物研究,2005,27(6):605-612
    [4]官玲亮.红花(Carthamus tinctorius L.)不同组织多不饱和脂肪酸积累模式及调控机制.四川农业大学博士论文.2011
    [5]胡艳.亚洲棉和陆地棉基因组BAC文库的构建及初步应用.南京农业大学博士学位论文.2008
    [6]李令勇.大豆FAD2基因的克隆及蒺藜苜蓿、大豆P450超基因家族的鉴定.2006.南京农业大学博士学位论文
    [7]李晓丹,肖玲,吴刚,武玉花,肖玲,卢长明.大豆种子发育过程总脂肪酸积累模式研究.大豆科学.2007,26(4):506-510
    [8]卢善发.植物脂肪酸的生物合成与基因工程。植物学通报,2000,17(6):481-91
    [9]欧文军,王文泉,李开绵.120份小桐子种质的分子遗传多样性分析.热带作物学报,2009,30:284-292
    [10]王文明,江光怀,王世全等.高覆盖率水稻BAC文库的构建及抗病基因相关克隆的筛选,遗传学报,2001,28(2):120-128
    [11]吴宏梅.北京油鸡细菌人工染色体文库的构建与肉质风味相关基因的研究[D].中国农业科学院,2008
    [12]于超.温度胁迫下番茄内质网ω-3脂肪酸去饱和酶基因的表达和功能研究.山东农业大学博士论文,2009
    [13]张洪涛,杨家森,单雷,毕玉平.大豆ω-3脂肪酸脱氢酶基因GmFAD3C在酿酒酵母中的表达.生物工程学报,2006,22(1):33-38
    [14]张金平,秦小波,徐莺,陈放.麻疯树(Jatropha curcas)毒蛋白curcin基因家族成员的分离和描述.四川大学学报(自然科学版),2005,42(5):1042-1046
    [15]张无敌,宋洪川,韦小岿,刘祖明.元谋县小桐子种植的适应性研究.农业与技术,2001,21(1):22-25
    [16]张洋,王志强,刘斌,张晓军,姜枫,相建海.DH10B菌株高效电转化条件探究.生物工程学报,2007,23(2):347-351
    [17]郑拥民.棉花品种细菌人工染色体(BAC)文库的构建.河北农业大学硕士学位论文,2005
    [18]Anai T, Koga M, Tanaka H, Kinoshita T, Tahman SM, Takagi Y. Improvement of rice(Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep.2003,21:988-992
    [19]Angustus GDPS, Jayabalan M, Seiler GJ. Evaluation and bioinduction of energy components of Jatropha curcas. Biomass Bioenergy,2002,23:161-164
    [20]Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science,1992,258:1353-1355
    [21]Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N. Human BAC library:construction and rapid screening. Gene,1997,191:69-79
    [22]Avelange-Macherel MH, Macherel D, Wada H, Murata N. Site-directed mutagenesis of histidine residues in the △ 12 acyl-lipid desaturase of Synechocystis. FEBS,1995, 361:111-114
    [23]Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P. Spatial and temporal expressions of two distinct oleate desaturases from olive(Olea europaea L.). Plant Science,2005,168(2):547-555
    [24]Basha SD, Sujatha M. Inter and intra-population variability of Jatropha curcas(L.) Characterized by RAPD and ISSR markers and development of population-specifie SCAR markers. EuPhytiea.2007,156:375-386
    [25]Bell E, Creelman R, Mullet J. A chloroplast lipoxygenase is required for wound induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci. USA,1995, 92(19):8675-8679
    [26]Bent AF, Kunkel BN, Dahlbeck D, Brown K, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant disease resistance enes.Science,1994,265:1856-1860
    [27]Bilyeu KD, PLa., Sleper DA., Beuselinck PR. Three microsomal omega-3 fatty-aicd desaturase genes contribute to soybean linolenic acid levels. Crop Sci.,2003, 43:1833-1838
    [28]Birren B, Green ED, Klapholz S, et al.. Bacterial artificial chromosomes. Birren B,et al. Cloning Systems(3), In Genome Analysis:A laboratory manual. Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press,1997,242-295
    [29]Broadwater JA., Whittle E, Shanklin J. Saturation and hydroxylation residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem.2002, 277:15613-15620
    [30]Broun P, Shanklin J, Whittle Ed, Somerville Chris. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversityof plant lipids. Science,1998, 282(5392):1315-1317
    [31]Browse J, Slack R. The effects of temperature and oxygen on the rates of fatty acid synthesis and oleate desaturation in safflower(Carthamus tinctorius) seed. Biochim Biophys Acta,,1983,753:145-152
    [32]Bruner AC, Jung S, Abbott AG, Powell GL. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry,2001,57:643-652
    [33]Burke DT, Carle GF, Olson MV. Cloning of large segments of exogenous DNA into years by means of artificial chromosome vectors. Science,1987,236:806-812
    [34]Cahoon EB, Lindqvist Y, Schneider G, Shanklin J. Redesign of soluble fatty acid desaturase from plants for altered substrate specificity and double bond position. Proc. Natl. Acad. Sci.1997,94:4872-4877
    [35]Chang, Y. L., Tao, Q., Scheuring, C., et al.An integrated map of Arabidopsis thaliana for functional analysis of its genome sequence. Genetics,2001, 159:1231-1242
    [36]Chung CH, Kim JL, Lee YC, Choi YL. Cloning and characterization of a seed-specific ω-3 fatty acid desaturase cDNA from Perilla frutescens. Plant Cell Physiol,1999,40:114-118
    [37]Covello PS, Reed DW. Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene(FAD2) in Saccharomyces cerevisiae. Plant Physiol, 1996,111:223-226
    [38]Chumakov IM, Rigault P, Gall IL, et al. A YAC contig map of the human genome. Nature,1995,377:157-298
    [39]Collard BCY, Mackill DJ. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century. Phil.Trans.T.Soc.B,2008,363:557-572
    [40]Collins JE, Cole CG, Smink LJ, et al. A high-density YAC contig map of human chromosome 22. Nature,1995,377:367-371
    [41]Collins J, Hohn B. Cosmids:a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads.Proc Natl Acad Sci USA,1978, 75(9):4242-4246
    [42]Darwin WR, Ulrike AS, Patrick SC. Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiology,2000,122:715-720
    [43]Delgado Montoya JL, Parado Tejeda E. Potential multipurpose agroforestry crops identified for the Mexican Tropics. In:Wickens GE, Haq N, Day p(Eds.), New Crops for food and Industry. Chapman and Hall, London,1989, pp.166-173
    [44]Divakara BN et al. Biology and genetie improvement of Jatropha cureas L.: Areview. Applied Energy,2010,87:732-742
    [45]Doggett NA, Goodwin LA, Tesmer JG et al. An integrated physical map of human chromosome 16. Nature,1995,377:335-366
    [46]Duke JA. CRC Handbook of Medicinal Herbs. CRC Press, Inc., Boca Raton, FL, 1985a
    [47]Dyer JM, Chapital DC, Kuan JCW, Mullen RT, Turner C, Mckeon TA Pepperman AB. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung, implications for the evolution of plant fatty acid diversity. Plant Physiol, 2002,130;2027-2038
    [48]Eathington SR, Crosbie TM, Edwards MD et al.. Molecular markers in a commercial breeding program. Crop Sci.,2007,47(S3):S154-S163
    [49]Feng J, Vick BA, Lee MK, Zhang HB, Jan CC. Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization.2006, Theor Appl Genet,113:23-32
    [50]Fgabenro-Beyioku A F, Oyibo WA., Anuofmro BC. Disinfectant antiparasitic activities of Jatropha cureas L. East Afr Med J,1998,75(9):508-511
    [51]Fofana B, Cloutier S, Duguid S, Ching J, Rampitsch C. Gene expression of stearoyl-ACP desaturase and deltal2 fatty acid desaturase 2 is modulated during seed development of flax(Linum usitatissimum). Lipids,2006,41(7):705-712
    [52]Frijters ACJ,Zhang Z,Van Damme M, et al.. Construction of a bacterial artificial chromosome library containing large EcoR I and HindⅢ genomic fragments of lettuce.TheorAppl Genet,1997,94:390-399
    [53]Garnder HW. Biological roles and biochemistry of the lipoxygenase pathway. Hort. Science,1995,30:197-205
    [54]Gandhi VM, Cherian KM, Mulky MJ. Toxicological studies on ratanjyot oil. Food Chem Toxicol,1995,33:39-42
    [55]Ganesh RS, Parthiban KT, Senthll KumarR, et al..Genetic diversity among Jatropha species as revealed by RAPD markers.Genet Resour Crop Evol,2008,55:803-809
    [56]Garces R, Sarmiento C, Mancha M. Temperature regulation of oleate desaturase in sunflower(Helianthus annuus L.) seed. Planta,1992,186:461-465
    [57]Germmill RM,Chumakov I, Scott P, et al. Asecond-generation YAC contig of human chromosome 3. Nature,1995,377:299-320
    [58]Gibson S, Arondel V, Iba K, Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol, 1994,106:1615-1621
    [59]Ginwal, HS, Rawat, PS and Srivastava, RL. Seed source variation in growth performance and oil yield of Jatropha curcas Linn, in central India, Silvae Genetica, 2004,53 (4):186-192.
    [60]Giraudat J, Hauge BM, Valon C, et al. Isolation of the Arabidopsis AB13 gene by positional cloning. Plant Cell,1992,4:1251-1261
    [61]Gu YQ,Anderson OD,Londeor CF,et al.. Structural organization of the barley D-hordein locus in comparison withits orthologous regions of wheat genomes. Genome,2003,46(6):1084-1097
    [62]Gu YQ,Coleman-Derr D,Kong XY, et al.. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes.Plant physiol.,2004,135:459-470
    [63]Gubitz GM, Mittelbech M, Trabi M. Exploitation of tropical oil seed plant Jatropha curcas L. Bioresour. Technol,1999,67:73-82
    [64]Guo Y, Sukumar Saha, John Z. Yu, Johnie N. Jenkins, Russell J.Kohel, Brian E.Scheffler, David M.Stelly. BAC-derived SSR markers chromosome locations in cotton. Euphytica,2008,161:361-370
    [65]Hamada T, Iba K, Shimada T. Teduction of trienoic fatty acid content by expression of a double-stranded RNS of a plastid omega-3 faty acid desaturase gene in transgenic tobacco. Biotechnol Lett,2006,28(11):779-785
    [66]Hamada T, Kodama H,, Takeshita K, Utsumi H, Iba K. Characterization of transgenic tobacco with an increased alpha-linolenic acid level. Plant Physiol.1998, 118(2):591-598
    [67]Hamilton CM. A binary-BAC system for plant transformation with high-molecular-weight DNA.Gene,1997,200:107-116
    [68]Han Y, Schuyler S.Korban. An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol,2008,67:581-588
    [69]Hanson RE, Zwick MS, Choi S, Islam-Faridi MN, McKnightTD,Wing RA, Price HJ, Stelly DM. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome,1995,38:646-651
    [70]Heller, J. Physic Nut. Jatropha curcas L. Promoting the Conservation and use of Underutilized and Neglected Crops. International Plant Genetic Resources Institute, Rome,1996
    [71]Hepperd EP, Kinney AJ, Stecca KL, Miao GH. Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol,1996,110:311-319
    [72]Hitz WD, Carlson TJ, Booth JR, Kinney AJ, Stecca KL, Yadav NS. Cloning of a higher plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105,635-641
    [73]Holland PW,Garcia-Fernandez J,Williams NA et al..Gene duplications and the origins of vertebrate development.Dev.Suppl,1994,125-133
    [74]Horiguchi G, Fuse T, Kawakami N, Kodama H, Iba K. Temperature-dependent translational regulation of the ER omega-3 fatty acid desaturase gene in wheat root tips. The Plant Journal,2000,24(6):805-813
    [75]Horiguchi G, Iwakawa H, Kodama H, Kawakami N, Nishimura M, Iba K. Expression of a gene for plastid ω-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves. Physiol Plant,1996, 96:275-283
    [76]Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Soerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem,1993,268:24099-24105
    [77]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature,2005,436:793-800
    [78]Jaworski JG and Stumpf PK. Fat metabolism in higher plants. Properties of a soluble stearoyl-acyl carrier protein desaturase from maturing Carthams tinctorius. Arch. Biochem. Biophys.1974,162:158-165
    [79]Jeffy L.Shultz, Samreen Kazi, et al.. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean.Theor Appl Genet,2007,114:1081-1090
    [80]Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH. Characterization and temporal expression of a omega-6 fatty acid desaturase cDNA from sesame(Sesamum indicum L.) seeds. Plant Sci,2001,161,935-941
    [81]Jones JDQShlumukov L,Carland F,et al.. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Tesearch,1992,1:285-297
    [82]Josefa Gonzalez, Michael Nefedov, Ian Bosdet, et al. A BAC-based physical map of the Drosophila buzzatii genome. Renome Res.,2005,15:885-892
    [83]Jung S, Powell G, Moore K, Abbot A. The high oleate trait in the cultivated peanut(Arachis hypogaea L.). Ⅱ.Molecular basis and genetics of the trait. Mol Gen Genet,2000,263,806-811
    [84]Kandpal, J.B., Madan, M.. Jatropha curcus:a renewable source of energy for meeting future energy needs. Renewable Energy,1995,6 (2),159-160
    [85]Kaushik N, Kumar S. Jatropha curcas L. Silvieulture and Uses. Agrobios(India), Jodhpur,2004
    [86]Kaushik, N.,Kumar, S. Kumar and N. Roy. Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L) accessions. Biomass and Bioenergy,2007,31:497-502
    [87]Kim UJ, Birren BW, Slepak T, et al.. Construction and characterization of a human bacterial artificial chromosome library.Genomics,1996,34:214-218
    [88]Kim UJ, Shizuya H, de Jong PJ, et al..Stable propagation of cosmid size human DNA insert in an F factor based vector. Nucleic Acids Research,1992,20(5): 1083-1085
    [89]Kinnery Aj and Knowlton S. Designer oils:the high oleic acid soybean. In S. Roller&S. harlander(Eds.) Genetic Modification in the Fod Industry:A Strategy for Food Quality Improvement Blackie Academic and Professional London, UK.1998, pl93-213
    [90]Kirsch C, Hahlbrock K, Somssich IE. Rapid and transient induction of a parsley microsomal deltal2 fatty acid tesaturase mRNA by fungal elicitor. Plant Physiol, 1997a,115:283-299
    [91]Kirsch C, Takamiya-Wik M, Teinold S, hahlbrock K, Somssich IE. Rapid, transient, and highly localized induction of plastidial ω3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum. Proc natl Acad Sci USA,1997b, 94:2079-2084
    [92]Knutzon DS, Bleibau JL, Nelsen J, Kridl JC, Thompson GA. Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol,1992,100(4):1751-1758
    [93]Knutzon DS, Scherer DE, Schreckengost WE. Nucleotide sequence of complementary cDNA clone encoding stearoyl-acyl carrier protein desaturase from castor bean, Ricinus communis. Plant Physiol,1991,96:344-345
    [94]Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase from Arabidopsis thaliana. Plant Physiol,1994,105:601-605
    [95]Kong XY,Gu YQ,You FM, et al.. Dynamics of the evolution of orthologous and paralogous portion of a complex locus region in two genomes of allopolyploid wheat[J].Plant Mol.Biol.,2004,54:55-69
    [96]LarkinDM,Everts-van der Wind A, et al.. A cattlehuman comparative map built with cattle BAC-ends and human genome sequence. Genome Res,2003,3:1966-1972
    [97]Li LY, Wang XL, Gai JY, Yu DY. Molecular cloning and characterization of a novel microsomal oleat desaturase gene from soybean. Journal of Plant physiol,2007, 164(11):1516-1526
    [98]Li JL, Li MR, Wu PZ, et al.. Molecular cloning and expression analysis of a gene encoding a putative β-ketoacyl-acyl carrier protein (ACP) synthase Ⅲ (KAS Ⅲ) from Jatropha curcas. Tree physiology,2008,28,921-927
    [99]Li YH, Beisson F, Pollard M, Ohlrogge JB. Oil content of Arabidopsis seeds:The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry,2006, 67,904-915
    [100]Liberalino AA, Bambirra EA, Moraes-Santos T, Vieira EC. Jatropha curcas L. seeds:chemical analysis and toxicity. Arq. Biol. Technol,1998,31:539-550
    [101]Libisch B, Michaelson LV, Lewis MJ, Shewry PR, Napier JA. Chimeras of A 6-fatty acid and △8-Sphigolipid desatuases. Biochemical and Biophysical Research Communications,2000,279:779-785
    [102]Lin J; Yan F;Tang L;Chen F. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacologica Sinica,2003,24(3):241-246
    [103]Lindqvist Y, Huang W, Schneider G, Shanklin J. Crystal structure of △9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. The EMBO Journal,1996,15(16):4081-4092
    [104]Liu Q, Singh SP. Brubaker CL, Sharp PJ, Green AG, Marshall DR. Molecular cloning and expressionof a cDNA encoding a microsomal ω-6 fatty acid desaturase from cotton(Gossypium hirsutum). Aust J Plant Physiol,1999,26:101-106
    [105]Liu Q, Singh SP, Green AG High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol,2002,129(4):1732-1743
    [106]Liu Q, Singh S, Green A. High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr, 2002,21(3 Suppl):205-211
    [107]Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP. Evolution of the FAD2-1 fatty acid desaturase intron and the molecular systematics of Gossypium(Malvaceae). Am J Bot,2001,88:92-102
    [108]Liu S Y, Sporer F, Wink M,et al. Anthraquinones in Rheum Palmatum and Rumex dentatus (Polygonaceae) and Phorbol esters in Jatropha curcas (Euphorbiaceae)With mollusicicidal Activity Against the Schistosome VECTOR Snails Oncomelania. Biomphalaria and Bulinus. Trop Med Int Health,1997,2(2): 179-188
    [109]Liu YG,ShiranoY,Fukaki H, et al..Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA,1999,96:6535-6540
    [110]Macartney A, Maresca B and Cossins AR. Acyl-CoA desaturases and adaptive regulation of membrane lipid composition.1994,129-139. In:Cossins AR(Ed.), Temperature Adaptation of Biological Membranes. London:Portland Press
    [111]Makkar HPS, Becher K, Schmook B. Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Human Nutr,1998,52:31-36
    [112]Makkar HPS, Becher K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenanaces of Jatropha curcas. J Agric. Food Chem, 1997,45:3152-3157
    [113]Martin GB, Brommenschenkel SH, Chunwongse J, et al.. Mapbased cloning of a protein kinase gene conferring disease resistance in tomato. Science,1993, 62:1432-1436
    [114]Martinez-Rivas JM, Sperling P, Luhs W, Heinz E. Spatial and temporal regulation of three different microsomal oleate desaturase genes(FAD2) from normal-type and high-oleic varieties of sunflower(helianthus annuus L.). Mol Breed, 2001,8,159-168
    [115]Matsuda O, Sakamoto H, Hashimoto T, Iba K. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase(FAD8) in Arabidopsis leaf tissues. J Biol Chem,2005,280(5): 3597-3604
    [116]Mba REC,Stephenson P,Edwards K et al.. Simple sequence repeat(SSR) markers of the cassava(Manihot esculenta Crantz) genome:towards an SSR-based molecular genetic map of cassava. Theor.Appl.Genet.,2001,102:21-31
    [117]McKeon TA and Stumpf PK. Purification and characterization characterization of the stearoyl-acyl carrier protein desaturase and acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J.Biol.Chem.1982,257:12141-12147
    [118]Miller JF, Zimmerman DC, Vick BA. Genetic control of high oleic acid content in sunflower oil. Crop Sci.,1987,27:923-926
    [119]McConn M, and Browse J. The critical requirement for linolenic acid is for pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell,1996, 8:403-416
    [120]MoConn M, Creelman RA, Bell E, Mullet JE, Browse J. jasmonate is essential for insect defense Arabidopsis. Proc Natl Acad Sci, USA,1997,94:5473-5477
    [121]Muanza D N., Euler K L., William L., Newman D L.Sereening for antitumor and anti-HIV activities of nine medicinal plants from Zaire.Intemational Journal of Pharmacognosy 1995,33(2):99-106
    [122]Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. Trienoic fatty acids and plant tolerance of high temperature. Science,2000,287(5452):476-479
    [123]Murray NE,Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments.Nature,1974,251(5475):476-481
    [124]Napier JA, Sayanova O, Stobart AK and Shewry PR. A new class of cytochrome b5 fusion proteins. Biochem. J.1997,328:717-720
    [125]Napier JA,Sayanova O, Sperling P and Heinz E. A growing family of cytochrome b5 fusion desaturases. Trends Plant Sci.1999b,4:2-5
    [126]Nelson WM, Bharti AK, Butler E, et al.. Whole-genome validation of high-information-content fingerprinting. Plant Physiol.2005.139:27-38
    [127]Ohlrogge JB. Design of new plant products:engineering of fatty acid metabolism. Plant Physiol,1994,104:821-826
    [128]Ohlrogge J and Browse J. Lipid biosynthesis. Plant Cell,1995,7:957-970
    [129]Ohno S.Evolution by gene duplication[M].Heidelberg:Speringer-Verlag,1970
    [130]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis fad2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell,1994,6:147-158
    [131]Openshaw K. A review of Jatropha curcas:an oil plant of unfulfilled promise. Biomass Bioenergy,2000,19:1-15
    [132]Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, Jong P. An improved approach for construction of bacterial artificial chromosome libraries. Genomics,52:1-8
    [133]Osoniyi O, Onajobi F. Coagulant and anticoagulant activities in Jatropha curcas late X. J. Ethnophanmacol,2003,89:101-105
    [134]Oubert PH, Brown JM, Hay IT, Sebata PD. Aeute poisoning with Jatrpoha cucras(Pugring nut tree)in children.S. AFR. MED. J,1984,65(18):729-730
    [135]Pant, K.S., Khosla, V., Kumar, D., Gairola, S. Seed oil content variation in Jatropha curcas Linn, in different altitudinal ranges and site conditions in H.P. India. Lyonia,2006,11,31-34
    [136]Parthasarathy M R, Saradhi K P. A Coumarino-Lignan from Jatropha gossypiifolia. Phytochemisty,1984,23(4):867-869
    [137]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott a. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet,2004, 108,1492-1502
    [138]Patrick SC, Darwin WR. Functional expression of the extraplastidial Arabidopsis thaliana Oleate Desaturase Gene(FAD2) in Saccharomyces cerevisiae. Plant Physiol.1996,111:223-226
    [139]Peterson DG,Tomkins JP, Frisch DA,Wing RA, Paterson AH. Construction of plant bacterial artificial chromosome(BAC) libraries:An illustrated guide. Journal of Agricultural Genomics,2000,5:1-100
    [140]Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, knesek JE, Chapman KD, Pirtle RM. Molecular cloning and functional expression of the gene for a cotton △-12 fatty acid desaturase(FAD2). Biochim Biophys Acta,2001,1522:122-129
    [141]Rao G, Korwar G, Shanker A, Ramakrishna Y. Geneticassociations, variability and diversity in seed characters, growth,reproductive phenology and yield in Jatropha curcas (L.) accessions.Trees:Structure and Function,2008 22,697-709
    [142]Rawat R, Yu XH, Sweet M, Shanklin J. Conjugated Fatty Acid Synthesis. The Journal of Biological Chemistry.2012,287(20):16230-16237
    [143]Reddy BVS, Ramesh S, Ashok kumar A, et al.. Biofuel crops research for energy security and rural development in developing countries. Bioenergy Res,2008, 1:248-258
    [144]Rogel-Gaillard C,Bourgeaux N,Billault A, et al.. Construction of a swine BAC library:application to the characterization and mapping of porcine type C endoviral elements. Cytogenet Cell Genet.1999,85(3-4):205-11
    [145]Romanov MN,Koriabine M,Nefedov M, et al.. Construction of a California condor BAC library and first-generation chichen-condor comparative physical map as an endangered species conservation genomics resource. Genomics.2006, 88(6):711-8
    [146]Romanov MN, Price JA, Dodgson JB. Integration of animal linkage and BAC contig maps using overgo hybridization. Cytogenet Genome Res 2003,101:227-281
    [147]Salimath SS and Bhattacharyya MK. Generation of a soybean BAC library and identification of DNA sequences tightly linked to the Rpsl-k disease resistance gene. Theor Appl Genet,1999,98:712-720
    [148]Sambrook J,Russell D. Molecular Cloning:A laboratory Manual,3rd ed. Science Publisher, Beijing,2002
    [149]Sarmiento C, Garce's R, Mancha M. Oleate desaturation and acyl turnover in sunflower(Helianthus annuus L.) seed lipids during rapid temperature adaptation. Planta,1998,205:595-600
    [150]Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kavashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-I T, Minakuchi Y, et al..Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Research,2011,18:65-76
    [151]Sayanova O, Beaudoin F, Libisch B, Castel A, Shewry PR, Napier JA. Mutagenesis and heterologous expression in yeast of a plant △ 6-fatty acid desaturase. Journal of Experimental Botany,2001,52(360):1581-1585
    [152]Scheartzbeck JL, Jung Sk, Abbott AG, Mosley E, Lewis S, Pries GL, Powell GL. Endoplasmic oleoy-PC desaturase references the second double bond. Phytochemisty, 2001,57:643-652
    [153]Scheffler JA, Sharpe A, Schmidt H, Sperling P, Parkin IAP, Luhs W, Lydiate DJ, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet,1997,94:583-591
    [154]Shah, Shweta, Aparna Sharma, M.N. Gupta. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technology 2005,96:121-123
    [155]Shanklin J, Whittle, Fox BG Eight Histidine Residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry,1994, 33(34):12787-12794
    [156]Sharma GD, Gupta SN, Khabiruddin M. Cultivation of Jatropha curcas as a future source of hydrocarbon and other industrial products. In:Gubitz GM, Mittelbach M, Trabi M(Eds.), Biofuels and Induxtrial Products from Jatropha curcas. DBV Graz,1997,pp.19-21
    [157]Sheng Y,Mancino V,Birren B. Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Research,1995, 23(11):1990-1996
    [158]Shin JT,Priest JR., et al.. Human-zebrafish non-coding conserved elements act in vivo to regulate transcription. Nucleic Acids Res,2005,33:5437-5445
    [159]Shirish A.Ranade, Anuj P. et al.. Easy assessment of diversity in Jatropha cureas L. Plants using two single-Primer amplification reaction (SPAR) methods. Biomass and Bioenergy,2008,32:533-540
    [160]Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and stable maintenance of 300 kb fragments of human DNA in Escherichia coli using an F-factorbased vector. Proc Natl Acad Sci USA,1992,89:8794-8799
    [161]Slocimbe SP, Cummins I, Jarris RP, Murphy, DJ. Nucleotide sequence and temporal regulation of a seed-specific Bracica napus cDNA encoding a stearoylacyl carrier protein(ACP) desaturase. Plant Mol Biol,1992,20:151-155
    [162]Song JQ,Dong FG,Jiang JM. Construction of a bacterial artificial chromosome (BAC) library for molecular cytogenetics research. Genome.2000,43:199-204
    [163]Sudheer PD, Rahman H, Mastan SG, et al.. Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha cureas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep.,2010,37(8):3785-3793
    [164]Stukey JE, McDonough VM, Martin CE. The OLE1 gene of Saccharomyces cercvisiae encodes the A 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. The Journal of Biological Chemistry,1990, 265(33):20144-20149
    [165]Tang MJ, Sun JW, Liu Y, et al.. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha cureas. Plant Mol Biol,2007,63:419-428
    [166]Tao Q, Zhao H, Qiu L, Hong G. Construction of a full bacterial artificial chromosome (BAC) library of Oryza sativa genome.Cell.1994 Res 4:127-133
    [167]Taylor JL, Fritzemeier KH, Hauser I, Kombrink E, Rohwer F, Schroder M, Strittmatter G, Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact, 1990,3:72-77
    [168]Tewari JP, Shukla IK.Inhibition of infectivity of two strains of watermelon mosaic virus by latex of some angiosperms.GEOBIOS,1982,9:124-126
    [169]The Arabidopsis Genome Initiative. Analysis of the genome sequence of the towering plant Arabidopsis thaliana. Nature.2000.408:796-815
    [170]Thompson JD, Gibson TJ, Plewniak F, et al.. The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    [171]UmeharaY,MiyazakiA, Tanoue H,YasukochiY, Saji S, Otsuki Y, Fujimura T, Kurata N, Minobe Y. Construction and characterization of rice YAC library for physical mapping. Plant Breed,19951:79-89
    [172]Vaiman D,Billault A,Tabet-Aoul K, et al..Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome.1999,10(6):585-7
    [173]Van de Loo FJ and Someville C. Plasmidω-3 fatty acid desaturase cDNA from Ricinus communis. Plant Physiol,1994,105:443-444
    [174]Van den Berg AJ, Horsten SF, Kettenes vanden Boseh JJ, Kroes BH, Beukelman CJ, LoeflangBR, LabadieRP; CureaeyclineA:a novel cyclie oetapeptide isolated from the latex of Jatropha cureas Linn. FEBS Lett,1995,358:215-218
    [175]Vijayan P, Shockey J, levesque CA, Cook RJ, Browse. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci, USA,1998,95:7209-7214
    [176]Vrinten P, Hu ZY, Munchinsky MA, Rowland G, Qiu X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiology,2005, 139:79-87
    [177]Wada H, Schmidt H, Heinz E and Murata N. In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J. Bacteriol.1993, 175:544-547
    [178]Wallis JG, Browse J. mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res,2002,41:254-278
    [179]Wang CT, Xu YN. The 5' untranslated region of the FAD3 mRNA is required for its translational enhancement at low temperature in Arabidopsis roots. Plant Science, 2010,234-240
    [180]Wang G, Holsten TE, Song W-Y,Wang H-P, Ronald PC. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J,1995,7:525-533
    [181]Wani SP, Sreedevi TK, Reddy BVS. Biofuels:status, issues and approaches for harnessing the potential. Hyderabad, India.2006
    [182]Wei Q, Huang MX, XuY, et al. Experssion of a ribosome inactivating protein (cucrin2) in Jatropha cucras is induced by stress. J. Biosei.2005,303:351-357
    [183]Wink M, Koschmieder C, Sauerwein M, Sporer F. Phortbol esters of J. curcas-biological activites and potential applications. In:Gubitz GM, Mittelbach M, Trabi M.(Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz, 1997, pp.160-166
    [184]Wu, C, Sun, S., Nimmakayala, P., Santos, F. A., Springman, R., Ding, K.J., Meksem, K., Lightfoot, D., and Zhang, H.-B. A BAC and BIBAC-based physical map of the soybean genome. Genome Res.2004a.14:319-326
    [185]Wu CC,Nimmakayala P,Santos FA, et al.. Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet,2004,109(5):1041-1050
    [186]Wu PZ, Li J, Wei Q,et al.. Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas. Tree Physiology,2009,29,1299-1305
    [187]Xu RH, Wang R, Liu A. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha(Jatopha curcas L.). Biomass and Bioenergy,2011:1-10
    [188]Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B, Stecca KL, Allen AM, Blackwell M, Reiter RS, Carlson J, Tussell SH, Feldmann KA, Pierce J, Browse J. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol,1993,103:467-476
    [189]Yamamoto KT. Further characterization of ausin-regulated mRNA in hypocotyl section of mung bean. Planta,1994,192:359-364
    [190]Yan HM,Song YC,Li LJ, et al.. Physicial location of the rice Pi-5(t),Glh and RTSV gene by FISH of BAC clones. WuHan University Journal of Natrual Sciences.1998,3(2):226-230
    [191]Yang MF, Liu YJ, Liu Y, et al.. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. Journal of Proteome Research,2009,8:1441-1451
    [192]Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, KusumiK, Seo S, Iba K. Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell Physiol.2007,48(9): 1263-1274
    [193]Yoshimura S, Umehara Y, Kurata N, et al..Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistance gene in rice. Theor Appl Genet, 1996,93:117-122
    [194]Zhang FL, Niu B, Wang YC, Chen F,et al.. A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Science,2008,174,510-518
    [195]Zhang HB. Manual for construction and manipulation of large-insert bacterial clone libraries. Texas,USA, Texas A&M University,2000
    [196]Zhang HB, Choi S, Woo S-S, Li Z, Wing RA. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed,1996,2:11-24
    [197]Zhang HB,Zhao X,Ding X,et al.. Preparation of megabase-size DNA from plant nuclei. Plant J,1995,7:175-184
    [198]Zhang HB,Rod A. Wing. Physical mapping of the rice genome with BACs. Plant molecular Biology,1997,35:115-127
    [199]Zhang JT, Zhu JQ, Zhu Q, Liu H, Gao XS, Zhang HX. Fatty acid desaturase-6(Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun,2009,390(3):469-474
    [200]Zhang M, Barg R, Yin M, Gueta-dahan Y, Leikin-frenkel A, Salts Y, Shabtai S, Ben-hayyim G. Modulated fatty acid desaturation via overexpressionof two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J,2005,44(3):361-371
    [201]Zhao Q, Zhang Y, Cheng Z, et al. A Fine Physical Map of the Rice Chromosome 4. Genome Res.2002 12:817-823
    [202]Zou J, Abrams GD, Barton DL, Taylor DC., Pomeroy MK, Abrams SR, Induction of lipid and oleoisin biosynthesis by(+)-abscisic and its metabolites in microspore-derived embroyos of Brassica napus L. cv Reston, Plant Physiol,1995, 108:563-571