低毒病毒与板栗疫病菌互作的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低毒病毒是一类无衣壳的双链RNA病毒,感染低毒病毒CHV1的板栗疫病菌出现明显的低毒力现象和表型变化。目前对低毒病毒/板栗疫病菌系统在分子生物学水平上已经有了很深入的报道,但有关蛋白质组学方面的报道还较少。本论文主要通过以下几个方面的研究,在蛋白质组层面上明确病毒侵染对宿主产生的影响。
     根据丝状真菌自身的特点,优化蛋白质提取方法,使用二维液相系统对野生型菌株EP155和受低毒病毒感染菌株EP713进行了差异蛋白质组分析。ProteoVue和DeltaVue软件分析并建立了重复性较好的二维模拟凝胶图谱。以EP155为标准,共有296个蛋白质紫外吸收峰表现出2倍以上的变化:上调的209个,下调的87个。同样的蛋白质样品在双向电泳图谱中共找到71个差异表达蛋白质,变化趋势与之前的报道相一致。
     建立了一种优化的、适合于板栗疫病菌分泌蛋白质样品提取的方法。使用该方法可以很好的得到培养在EP液体完全培养基中1-7天的分子量和等电点分布均匀的分泌蛋白质样品,并用于聚丙烯酰胺凝胶和双向电泳的实验。在双向电泳凝胶上,质谱法共有137个分子量在10-150kDa,等电点在pH3-8之间的蛋白质得到有效鉴定。通过注释,这些蛋白主要包括细胞壁降解蛋白、毒力因子和植物与病原真菌相互作用的成分。其中20个蛋白质具有N-末端信号肽序列,123个与真菌分泌蛋白质组数据库预测结果相吻合。通过基因敲除高丰度分泌表达蛋白质,在受低毒病毒侵染的分泌蛋白质组中,找到2个受调控的蛋白质,分别是泛素蛋白和一个假设蛋白质。
     为了进一步明确板栗疫病菌与低毒病毒相互作用的关系,选择板栗疫病菌不同菌株进行了囊泡蛋白质分析。共有33个受低毒病毒调控的差异表达蛋白质在囊泡蛋白质组中被发现。主要涉及到蛋白质、核酸和碳水化合物代谢,信号传导,细胞内运输,压力应激和氧化还原反应。分析结果表明囊泡的基本功能未受低毒病毒的侵染而改变,但运输效率却随着病毒在宿主体内的转运而发生明显改变。其中4个仅在低毒病毒侵染株EP713中出现的蛋白质点被鉴定为病毒蛋白。通过质谱鉴定,确定4个病毒蛋白质点所含肽段在ORF B中均属于病毒蛋白p48。由此我们提出假设,在宿主体内病毒ORF B N端自剪切形成p48后,p48引导ORF B的复制和翻译,并通过翻译后的加工修饰形成具有不同功能的病毒蛋白异构体。
Hypovirus is unencapsidated dsRNA virus. The hypovirulence and phenotype variation of the chestnut blight fungus, Cryphonectria parasitica happens by hypovirus CHV1infection. The reports about proteomics of C. parasitica are limited at the moment, although the molecular biology research of hypovirus/C. parasitica system are in-depth study. This thesis included several aspects which revealed the interaction between hyporirus and the pathogen fungus in proteomic level.
     According to the characteristics of filamentous fungi, the extraction of tots protein was improved. Differential proteomic analysis between wild-type strai EP155and hypovirulent strain EP713has been made by two dimensional liqu chromatographic fractionation. ProteoVue and DeltaVue software analyzed at build two-dimensional simulation of gel patterns with good reproducibility.2protein UV absorption peaks were detected which show more than2fold changes the base of EP155:209up-regulated and87down-regulated. The same prot samples were used on2D-gels and71differential expressed proteins were fou The variation tendency was consisitent with the previous report.
     An optimized protein extraction method suitable for the preparation of secre proteins of a phytopathogenic filamentous fungus, C. parasitica, was developed, evaluated by SDS-PAGE and two-dimensional gel electrophoresis (2-DE), method was both reliable and comprehensive in obtaining secreted proteins wide range of molecular weight and pI, when the fungus was cultured in the complete liquid medium from one to seven days. A total of137unique proteins MW ranging from10to150kDa and pI ranging from pH3to8on2-DE gels identified by tandem mass spectrometry. By annotation, these proteins are m cell-wall-degrading enzymes, virulence factors and components involve plant-pathogen interactions. Of which,20proteins got a signal peptide and proteins were predicted to be involved in known secretory pathways by Fungal Secretome Database (FSD). Through knockout of high abundant secreted gene, we found2differential expressed proteins in secretome which belong to ubiquitin and a hypothetical protein.
     To expand our understanding of virus-host interactions, the vesicle proteins of different strains were analyzed. Thirty-three differentially expressed protein spots of vesicle protein were found in response to the virus infection. These proteins were implied to have functions in metabolisms of protein, nucleic acid, and carbohydrate, signal transduction events, cellular transport, response to stress and oxidation/reduction. The result indicated that the virus infection did not affect the function of transport vesicle but greatly changed transport efficiency. Four virus protein spots displayed in virus-infect vesicle protein samples. The identified peptides all came from ORF B of hypovirus CHV1and located in the scope of p48by mass spectrum analysis. We supposed that after autoproteolysis of NH2-terminal portion of ORF B to produce p48, the viral protein, p48may lead the viral ORF B replication and translation, then went through post-translational modification to produce protein isoforms with different functions.
引文
1. Anagnostakis SL, Chen B, Geletka LM, Nuss DL:Hypovirus Transmission to Ascospore Progeny by Field-Released Transgenic Hypovirulent Strains of Cryphonectria parasitica. Phytopathology 1998, 88(7):598-604.
    2.汪樟春,余建民,顾伟民:庐县板栗主要病虫为害现状及防治.浙江林业科技2001,21(3):56-60.
    3. 周而勋,王克荣,陆家云:中国东部11省(市)栗疫病的发生条件.南京农业大学学报1993,16(3):44-49.
    4.郭树权:板栗干枯病防治技术简介.云南林业2004,6.
    5.丁仕升,王祥坤,张忠良,鲁周民,李文华:板栗胴枯病病害调查与防治试验.西北林学院学报2008,23(2):118-120.
    6. 文新,陈育新,梁棉勇,刘伟钊:板栗疫病菌致病力分化的研究.微生物学报1995,35(6):470-473.
    7.朴春根,Kyung-hee K, Sang-hyun L, Seung-kyu L, Byung-ju M:韩国、美国和中国栗疫病菌的遗传变异分析.林业科学研究2007,2.
    8.徐陈贤,周晓云,王克荣:亚欧美栗疫病菌群体的遗传多样性.生态学报2005,25(2):232-236.
    9.郭世保,徐瑞富,刘鸣韬:栗疫病研究进展.中国农学通报2005,5.
    10.王克荣,周扬,Milgroom M:中日美栗疫病菌群体遗传结构比较.林业科学2004,5.
    11. Choi GH, Nuss DL:Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 1992,257(5071):800-803.
    12. Chen B, Nuss DL:Infectious cDNA clone of hypovirus CHV1-Euro7:a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol 1999,73(2):985-992.
    13. Anagnostakis SL:Biological control of chestnut blight. Science 1982,215(4532):466-471.
    14. Cortesi P, McCulloch CE, Song H, Lin H, Milgroom MG:Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics 2001, 159(1):107-118.
    15. Dawe AL, Nuss DL:Hypoviruses and chestnut blight:exploiting viruses to understand and modulate fungal pathogenesis. Anna Rev Genet 2001,35:1-29.
    16. Grente J, Berthelay-Sauret S:Biological control of chestnut blight in France:Proceedings of the American Chestnut Symposium. West Virginia University, Morgantown 1978:30-34.
    17. Heiniger U, Ringling D:Biological Control of Chestnut Blight in Europe. Ann Rev Phytopathol 1994, 32:581-588.
    18. Hoegger PJ, Heiniger U, Holdenrieder O, Rigling D:Differential transfer and dissemination of hypovirus and nuclear and mitochondrial genomes of a hypovirus-infected Cryphonectria parasitica strain after introduction into a natural population. Appl Environ Microbiol 2003, 69(7):3767-3771.
    19. Milgroom MG, Cortesi P:Biological control of chestnut blight with hypovirulence:a critical analysis. Annu Rev Phytopathol 2004,42:311-338.
    20. Nuss DL:Biological control of chestnut blight:an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev 1992,56(4):561-576.
    21. Peever TL, Liu YC, Milgroom MG:Diversity of Hypoviruses and Other Double-Stranded RNAs in Cryphonectria parasitica in North America. Phytopathology 1997,87(10):1026-1033.
    22. Robin C, Anziani C, Cortesi P:Relationship Between Biological Control, Incidence of Hypovirulence, and Diversity of Vegetative Compatibility Types of Cryphonectria parasitica in France. Phytopathology 2000,90(7):730-737.
    23. Van Alfen NK, Jaynes RA, Anagnostakis SL, Day PR:Chestnut Blight:Biological Control by Transmissible Hypovirulence in Endothia parasitica. Science 1975,189(4206):890-891.
    24. McBratney S, Chen CY, Sarnow P:Internal initiation of translation. Curr Opin Cell Biol 1993, 5(6):961-965.
    25. Koonin EV, Choi GH, Nuss DL, Shapira R, Carrington JC:Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. ProcNatl Acad Sci USA 1991,88(23):10647-10651.
    26. Chen B, Geletka LM, Nuss DL:Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J Virol 2000,74(16):7562-7567.
    27. Hillman BI, Halpern BT, Brown MP:A viral dsRNA element of the chestnut blight fungus with a distinct genetic organization. Virology 1994,201 (2):241-250.
    28. Lin H, Lan X, Liao H, Parsley TB, Nuss DL, Chen B:Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721.J Virol 2007,81(4):1813-1820.
    29. Linder-Basso D, Dynek JN, Hillman BI:Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 2005,337(1):192-203.
    30. M.S.Melzer, G.J.Boland:CHV3-type dsRNAs and the GH2 genotype in a population of Cryphonectria parasitica in Ontario. Can J Plant Pathology 1999,21:248-255.
    31. Shapira R, Choi GH, Nuss DL:Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO 71991,10(4):731-739.
    32. Suzuki N, Supyani S, Maruyama K, Hillman BI:Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. J Gen Virol 2004,85(Pt 11):3437-3448.
    33. Polashock JJ, Hillman BI:A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc Natl AcadSci USA 1994,91(18):8680-8684.
    34. Hillman BI, Tian Y, Bedker PJ, Brown MP:A North American hypovirulent isolate of the chestnut blight fungus with European isolate-related dsRNA. J Gen Virol 1992,73 (Pt3):681-686.
    35. Smart CD, Yuan W, Foglia R, Nuss DL, Fulbright DW, Hillman BI:Cryphonectria hypovirus 3, a virus species in the family hypoviridae with a single open reading frame. Virology 1999, 265(1):66-73.
    36. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ:A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol 2000,81(Pt 12):3107-3114.
    37. Moleleki N, van Heerden SW, Wingfield MJ, Wingfield BD, Preisig O:Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl Environ Microbiol 2003,69(7):3952-3956.
    38. Deng F, Xu R, Boland GJ:Hypovirulence-Associated Double-Stranded RNA from Sclerotinia homoeocarpa Is Conspecific with Ophiostoma novo-ulmi IMitovirus 3a-Ld. Phytopathology 2003, 93(11):1407-1414.
    39.1Hong Y, Dover SL, Cole TE, Brasier CM, Buck KW: Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. Virology 1999,258(1):118-127.
    40. Lakshman DK, Jian J, Tavantzis SM:A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc Natl Acad Sci U S A 1998,95(11).6425-6429.
    41. Chu YM, Jeon JJ, Yea SJ, Kim YH, Yun SH, Lee YW, Kim KH:Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol 2002,68(5):2529-2534.
    42. Darissa O, Willingmann P, Schafer W, Adam G:A novel double-stranded RNA mycovirus from Fusarium graminearum:nucleic acid sequence and genomic structure. Arch Virol 2011.
    43. Jiang D, Ghabrial SA:Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J Gen Virol 2004,85(Pt 7):2111-2121.
    44. Wei CZ, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y:Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix. J Gen Virol 2003,84(Pt 9):2431-2437.
    45. Nuss DL:Hypovirulence:mycoviruses at the fungal-plant interface. Nat Rev Microbiol 2005, 3(8):632-642.
    46. Biraghi A:Possible active resistance to Endothia parasitica in Castanea sativa. Rep Congr Int Union Forest Res 1953,11:149-157.
    47. Day PR, Dodds JA, Elliston JE, Jaynes RA, Anagnostakis SL:Double-stranded RNA in Endothia parasitica. Phytopathology 1977,67:1393-1396.
    48. Anagnostakis SL, Day PR:Hypovirulence conversion in Endothia parasitica. Phytopathology 1979, 69:1226-1229.
    49. Shapira R, Choi GH, Nuss DL. Virus-Like Genetic Organization and Expression Strategy for a Double-Stranded-Rna Genetic Element Associated with Biological-Control of Chestnut Blight. Embo. Journal 1991,10(4):731-739.
    50. Choi GH, Chen B, Nuss DL:Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc Natl AcadSci USA 1995,92(1):305-309.
    51. Kasahara S, Nuss DL:Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact 1997,10(8):984-993.
    52. Zhang L, Baasiri RA, Van Alfen NK:Viral repression of fungal pheromone precursor gene expression. Mol Cell Biol 1998,18(2):953-959.
    53. Park SM, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH:Characterization of HOG1 homologue, CpMKl, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 2004,51(5):1267-1277.
    54. Jacob-Wilk D, Turina M, Kazmierczak P, Van Alfen NK:Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica. Mol Plant Microbe Interact 2009,22(2):211-221.
    55. Shang J, Wu X, Lan X, Fan Y, Dong H, Deng Y, Nuss DL, Chen B:Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. Fungal Genet Biol 2008, 45(3):319-327.
    56. Dawe AL, McMains VC, Panglao M, Kasahara S, Chen B, Nuss DL:An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology 2003,149(9):2373-2384.
    57. Allen TD, Nuss DL:Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses.J Virol 2004, 78(8):4145-4155.
    58. Allen TD, Dawe AL, Nuss DL:Use of cDNA Microarrays To Monitor Transcriptional Responses of the Chestnut Blight Fungus Cryphonectria parasitica to Infection by Virulence-Attenuating Hypoviruses. Eukaryot Cell 2003,2(6):1253-1265.
    59. Lan X. Yao Z, Zhou Y, Shang J, Lin H, Nuss DL, Chen B:Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Curr Genet 2008,53(1):59-66.
    60. Simon MI, Strathmann MP, Gautam N:Diversity of G proteins in signal transduction. Science 1991, 252(5007):802-808.
    61. Gold S, Duncan G, Barrett K, Kronstad J:cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 1994,8(23):2805-2816.
    62. Kruger J, Loubradou G, Wanner G, Regenfelder E, Feldbrugge M, Kahmann R:Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol Plant Microbe Interact 2000,13(10):1034-1040.
    63. Cloutier M, Castilla R, Bolduc N, Zelada A, Martineau P, Bouillon M, Magee BB, Passeron S, Giasson L, Cantore ML: The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol 2003,38(1):133-141.
    64. Gao S, Nuss DL:Distinct roles for two G protein alpha subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci U S A 1996, 93(24):14122-14127.
    65. Segers GC, Regier JC, Nuss DL:Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Galpha subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 2004, 3(6):1454-1463.
    66. Chen B, Gao S, Choi GH, Nuss DL:Extensive alteration of fungal gene transcript accumulation and elevation of G-protein-regulated cAMP levels by a virulence-attenuating hypovirus. Proc Natl Acad Sci USA 1996,93(15):7996-8000.
    67. Dawe AL, Segers GC, Allen TD, McMains VC, Nuss DL:Microarray analysis of Cryphonectria parasitica Galpha- and Gbetagamma-signalling pathways reveals extensive modulation by hypovirus infection. Microbiology 2004,150(Pt 12):4033-4043.
    68. Parsley TB, Chen B, Geletka LM, Nuss DL:Differential modulation of cellular signaling pathways by mild and severe hypovirus strains. Eukaryot Cell 2002, 1(3):401-413.
    69. D' Souza CA, Heitman J:Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 2001,25(3):349-364.
    70. Alspaugh JA, Perfect JR, Heitman J:Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 1997, 11(23):3206-3217.
    711 Delgado-Jarana J, Martinez-Rocha AL, Roldan-Rodriguez R, Roncero MI, Di Pietro A:Fusarium oxysporum G-protein beta subunit Fgbl regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol 2005,42(1):61-72.
    72. Ganem S, Lu SW, Lee BN, Chou DY, Hadar R, Turgeon BG, Horwitz BA:G-protein beta subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryot Cell 2004,3(6):1653-1663.
    73. Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng X:GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. Eukaryot Cell 2010,9(2):242-250.
    74. Chen RE, Thorner J:Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007,1773(8):1311-1340.
    75. Martin H, Flandez M, Nombela C, Molina M:Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 2005,58(1):6-16.
    76. Nishihama R, Banno H, Shibata W, Hirano K, Nakashima M, Usami S, Machida Y:Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol 1995,36(5):749-757.
    77. Saito H:Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol 2010, 13(6):677-683.
    78. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, Karin M: Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994,266(5191):1719-1723.
    79. Johnson GL, Lapadat R:Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002,298(5600):1911-1912.
    80. Choi ES, Chung HJ, Kim MJ, Park SM, Cha BJ, Yang MS, Kim DH:Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica. Microbiology 2005, 151(Pt5):1349-1358.
    81. Rostagno L, Prodi A, Turina M:Cpkkl, MAPKK of Cryphonectria parasitica, is necessary for virulence on chestnut. Phytopathology 2010,100(10):1100-1110.
    82. Turina M, Zhang L, Van Alfen NK:Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkkl, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genet Biol 2006,43(11):764-774.
    83. Carafoli E:Calcium signaling:a tale for all seasons. Proc Natl Acad Sci U S A 2002, 99(3):1115-1122.
    84. Clapham DE:Calcium signaling. Cell 2007,131(6):1047-1058.
    85. Larson TG, Choi GH, Nuss DL:Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J 1992,11(12):4539-4548.
    86. Choi GH, Nuss DL:A viral gene confers hypovirulence-associated traits to the chestnut blight fungus. EMBOJ 1992, 11(2):473-477.
    87. Choi GH, Pawlyk DM, Nuss DL:The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 1991,183(2):747-752.
    88. Choi GH, Shapira R, Nuss DL:Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc Natl Acad Sci U S A 1991,88(4):1167-1171.
    89. Craven MG, Pawlyk DM, Choi GH, Nuss DL:Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol 1993, 67(11):6513-6521.
    90. Suzuki N, Chen B, Nuss DL:Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J Virol 1999,73(11):9478-9484.
    91. Suzuki N, Maruyama K, Moriyama M, Nuss DL:Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J Virol 2003, 77(21):11697-11707.
    92. Segers GC, van Wezel R, Zhang X, Hong Y, Nuss DL:Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cell 2006,5(6):896-904.
    93. Sun L, Nuss DL, Suzuki N:Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 2006,87(Pt 12):3703-3714.
    94. Sun L, Suzuki N: Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. RNA 2008,14(12):2557-2571.
    95. Suzuki N, Nuss DL: Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J Virol 2002,76(15):7747-7759.
    96. Shapira R, Nuss DL: Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. J Biol Chem 1991,266(29):19419-19425.
    97. Deng F, Nuss DL: Hypovirus papain-like protease p48 is required for initiation but not for maintenance of virus RNA propagation in the chestnut blight fungus Cryphonectria parasitica. J Virol 2008,82(13):6369-6378.
    98. Nagy PD:Yeast as a model host to explore plant virus-host interactions. Artnu Rev Phytopathol 2008,46:217-242.
    99. Janda M, Ahlquist P:RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 1993,72(6):961-970.
    100. Restrepo-Hartwig M, Ahlquist P:Brome mosaic virus RNA replication proteins la and 2a colocalize and la independently localizes on the yeast endoplasmic reticulum. J Virol 1999, 73(12):10303-10309.
    101. Quadt R, Ishikawa M, Janda M, Ahlquist P:Formation of brome mosaic virus RNA-dependent RNA polymerase in yeast requires coexpression of viral proteins and viral RNA. Proc Nall AcadSci U S A 1995,92(11):4892-4896.
    102. Restrepo-Hartwig MA, Ahlquist P:Brome mosaic virus helicase- and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 1996, 70(12):8908-8916.
    103. Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P:Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci USA 2003,100(26):15764-15769.
    104. SMITH KM:A new virus disease of the tomato. Annals of Applied Biology 1935,22(4):731-741.
    105. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G:Tomato bushy stunt virus at 2.9 A resolution. Nature 1978,276(5686):368-373.
    106. Panavas T, Nagy PD:Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Virology 2003,314(1):315-325.
    107. Panavas T, Serviene E, Brasher J, Nagy PD:Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 2005,102(20):7326-7331.
    108. Jiang Y, Serviene E, Gal J, Panavas T, Nagy PD:Identification of Essential Host Factors Affecting Tombusvirus RNA Replication Based on the Yeast Tet Promoters Hughes Collection. J Virol 2006, 80(15):7394-7404.
    109. Nagy PD, Pogany J:Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Rev 2010,76:123-177.
    110. Meyerowitz EM, Pruitt RE:Arabidopsis thaliana and Plant Molecular Genetics. Science 1985, 229(4719):1214-1218.
    111. Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M:Arabidopsis thaliana:a model plant for genome analysis. Science 1998,282(5389):662,679-682.
    112. Ishikawa M, Naito S, Ohno T:Effects of the toml mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J Virol 1993,67(9):5328-5338.
    113. Ohshima K, Taniyama T, Yamanaka T, Ishikawa M, Naito S:Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 1998,243(2):472-481.
    114. Golem S, Culver JN:Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 2003,16(8):681-688.
    115. Assarsson E, Greenbaum JA, Sundstrom M, Schaffer L, Hammond JA, Pasquetto V, Oseroff C, Hendrickson RC, Lefkowitz EJ, Tscharke DC et al: Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc Natl Acad Sci U S A 2008, 105(6):2140-2145.
    116. Broyles SS:Vaccinia virus transcription. J Gen Virol 2003,84(Pt 9):2293-2303.
    117. Obijeski JF, Palmer EL, Gafford LG, Randall CC:Polyacrylamide gel electrophoresis of fowlpox and vaccinia virus proteins. Virology 1973,51(2):512-516.
    118. Oie M, Ichihashi Y:Characterization of vaccinia polypeptides. Virology 1981,113(l):263-276.
    119. Takahashi T, Oie M, Ichihashi Y:N-terminal amino acid sequences of vaccinia virus structural proteins. Virology 1994,202(2):844-852.
    120. Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W:Vaccinia virus proteome:identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 2006,80(5):2127-2140.
    121. Davies DH, Wyatt LS, Newman FK, Earl PL, Chun S, Hernandez JE, Molina DM, Hirst S, Moss B, Frey SE et al: Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus ankara is comparable to that of Dryvax.J Virol 2008,82(2):652-663.
    122. Jensen ON, Houthaeve T, Shevchenko A, Cudmore S, Ashford T, Mann M, Griffiths G, Krijnse Locker J: Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J Virol 1996,70(11):7485-7497.
    123. Manes NP, Estep RD, Mottaz HM, Moore RJ, Clauss TR, Monroe ME, Du X, Adkins JN, Wong SW, Smith RD:Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J Proteome Res 2008,7(3):960-968.
    124. Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B:Protein composition of the vaccinia virus mature virion. Virology 2007,358(1):233-247.
    125. Yoder JD, Chen TS, Gagnier CR, Vemulapalli S, Maier CS, Hruby DE:Pox proteomics:mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 2006,3:10.
    126. Essani K, Dales S:Biogenesis of vaccinia:evidence for more than 100 polypeptides in the virion. Virology 1979,95(2):385-394.
    127. Van Vliet K, Mohamed MR, Zhang L, Villa NY, Werden SJ, Liu J, McFadden G:Poxvirus proteomics and virus-host protein interactions. Microbiol Mol Biol Rev 2009,73(4):730-749.
    128. DeGrado-Warren J, Dufford M, Chen J, Bartel PL, Shattuck D, Frech GC:Construction and characterization of a normalized yeast two-hybrid library derived from a human protein-coding clone collection. Biotechniques 2008,44(2):265-273.
    129. Zhang L, Villa NY, Rahman MM, Smallwood S, Shattuck D, Neff C, Dufford M, Lanchbury JS, Labaer J, McFadden G:Analysis of vaccinia virus-host protein-protein interactions:validations of yeast two-hybrid screenings. J Proteome Res 2009,8(9):4311-4318.
    130. McFadden G:Poxvirus tropism. Nat Rev Microbiol 2005,3(3):201-213.
    131. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK et al: A physical map of the human genome. Nature 2001,409(6822):934-941.
    132. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al: The sequence of the human genome. Science 2001,291(5507):1304-1351.
    133. Post-genomic cultures. Nature 2001,409(6820):545.
    134. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams K.L, Humphery-Smith I:Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995,16(7):1090-1094.
    135. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO:Protein function in the post-genomic era. Nature 2000,405(6788):823-826.
    136. Pandey A, Mann M:Proteomics to study genes and genomes. Nature 2000,405(6788):837-846.
    137. Mechin V, Damerval C, Zivy M:Total protein extraction with TCA-acetone. Methods Mol Biol 2007, 355:1-8.
    138. Smithies O, Poulik MD:Initiation of protein synthesis at an unusual position in an immunoglobulin gene? Science 1972,175(18):187-189.
    139. O'Farrell PH:High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250(10):4007-4021.
    140. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W:The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21(6):1037-1053.
    141. Gorg A, Postel W, Gunther S:The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1988,9(9):531-546.
    142. Strahler JR, Hanash SM, Somerlot L, Bjellqvist B, Gorg A:Effect of salt on the performance of immobilized pH gradient isoelectric focusing gels. Electrophoresis 1988,9(2):74-80.
    143. Gorg A, Postel W, Gunther S, Friedrich C:Horizontal two-dimensional electrophoresis with immobilized pH gradients using PhastSystem. Electrophoresis 1988,9(l):57-59.
    144. Gorg A, Postel W, Gunther S, Weser J, Strahler JR, Hanash SM, Somerlot L, Kuick R:Approach to stationary two-dimensional pattern:influence of focusing time and immobiline/carrier ampholytes concentrations. Electrophoresis 1988,9(1):37-46.
    145. Marouga R, David S, Hawkins E:The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005,382(3):669-678.
    146. Gorg A, Weiss W, Dunn MJ:Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004,4(12):3665-3685.
    147. Levreri I, Musante L, Petretto A, Bruschi M, Candiano G, Melioli G:Separation of human serum proteins using the Beckman-Coulter PF2D system:analysis of ion exchange-based first dimension chromatography. Clin Chem Lab Med 2005,43(12):1327-1333.
    148. Barre O, Solioz M:Improved protocol for chromatofocusing on the ProteomeLab PF2D. Proteomics 2006,6(19):5096-5098.
    149. Chahal FC, Entwistle J, Glover N, Macdonald GC: A targeted proteomic approach for the identification of tumor-associated membrane antigens using the ProteomeLab PF-2D in tandem with mass spectrometry. Biochem Biophys Res Commun 2006,348(3):1055-1062.
    150. Skalnikova H, Rehulka P, Chmelik J, Martinkova J, Zilvarova M, Gadher SJ, Kovarova H:Relative quantitation of proteins fractionated by the ProteomeLab PF 2D system using isobaric tags for relative and absolute quantitation (iTRAQ). Anal Bioanal Chem 2007,389(5):1639-1645.
    151. Ruelle V, Falisse-Poirrier N, Elmoualij B, Zorzi D, Pierard O, Heinen E, De Pauw E, Zorzi W:An immuno-PF2D-MS/MS proteomic approach for bacterial antigenic characterization:to Bacillus and beyond. J Proteome Res 2007,6(6):2168-2175.
    152. Schlautman JD, Rozek W, Stetler R, Mosley RL, Gendelman HE, Ciborowski P:Multidimensional protein fractionation using ProteomeLab PF 2D for profiling amyotrophic lateral sclerosis immunity:A preliminary report. Proteome Sci 2008,6:26.
    153. Lee HJ, Kang MJ, Lee EY, Cho SY, Kim H, Paik YK:Application of a peptide-based PF2D platform for quantitative proteomics in disease biomarker discovery. Proteomics 2008,8(16):3371-3381.
    154. Lee HJ, Kwon MS, Lee EY, Cho SY, Paik YK:Establishment of a PF2D-MS/MS platform for rapid profiling and semiquantitative analysis of membrane protein biomarkers. Proteomics 2008, 8(11):2168-2177.
    155. Irar S, Brini F, Goday A, Masmoudi K, Pages M:Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)—a wider perspective of the proteome. J Proteomics 2010,73(9):1707-1721.
    156. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM:Electrospray ionization for mass spectrometry of large biomolecules. Science 1989,246(4926):64-71.
    157. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T:Protein and Polymer Analyses up to miz 100000 by Laser Ionization Time-of-flight Mass Spectrometry. Rapid Commun Mass Spectrom 1988,2(8):151-153.
    158. Aebersold R, Mann M:Mass spectrometry-based proteomics. Nature 2003,422(6928):198-207.
    159. Chalmers MJ, Gaskell SJ:Advances in mass spectrometry for proteome analysis. Curr Opin Biotechnol 2000, 1l(4):384-390.
    160. Griffin TJ, Aebersold R1Advances in proteome analysis by mass spectrometry. J Biol Chem 2001, 276(49):45497-45500.
    161. Merchant M, Weinberger SR:Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000,21(6):1164-1177.
    162. Seibert V, Wiesner A, Buschmann T, Meuer J:Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol Res Pract 2004,200(2):83-94.
    163. Poon TC:Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices. Expert Rev Proteomics 2007,4(1):51-65.
    164. Ogata H, Goto S, Fujibuchi W, Kanehisa M:Computation with the KEGG pathway database. Biosystems 1998,47(1-2):119-128.
    165. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M:KEGG:Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999,27(1):29-34.
    166. Wixon J, Kell D:The Kyoto encyclopedia of genes and genomes--KEGG. Yeast 2000,17(1):48-55.
    167. Kanehisa M, Goto S:KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
    168. Kanehisa M:The KEGG database. Novartis Found Symp 2002,247:91-101; discussion 101-103, 119-128,244-152.
    169. Kanehisa M, Goto S, Kawashima S, Nakaya A:The KEGG databases at GenomeNet. Nucleic Acids Res 2002,30(1):42-46.
    170. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004,32(Database issue):D277-280.
    171. Aoki-Kinoshita KF, Kanehisa M:Gene annotation and pathway mapping in KEGG. Methods Mol Biol 2007,396:71-91.
    172. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M:KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 2008,36(Web Server issue):W423-426.
    173. Groth D, Lehrach H, Hennig S:GOblet:a platform for Gene Ontology annotation of anonymous sequence data. Nucleic Acids Res 2004,32(Web Server issue):W313-317.
    174. Groth D, Hartmann S, Panopoulou G, Poustka AJ, Hennig S:GOblet:annotation of anonymous sequence data with gene ontology and pathway terms. J Integr Bioinform 2008,5(2).
    175. Jung J, Yi G, Sukno SA, Thon MR:PoGO:Prediction of Gene Ontology terms for fungal proteins. BMC Bioinformatics 2010,11:215.
    176. Boucherie H, Sagliocco F, Joubert R, Maillet I, Labarre J, Perrot M:Two-dimensional gel protein database of Saccharomyces cerevisiae. Electrophoresis 1996,17(11):1683-1699.
    177. Garrets JI, McLaughlin CS, Warner JR, Futcher B, Latter GI, Kobayashi R, Schwender B, Volpe T, Anderson DS, Mesquita-Fuentes R et al: Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 1997,18(8):1347-1360.
    178. Perrot M, Sagliocco F, Mini T, Monribot C, Schneider U, Shevchenko A, Mann M, Jeno P, Boucherie H: Two-dimensional gel protein database of Saccharomyces cerevisiae (update 1999). Electrophoresis 1999,20(11):2280-2298.
    179. Pardo M, Monteoliva L, Pla J, Sanchez M, Gil C, Nombela C:Two-dimensional analysis of proteins secreted by Saccharomyces cerevisiae regenerating protoplasts:a novel approach to study the cell wall. Yeast 1999,15(6):459-472.
    180. Sarry JE, Chen S, Collum RP, Liang S, Peng M, Lang A, Naumann B, Dzierszinski F, Yuan CX, Hippler M et al: Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. Febs J 2007, 274(16):4287-4305.
    181. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B et al: The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 2003,100(23):13207-13212.
    182. Francesca G, Francesca M, Tania G, Marina B, Maurizio S, Alessandra M:Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochim Biophys Acta 2010, 1804(7):1516-1525.
    183. Bruckmann A, Hensbergen PJ, Balog Cl, Deelder AM, Brandt R, Snoek IS, Steensma HY, van Heusden GP:Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 2009,71(6):662-669.
    184. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP:Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 2006, 5(9):2339-2347.
    185. Pham TK, Wright PC:Proteomic analysis of Saccharomyces cerevisiae. Expert Rev Proteomics 2007, 4(6):793-813.
    186. Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J:A proteome analysis of the cadmium response in Saccharomyces cerevisiae. JBiol Chem 2001,276(11):8469-8474.
    187. Lu L, Arakaki AK, Lu H, Skolnick J:Multimeric threading-based prediction of protein-protein interactions on a genomic scale:application to the Saccharomyces cerevisiae proteome. Genome Res 2003,13(6A):1146-1154.
    188. Hu Y, Wang G, Chen GY, Fu X, Yao SQ:Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis. Electrophoresis 2003, 24(9):1458-1470.
    189. Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M:Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 2005,4(1):1-11.
    190. Kim H, Melen K, Osterberg M, von Heijne G:A global topology map of the Saccharomyces cerevisiae membrane proteome. ProcNatl Acad Sci USA 2006,103(30):11142-11147.
    191. Delom F, Szponarski W, Sommerer N, Boyer JC, Bruneau JM, Rossignol M, Gibrat R:The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics 2006,6(10):3029-3039.
    192. Usaite R, Wohlschlegel J, Venable JD, Park SK, Nielsen J, Olsson L, Yates lii JR:Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression saccharomyces cerevisiae strains: the comparison of two quantitative methods. J Proteome Res 2008,7(1):266-275.
    193. Tsvetanova NG, Klass DM, Salzman J, Brown PO:Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 2010,5(9).
    194. Pitarch A, Sanchez M, Nombela C, Gil C:Analysis of the Candida albicans proteome. I. Strategies and applications. J Chromatogr B Analyt Technol Biomed Life Sci 2003,787(1):101-128.
    195. Pitarch A, Sanchez M, Nombela C, Gil C:Analysis of the Candida albicans proteome. II. Protein information technology on the Net (update 2002). J Chromatogr B Analyt Technol Biomed Life Sci 2003,787(1):129-148.
    196. Gomes AC, Miranda I, Silva RM, Moura GR, Thomas B, Akoulitchev A, Santos MA:A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol 2007,8(10):R206.
    197. Yin Z, Stead D, Walker J, Selway L, Smith DA, Brown AJ, Quinn J: A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hogl stress-activated MAPK in regulating the stress-induced proteome. Proteomics 2009, 9(20):4686-4703.
    198. Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD:Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother 2010,54(5):1655-1664.
    199. Monteoliva L, Martinez-Lopez R, Pitarch A, Hernaez ML, Serna A, Nombela C, Albar JP, Gil C: Quantitative Proteome and Acidic Subproteome Profiling of Candida albicans Yeast-to-Hypha Transition. J Proteome Res 2011,10(2):502-517.
    200. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP:Cell wall and secreted proteins of Candida albicans:identification, function, and expression. Microbiol Mol Biol Rev 1998, 62(1):130-180.
    201. Castillo L, Calvo E, Martinez AI, Ruiz-Herrera J, Valentin E, Lopez JA, Sentandreu R:A study of the Candida albicans cell wall proteome. Proteomics 2008,8(18):3871-3881.
    202. Thomas DP, Bachmann SP, Lopez-Ribot JL:Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 2006,6(21):5795-5804.
    203. Pitarch A, Sanchez M, Nombela C, Gil C:Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 2002, 1(12):967-982.
    204. Cabezon V, Llama-Palacios A, Nombela C, Monteoliva L, Gil C:Analysis of Candida albicans plasma membrane proteome. Proteomics 2009,9(20):4770-4786.
    205. Rupp S: An approach to characterize the membrane proteome of Candida albicans. Future Microbiol 2010,5(2):147-151.
    206. Sosinska GJ, de Groot PW, Teixeira de Mattos MJ, Dekker HL, de Koster CG, Hellingwerf KJ, Klis FM: Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 2008,154(Pt2):510-520.
    207. Sosinska GJ, de Koning LJ, de Groot PW, Manders EM, Dekker HL, Hellingwerf KJ, de Koster CG, Klis FM:Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 2011,157(Pt1):136-146.
    208. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H et al: The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434(7036):980-986.
    209. Rho HS, Kang S, Lee YH:Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells 2001,12(3):407-411.
    210. Tucker SL, Orbach MJ:Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea. Methods Mol Biol 2007,354:57-68.
    211. Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S, Park JY et al: Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 2007,39(4):561-565.
    212. Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH:Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 2008,45(1):68-75.
    213. Konishi H, Ishiguro K, Komatsu S:A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 2001, 1(9):1162-1171.
    214. Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY:Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 2004,4(11):3569-3578.
    215. Kim ST, Yu S, Kim SG, Kim HJ, Kang SY, Hwang DH, Jang YS, Kang KY:Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 2004, 4(11):3579-3587.
    216. He F, Zhang Y, Chen H, Zhang Z, Peng YL: The prediction of protein-protein interaction networks in rice blast fungus. BMC Genomics 2008,9:519.
    217. Gonzalez-Fernandez R, Prats E, Jorrin-Novo JV:Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010,2010:932527.
    218. Medina ML, Haynes PA, Breci L, Francisco WA:Analysis of secreted proteins from Aspergillus flavus. Proteomics 2005,5(12):3153-3161.
    219. Godfrey D, Zhang Z, Saalbach G, Thordal-Christensen H:A proteomics study of barley powdery mildew haustoria. Proteomics 2009,9(12):3222-3232.
    220. Fernandez-Acero FJ, Jorge I, Calvo E, Vallejo 1, Carbu M, Camafeita E, Lopez JA, Cantoral JM, Jorrin J:Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 2006,6 Suppl 1:S88-96.
    221. Fernandez-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J:Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 2009, 9(10):2892-2902.
    222. Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ:Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 2008, 8(11):2256-2265.
    223. Kwon SJ, Cho SY, Lee KM, Yu J, Son M, Kim KH:Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 2009,144(1-2):96-106.
    224. Bohmer M, Colby T, Bohmer C, Brautigam A, Schmidt J, Bolker M:Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 2007,7(5):675-685.
    225.姜明国:低毒病毒感染的板栗疫病菌差异蛋白组学研究.[学位论文]广西南宁:广西大学2007.
    226.姜明国,何小丹,陈保善:板栗疫病菌致病性机理的双向凝胶电泳法研究.广西植物2008,28(1):117-120.
    227. Palade G:Intracellular Aspects of the Process of Protein Synthesis. Science 1975,189(4206):867.
    228. Curtis BM, Widmer MB, deRoos P, Qwarnstrom EE:IL-1 and its receptor are translocated to the nucleus. J Immunol 1990,144(4):1295-1303.
    229. Rep M:Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett 2005,253(1):19-27.
    230. Kamoun S, van West P, Vleeshouwers VG, de Groot KE, Govers F:Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition- of the elicitor protein INF1. Plant Cell 1998,10(9):1413-1426.
    231. D'Silva I, Heath MC:Purification and characterization of two novel hypersensitive response-inducing specific elicitors produced by the cowpea rust fungus. J Biol Chem 1997, 272(7):3924-3927.
    232. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B:Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 1995,7(8):1221-1233.
    233. Kikot GE, Hours RA, Alconada TM:Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum:a review. JBasic Microbiol2008.
    234. Wu SC, Kauffmann S, Darvill AG, Albersheim P:Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus. Mol Plant Microbe Interact 1995, 8(4):506-514.
    235. Brito N, Espino JJ, Gonzalez C:The endo-beta-1,4-xylanase xynllA is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 2006,19(1):25-32.
    236. Zhang Z, Henderson, C., Gurr, S. J.:Blumeria graminis secretes an extracellular catalase during infection of barley:potential role in suppression of host defence. Molecular Plant Pathology 2004, 5,:537-547.
    237. Chung HJ, Kwon BR, Kim JM, Park SM, Park JK, Cha BJ, Yang MS, Kim DH:A tannic acid-inducible and hypoviral-regulated Laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica. Mol Plant Microbe Interact 2008,21(12):1582-1590.
    238. Xue C, Park G, Choi W, Zheng L, Dean RA, Xu JR:Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 2002,14(9):2107-2119.
    239. Trost M, Wehmhoner D, Karst U, Dieterich G, Wehland J, Jansch L:Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 2005, 5(6):1544-1557.
    240. Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, Raangs GC, Stokroos Ⅰ, Arends JP, Dubois JY et al:Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006,70(3):755-788.
    241. Deng W, de Hoog CL, Yu HB, Li Y, Croxen MA, Thomas NA, Puente JL, Foster LJ, Finlay BB:A Comprehensive Proteomic Analysis of the Type HI Secretome of Citrobacter rodentium. J Biol Chem 2010,285(9):6790-6800.
    242. Swaim CL, Anton BP, Sharma SS, Taron CH, Benner JS:Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. Proteomics 2008,8(13):2714-2723.
    243. Yajima W, Kav NN:The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum Proteomics 2006,6(22):5995-6007.
    244. Abbas A, Koc H, Liu F, Tien M:Fungal degradation of wood:initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 2005, 47(1):49-56.
    245. Lee SA, Wormsley S, Kamoun S, Lee AF, Joiner K, Wong B:An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 2003,20(7):595-610.
    246.周晓罡,李成云,赵之伟,苏源,张绍松,李进斌,杨静,刘林,业艳芬:粗糙脉孢菌基因组分泌蛋白的初步分析.遗传2006,28:200-207.
    247.陈继圣,郑士琴,郑武:全基因组预测稻瘟菌的分泌蛋白.中国农业科学2006,39:2474-2482.
    248.于钦亮,马莉,刘林,杨静,苏源,王云月,朱有勇,李成云:禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析.生物技术通报2008,1:160-165.
    249. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S:EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 2003,13(7):1675-1685.
    250. 薛晓丹,屈志鹏,王晓杰,张永红,李国田,黄丽丽,康振生:小麦条锈菌萌发夏孢子cDNA文库中编码分泌蛋白的序列预测.西北农林科技大学学报(自然科学版)2009,37(2):105-111.
    251. Bendtsen JD, Nielsen H, von Heijne G, Brunak S:Improved prediction of signal peptides:SignalP 3.0. JMol Biol 2004,340(4):783-795.
    252. Rice P, Longden I, Bleasby A:EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000,16(6):276-277.
    253. Sonnhammer EL, von Heijne G, Krogh A:A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998,6:175-182.
    254. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S:Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 2004,17(4):349-356.
    255. Choi J, Park J, Kim D, Jung K, Kang S, Lee YH:Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics 2010,11:105.
    256. Clutterbuck AJ:Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol 1972,70(3):423-435.
    257. Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J:Fungal laccase:properties and activity on lignin. J Basic Microbiol 2001, 41(3-4):185-227.
    258. Cai H, Reinisch K, Ferro-Novick S:Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007,12(5):671-682.
    259. Wilson DW, Wilcox CA, Flynn GC, Chen E, Kuang WJ, Henzel WJ, Block MR, Ullrich A, Rothman JE: A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 1989,339(6223):355-359.
    260. Diaz R, Mayorga LS, Weidman PJ, Rothman JE, Stahl PD:Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature 1989, 339(6223):398-400.
    261. Bennett MK:SNAREs and the specificity of transport vesicle targeting. Curr Opin Cell Biol 1995, 7(4):581-586.
    262. Pfeffer SR:Transport vesicle docking:SNAREs and associates. Annu Rev Cell Dev Biol 1996, 12:441-461.
    263. Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A:Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 1997,387(6629):199-202.
    264. Lupashin VV, Waters MG:t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science 1997,276(5316):1255-1258.
    265. Jordens 1, Marsman M, Kuijl C, Neefjes J:Rab proteins, connecting transport and vesicle fusion. Traffic 2005,6(12):1070-1077.
    266. Spang A:Vesicle transport: a close collaboration of Rabs and effectors. Curr Biol 2004, 14(1):R33-34.
    267. Pearse BM:Coated vesicles from pig brain:purification and biochemical characterization. J Mol Biol 1975,97(1):93-98.
    268. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R:COPII:a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994,77(6):895-907.
    269. Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P: Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994,79(7):1199-1207.
    270. Aridor M, Bannykh SI, Rowe T, Balch WE:Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 1995,131(4):875-893.
    271. Waters MG, Serafini T, Rothman JE: 'Coatomer' :a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 1991,349(6306):248-251.
    272. Lupashin V, Sztul E:Golgi tethering factors. Biochim Biophys Acta 2005,1744(3):325-339.
    273. Sztul E, Lupashin V:Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 2006,290(1):C11-26.
    274. Sztul E, Lupashin V:Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009, S83(23):3770-3783.
    275. Jacob-Wilk D, Turina M, Van Alfen NK:Mycovirus cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. J Virol 2006,80(13):6588-6596.
    276. Fahima T, Wu Y, Zhang L, Van Alfen NK:Identification of the putative RNA polymerase of Cryphonectria hypovirus in a solubilized replication complex. J Virol 1994,68(9):6116-6119.
    277. Hansen DR, Alfen NKV, Gillies K, Powell WA:Naked dsRNA Associated with Hypovirulence of Endothia parasitica Is Packaged in Fungal Vesicles. Journal of General Virology 1985, 66:2605-2614.
    278. Livak KJ, Schmittgen TD:Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001,25(4):402-408.
    279. 蒋平,彭艳,倪健,向正华,焦炳华:小胶质细胞蛋白质组三维分离方法的建立.第二军医大学学报2005,26(6):687-689.
    280. Choi GH, Nuss DL:Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from Cryphonectria parasitica. Nucleic Acids Res 1990,18(18):5566.
    281. Razanamparany V, Jara P, Legoux R, Delmas P, Msayeh F, Kaghad M, Loison G:Cloning and mutation of the gene encoding endothiapepsin from Cryphonectria parasitica. Curr Genet 1992, 21(6):455-461.
    282. Chen M-M, Jiang M, Shang J, Lan X, Yang F, Huang J, Nuss DL, Chen B:CYP1, a hypovirus-regulated cyclophilin, is required for virulence in the chestnut blight fungus. Molecular Plant Pathology 2010, in press.
    283. Hua Q, Yang C, Baba T, Mori H, Shimizu K:Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 2003,185(24):7053-7067.
    284. Dawe AL, Van Voorhies WA, Lau TA, Ulanov AV, Li Z:Major impacts on the primary metabolism of the plant pathogen Cryphonectria parasitica by the virulence-attenuating virus CHV1-EP713. Microbiology 2009,155(Pt 12):3913-3921.
    285. Clarke S:Protein methylation. Curr Opin Cell Biol 1993,5(6):977-983.
    286. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al:Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 2006,126(6):1189-1201.
    287. Allen TD, Dawe AL, Nuss DL:Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell 2003,2(6):1253-1265.
    288. Miguel A. Aranda ME, Daowen Wang,Andrew□ J. Maule:Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl AcadSci 1996,93(26):15289-15293.
    289. Cripe TD, SE.Estes,PA. Garcea, RL:In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 1995,69(12):7807-7813.
    290. Plesofsky-Vig N, Brambl R:Characterization of an 88-kDa heat shock protein of Neurospora crassa that interacts with Hsp30. J Biol Chem 1998,273(18):11335-11341.
    291. Plesofsky-Vig N, Brambl R:Gene sequence and analysis of hsp30, a small heat shock protein of Neurospora crassa which associates with mitochondria. J Biol Chem 1990,265(26):15432-15440.
    292. Hu J, Seeger C:Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. PNAS 1996,93(3):1060-1064.
    293. Park SG, Lee SM, Jung G:Antisense Oligodeoxynucleotides Targeted against Molecular Chaperonin Hsp60 Block Human Hepatitis B Virus Replication. J Biol Chem 2003, 278(41):39851-39857.
    294. Chen YJ, Chen YH, Chow LP, Tsai YH, Chen PH, Huang CY, Chen WT, Hwang LH:Heat shock protein 72 is associated with the hepatitis C virus replicase complex and enhances viral RNA replication. J Biol Chem 2010,285(36):28183-28190.
    295. Castorena KM, Weeks SA, Stapleford KA, Cadwallader AM, Miller DJ:A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells. J Virol 2007,81 (16):8412-8420.
    296. Weeks SA, Miller DJ:The heat shock protein 70 cochaperone YDJ1 is required for efficient membrane-specific flock house virus RNA replication complex assembly and function in Saccharomyces cerevisiae. J Virol 2008,82(4):2004-2012.
    297. Weeks SA, Shield WP, Sahi C, Craig EA, Rospert S, Miller DJ:A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication. J Virol 2010,84(1):330-339.
    298. Viaud MC, Balhadere PV, Talbot NJ:A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. The Plant Cell 2002,14(4):917-930.
    299. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ:A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000, 21(17):3666-3672.
    300. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM:Mass spectrometric identification of proteins from silver-stained polyacrylamide gel:a method for the removal of silver ions to enhance sensitivity. Electrophoresis 1999,20(3):601-605.
    301. Muller O, Schreier PH, Uhrig JF:Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol Genet Genomics 2008,279(1):27-39.
    302. Wang Y, Wu J, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY:Comparative Secretome Investigation of Magnaporthe oryzae Proteins Responsive to Nitrogen Starvation..J Proteome Res 2011.
    303. Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D: Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 2009,75(12):4058-4068.
    304. Choi GH, Pawlyk DM, Rae B, Shapira R, Nuss DL:Molecular analysis and overexpression of the gene encoding endothiapepsin, an aspartic protease from Cryphonectria parasitica. Gene 1993, 125(2):135-141.
    305. Rigling D, Van Alfen NK:Extra-and Intracellular Laccases of the Chestnut Blight Fungus, Cryphonectria parasitica. Appl Environ Microbiol 1993,59(11):3634-3639.
    306. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L:WEGO:a web tool for plotting GO annotations. Nucleic Acids Res 2006,34(Web Server issue):W293-297.
    307. Wei Y, Shih J, Li J, Goodwin PH:Two pectin lyase genes, pnl-1 and pnI-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. Microbiology 2002,148(Pt 7):2149-2157.
    308. Yin QY, de Groot PW, Dekker HL, de Jong L, Klis FM, de Koster CG:Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls:identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 2005, 280(21):20894-20901.
    309. Yin QY, de Groot PW, de Koster CG, Klis FM:Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 2008,16(1):20-26.
    310. Esquerre-Tugaye MT, Boudart, G., Dumas, B.:Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem 2000,38:157-163.
    311. Pereira L A, Bao S N, Barbosa M S, da Silva J L, Felipe M S, de Santana J M, Mendes-Giannini MJ, de Almeida Soares CM:Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast Res 2007,7(8):1381-1388.
    312. Brisson LF, Tenhaken R, Lamb C:Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell 1994,6(12):1703-1712.
    313. Mehdy MC:Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol 1994, 105(2):467-472.
    314. Obsilova V, Silhan J, Boura E, Teisinger J, Obsil T:14-3-3 proteins:a family of versatile molecular regulators. Physiol Res 2008,57 Suppl 3:S11-21.
    315. Kelly MN, Johnston DA, Peel BA, Morgan TW, Palmer GE, Sturtevant JE:Bmhlp (14-3-3) mediates pathways associated with virulence in Candida albicans. Microbiology 2009,155(Pt 5):1536-1546.
    316. van Heusden GP, Steensma HY:Yeast 14-3-3 proteins. Yeast 2006,23(3):159-171.
    317. Bruckmann A, Hensbergen PJ, Balog CI, Deelder AM, de Steensma HY, van Heusden GP: Post-transcriptional control of the Saccharomyces cerevisiae proteome by 14-3-3 proteins. J Proteome Res 2007,6(5):1689-1699.
    318. Kapoor M, Curle CA, Runham C:The hsp70 gene family of Neurospora crassa:cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member.J Bacteriol 1995, 177(1):212-221.
    319. Hillman BI, Shapira R, Nuss DL:Hypovirulence-associated suppression of host functions in Cryphonectria parasitica can be partially relieved by high light intensity. Phytopathology 1990, 80(10):950-956 934 ref.
    320. Kaiser P, Huang L: Global approaches to understanding ubiquitination. Genome Biol 2005, 6(10):233.
    321. Ozkaynak E, Finley D, Varshavsky A:The yeast ubiquitin gene:head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 1984,312(5995):663-666.
    322. Taccioli GE, Grotewold E, Aisemberg GO, Judewicz ND:Ubiquitin expression in Neurospora crassa: cloning and sequencing of a polyubiquitin gene. Nucleic Acids Res 1989,17(15):6153-6165.
    323. Foster LM, Loftus MG, Ross IK:A novel form of ubiquitin found in the basidiomycete fungus, Coprinus congregatus. Nucleic Acids Res 1990,18(21):6449.
    324. Huet JC, Salle-Tourne M, Pernollet JC:Amino acid sequence and toxicity of the alpha elicitin secreted with ubiquitin by Phytophthora infestans. Mol Plant Microbe Interact 1994,7(2):302-304.
    325. Saini V, Marchese A, Majetschak M:CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem 2010,285(20):15566-15576.
    326. Dodds JA:Association of type 1 viral-like dsRNA with club-shaped particles in hypovirulent strains of Endothia parasitica. Virology 1980,107(1):1-12.
    327. Newhouse JR, MacDonald WL, Hoch HC:Virus-like particles in hyphae and conidia of European hypovirulent (dsRNA-containing) strains of Cryphonectria parasitica. Canadian Journal of Botany 1990,68(1):90-101.
    328. Shapira R, Choi GH, Hillman BI, Nuss DL:The contribution of defective RNAs to the complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica. EMBO J 1991,10(4):741-746.
    329.[美]J.莎姆布鲁克,黄培堂译:《分子克隆实验指南》(第三版).科学出版社2005.
    330. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C:Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 2004, 41(11):973-981.
    331. Churchill ACL, Ciuffetti LM, Hansen DR, Etten HD, Alfen NK:Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids Current Genetics 1990, 17(1):25-31.
    332. LEE JK, TATTAR TA, BERMAN PM, MOUNT MS:A Rapid Method for Testing the Virulence of Cryphonectria parasitica Using Excised Bark and Wood of American Chestnut. Phytopathology 1992,82(12):1454-1456.