小麦萌发种子胚乳和盐胁迫根尖中内肽酶及20S蛋白酶体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以小麦栽培品种扬麦158 (Triticum aestivum L., Yangmai 158)为实验材料,研究了小麦种子吸胀及后续幼苗生长过程中胚乳中内肽酶(endopeptidases, EPs)的变化和生化特性,以及胚乳中20S蛋白酶体的生化特性和其对种子萌发过程的响应;并研究了盐胁迫下小麦幼苗根尖的氧化伤害对20S蛋白酶体的影响。主要研究结果如下:
     1.小麦种子吸胀后胚乳中半胱氨酸内肽酶和20S蛋白酶体的研究
     采用与明胶共聚4-20%梯度凝胶电泳的方法研究了小麦种子吸胀后胚乳中内肽酶的变化及其生化特性。在小麦种子吸胀0-7 d内,小麦胚乳内有4种半胱氨酸内肽酶(EP1,EP2,EP3和EP4)逐渐出现,且它们的活性都随着实验时间的延长而逐渐增加;在这些EPs中,EP2不仅最先出现,而且它的活性在整个实验过程中也一直是最高的。这4种EPs的最适pH都是4.0,最适温度都是40℃,它们的活性都能被25μME-64完全抑制,因此,这4种EPs都属于半胱氨酸内肽酶。4种EPs对热都不很稳定,特别是EP1的热稳定性最差。此外,这4种EPs对成熟小麦籽粒贮藏蛋白质,清蛋白,球蛋白,醇溶蛋白和麦谷蛋白有不同的底物专一性。在4种EPs中,EP2对球蛋白,醇溶蛋白和麦谷蛋白均有最高的蛋白水解活性。综合以上结果,我们认为EP2可能是与小麦种子萌发及其幼苗生长相关最紧密且最重要的一种内肽酶。
     首先采用连续3次离心和梯度PAGE(GPAGE)后切胶回收的方法纯化小麦胚乳中的20S蛋白酶体,通过GPAGE及Western印迹检测证明获得了纯的20S蛋白酶体,然后对20S蛋白酶体和其在小麦种子萌发及幼苗生长过程中的生化特性进行了研究。结果表明,提纯的20S蛋白酶体能明显地切割模式合成底物Z-GGL-AMC和Z-GGR-AMC的芳-肽键,表示该20S蛋白酶体具有胰凝乳蛋白酶和胰蛋白酶的活性,这两种蛋白酶活性的最适pH都为8.0,而其胰凝乳蛋白酶和胰蛋白酶活性的最适温度分别为55℃和37℃,但这两种蛋白酶活性都能被MG115和PMSF显著性地抑制。以上结果表明,我们提纯的蛋白酶是一种典型的20S蛋白酶体。结果同时还表明,在小麦种子吸胀0-7 d内,胚乳内多聚泛素化蛋白的含量保持不变。但是与糊粉层相关的20S蛋白酶体的酪蛋白水解活性和蛋白含量在1-2 d内逐渐降低,但在2-4 d期间逐渐增加,在4 d达到最高水平,并保持最高水平一直到7 d。在2-4 d期间,20S蛋白酶体的β5-亚基mRNA水平增加到较高的水平,20S蛋白酶体的酪蛋白水解活性和蛋白含量相应地从3 d开始逐渐增加。此外,小麦胚乳的主要贮藏蛋白不能被20S蛋白酶体降解。以上结果进一步表明,在小麦种子吸胀后的这段时间内,胚乳中20S蛋白酶体的主要作用可能不是用来降解胚乳中大量贮藏蛋白的。
     2.盐胁迫下小麦根尖的氧化伤害对20S蛋白酶体的影响
     为研究盐胁迫下小麦根尖的氧化伤害对20S蛋白酶体的影响,用200 mM NaCl胁迫小麦幼苗12、24、48和72 h,之后分别取其根尖。测定了其中H2O2含量、O2-产生的速率、膜脂过氧化程度和质膜完整性;及20S蛋白酶体的羰基化水平、酪蛋白水解活性及蛋白含量变化等生化特性。同时也测定了小麦根尖细胞内羰基化蛋白和泛素化蛋白的含量。结果表明,小麦根尖中H2O2含量、O2-产生的速率、TBARS含量和细胞死亡数都随着胁迫时间的延长而逐渐增加。对根尖进行组织染色发现,膜脂过氧化和质膜完整性破坏的程度和分布范围随着胁迫时间的延长而逐渐加重和扩大。在72 h盐胁迫过程中,小麦根尖中总酪蛋白水解活性和20S蛋白酶体的酪蛋白水解活性都逐渐增加;与此同时,小麦根尖中总蛋白的羰基化水平和20S蛋白酶体的羰基化水平也都逐渐增加。但是,在这个过程中,20S蛋白酶体的含量和泛素化蛋白的含量却反而减少。Fe2+催化的对照小麦根尖可溶性蛋白的氧化实验证明,氧化处理也能使20S蛋白酶体的酪蛋白水解活性逐渐增加,但其蛋白含量却逐渐减少。这些结果表明,在盐胁迫诱导的小麦根尖细胞中,20S蛋白酶体轻度的氧化修饰能使其含量逐渐降低,但反而使其活性逐渐增加。
Wheat cultivar Yangmai 158 (Triticum aestivum L., Yangmai 158) is the experimental material of this study, the changes of cysteine endopeptidases and their biochemical characteristics were investigated in wheat endosperm during seed germination and subsequential seedling growth, and enzymatic properties of wheat endosperm 20S proteasome and the response of which to this germination process were also investigated; simultaneity, the effect of salt-induced oxidative damage to the 20S proteasome was also studied in wheat root tips under salt stress. The main contents of this dissertation as followings:
     1. The investigation of cysteine endopeptidases and 20S proteasome in wheat endosperm after seed imbibition
     The endopeptidases (EPs) in wheat endosperm after seed imbibition were characterized by 4-20% gradient PAGE with gelatin copolymerized into the gel. Four cysteine EPs (EP1, EP2, EP3 and EP4) were detected in wheat endosperm during the 7 d growth after seed imbibition. The results showed that the activities of all of these EPs increased continuously, and EP2 first appeared and had the highest proteolytic activity among the four EPs in this experimental process. The optimum pH and temperature of all four EPs were 4.0 and 40.0℃. All EPs were completely inhibited by 25μM E-64 and had no good thermal stabilities, especially EP1. In addition, these EPs had different substrate specificities to albumins, globulins, gliadins and glutenins; the main storage proteins of mature wheat endosperm. Among them, EP2 had the highest proteolytic activities on globulins, gliadins and glutenins, and might be the most important and specific EP with potential to be tightly correlated with seedling development.
     The 20S proteasome from wheat endosperm was purified by three sequential centrifugations and gradient PAGE (GPAGE) to apparent homogeneity, as judged by GPAGE and western blotting. The results showed that the purified 20S proteasome could clearly cleave the peptidyl-arylamide bonds in model synthetic substrates Z-GGL-AMC and Z-GGR-AMC, used for reflecting its chymotrypsin-like and trypsin-like activity respectively. Both of optimum pH were 8.0, but the optimum temperatures of chymotrypsin-like and trypsin-like activity were 55℃and 37℃respectively, the activities above were clearly inhibited by MG115 or PMSF. The results also showed that polyubiquitinated proteins remained constant from 0 to 7 d after seed imbibition. But the caseinolytic activity and amount of 20S proteasome associated with aleurone layer decreased from 1 to 2 days after imbibition (DAI), then increased from 2 to 4 DAI, and reached the highest level on 4 DAI and kept the level till 7 DAI. With the mRNA level increase ofβ5-subunit for 20S proteasome from 2 DAI, the caseinolytic activity and amount of 20S proteasome increased accordingly from 3 DAI. In addition, the main storage proteins of wheat endosperm could not be hydrolyzed by the 20S proteasome. The evidences above suggested that the main role of 20S proteasome may not be to degrade massive proteins of wheat endosperm after seed imbibition.
     2. Effect of salt-induced oxidative damage to the 20S proteasome in wheat root tips under salt stress
     In order to study the effect of salt-induced oxidative damage to the 20S proteasome in wheat root tips under salt stress, the root tips from wheat seedlings treated with 200 mM NaCl for 12,24,48 and 72 h were used for studying the content of H2O2, production rate of O2-, the degree of lipid peroxidation and plasma membrane integrity; and the carbonyl level, caseinolytic activity and protein amount of 20S proteasome and other biochemical characteristics. The contents of carbonylated and ubiquitinated proteins (Ub-P) in root tips were also investigated. The results showed that the contents of H2O2 and TBARS, production rate of O2-, and the quantity of cell death in root tips all gradually increased along with the stress time prolonged. Histochemical detection of lipid peroxidation and loss of plasma membrane integrity found that the degree and distribution of the histochemical staining patterns of these two events were aggravated and extended along with the prolonged treatment time. Caseinolytic activities of the total and the 20S proteasome both gradually increased, with a concomitant increase of the carbonyl level of total proteins and the 20S proteasome during the salt treatment. But the amounts of 20S proteasome and Ub-P decreased oppositely during this process. Metal-catalyzed oxidation of soluble proteins from control root tips validated that oxidative treatment could increase the caseinolytic activity of 20S proteasome, but oppositely decrease its protein amount. These results indicated that the amount and activity of 20S proteasome could be contrarily altered by mild oxidative modification in wheat root tips under salt stress.
引文
[1]Ahmad S. Oxidative Stress and Antioxidant Defences in Biology. Chapman and Hall. New York: International Thomson Publishing Inc,1995:181
    [2]Ali A A, Alqurainy F. Activities of antioxidants in plants under environmental stress//Motohashi N. The lutein-prevention and treatment for diseases. India:Transworld research network,2006: 187-256
    [3]Amor N B, Hamed K B, Debez A, Grignon C, Abdelly C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci,2005,168: 889-899
    [4]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    [5]Arnold J, Grune T. PARP-mediated proteasome activation: a co-ordination of DNA repair and protein degradation? Bioessays,2002,24:1060-1065
    [6]Asada K. The water-water cycle in chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    [7]Asano M, Suzuki S, Kawai M, Miwa T, Shibai H. Characterization of novel cysteine proteases from germinating cotyledons of soybean [Glycine max (L.) Merrill]. J Biochem,1999,126: 296-301
    [8]Asencio C, Rodriguez-Aguilera J C, Ruiz-Ferrer M, Vela J, Navas P. Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J,2003,17:1135-1137
    [9]Attaix D, Combaret L, Pouch M N, Taillandier D. Cellular control of ubiquitin-proteasome-dependent proteolysis. J. Anim Sci.,2002,80:E56-63
    [10]Attaix D, Aurousseau E, Combaret L, Kee A, Larbaud D, Ralliere C, Souweine B, Taillandier D, Tilignac T. Ubiquitin-proteasome-dependent proteolysis in skeletal muscle. Reprod Nutr Dev, 1998,38:153-165
    [11]Baker C J, Mock N M. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Organ Cult 1994,39:7-12
    [12]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol,1994,24:701-713
    [13]Bartlett R K, Bieber Urbauer R J, Anbanandam A, Smallwood H S, Urbauer J L, Squier T C. Oxidation of Met144 and Met 145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase. Biochemistry,2003,42:3231-3238
    [14]Basset G, Raymond P, Malek L, Brouquisse R. Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots. evidence for an in vivo oxidation of the proteasome. Plant Physiol,2002,128:1149-1162
    [15]Becker C, Shutov A D, Nong V H, Senyuk V I, Jung R, Horstmann C, Fischer J, Nielsen N C, Muntz K. Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds. Eur J Biochem, 1995,228:456-462
    [16]Beckman K B, Ames B N. The free radical theory of aging matures. Physiol Rev,1998,78: 547-581
    [17]Beers E P, Woffenden B J, Zhao C. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol Biol,2000,44:399-415
    [18]Berlett B S, Stadtman E R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem, 1997,272:20313-20316
    [19]Bernd W. Structure-function relationship in class CA1 cysteine peptidase propeptides Acta Biochemical Polonica 2003,50:691-713
    [20]Bethke P C, Jones R L. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J,2001,25:19-29
    [21]Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve S J, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S. Gene expression in autumn leaves. Plant Physiol,2003, 131:430-442
    [22]Biteau B, Labarre J, Toledano M B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature,2003,425:980-984
    [23]Bohra J S, Dorffling K. Postassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant Soil,1993,152:299-303
    [24]Bota D A, Davies K J. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol,2002,4:674-680
    [25]Bottari A, Capocchi A, Galleschi L, Jopova A, Saviozzi F. Asparaginyl endopeptidase during maturation and germination of durum wheat. Physiologia Plantarum,1996,97:475-480
    [26]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [27]Brot N, Weissbach H. Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers,2000,55:288-296
    [28]Brouquisse R, Gaudillere J P, Raymond P. Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to Light/Dark cycles and to extended darkness. Plant Physiol,1998, 117:1281-1291
    [29]Budanov A V, Sablina A A, Feinstein E, Koonin E V, Chumakov P M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science,2004,304: 596-600
    [30]Bulteau A L, Petropoulos I, Friguet B. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol,2000,35:767-777
    [31]Bulteau A L, Verbeke P, Petropoulos I, Chaffotte A F, Friguet B. Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem,2001,276:45662-45668
    [32]Bureau J P, Henry L, Baz A, Scherrer K, Chateau M T. Prosomes (proteasomes) changes during differentiation are related to the type of inducer. Mol Biol Rep,1997,24:57-62
    [33]Callis J, Carpenter T, Sun C W, Vierstra R D. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics, 1995,139:921-939
    [34]Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng J C, Nam K H, Li J, Chory J. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development,2004,131:5341-5351
    [35]Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol,2004,5:739-751
    [36]Carrard G, Bulteau A L, Petropoulos I, Friguet B. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol,2002,34:1461-1474
    [37]Castellani O F, Martinez E N, Anon M C. Amaranth globulin structure modifications induced by enzymatic proteolysis. J Agric Food Chem,2000,48:5624-5629
    [38]Cejudo F J, Murphy G, Chinoy C, Baulcombe D C. A gibberellin-regulated gene from wheat with sequence homology to cathepsin B of mammalian cells. Plant J,1992,2:937-948
    [39]Chakravarti B, Chakravarti D N. Oxidative modification of proteins: age-related changes. Gerontology,2007,53:128-139
    [40]Chen J, Avdonin V, Ciorba M A, Heinemann S H, Hoshi T. Acceleration of P/C-type inactivation in voltage-gated K(+) channels by methionine oxidation. Biophys J,2000,78:174-187
    [41]Chini A, Fonseca S, Fernandez G, Adie B, Chico J M, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano F M, Ponce M R, Micol J L, Solano R. The JAZ family of repressors is the missing link in jasmonate signalling. Nature,2007,448:666-671
    [42]Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life. EMBO J, 1998,17:7151-7160
    [43]Ciechanover A, Orian A, Schwartz A L. Ubiquitin-mediated proteolysis:biological regulation via destruction. Bioessays,2000,22:442-451
    [44]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta,2001,212: 475-486
    [45]Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B. Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J,1998,333:407-415
    [46]Cope G A, Deshaies R J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell,2003,114:663-671
    [47]Cope G A, Suh G S, Aravind L, Schwarz S E, Zipursky S L, Koonin E V, Deshaies R J. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cull. Science,2002,298: 608-611
    [48]Coux O, Tanaka K, Goldberg A L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem,1996,65:801-847
    [49]Davies K J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem, 1987,262:9895-9901
    [50]Davies K J. Degradation of oxidized proteins by the 20S proteasome. Biochimie,2001,83: 301-310
    [51]Davy A S, Lrensen M B, Svendsen I, Cameron-Mills V, Simpson D J. Prediction of protein cleavage sites by the barley cysteine endoproteases EP-A and EP-B based on the kinetics of synthetic peptide hydrolysis. Plant Physiol,2000,122:137-146
    [52]de Barros E G, Larkins B A. Cloning of a cDNA encoding a putative cysteine protease gliadin during wheat germination. Phytochemistry 1994,43Z:39-44
    [53]Dean R T, Fu S, Stocker R, Davies M J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J,1997,324 (Pt 1):1-18
    [54]Denny J B. Growth-associated protein of 43 kDa (GAP-43) is cleaved nonprocessively by the 20S proteasome. Eur J Biochem,2004,271:2480-2493
    [55]Dewitte W, Murray J A. The plant cell cycle. Annu Rev Plant Biol,2003,54:235-264
    [56]Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature, 2005,435:441-445
    [57]Downes B P, Stupar R M, Gingerich D J, Vierstra R D. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis:UPL3 has a specific role in trichome development. Plant J,2003,35: 729-742
    [58]Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol,1996,30: 755-767
    [59]Durfee T, Roe J L, Sessions R A, Inouye C, Serikawa K, Feldmann K A, Weigel D, Zambryski P C. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Natl Acad Sci U S A,2003,100: 8571-8576
    [60]Dutaud D, Aubry L, Sentandreu M A, Ouali A. Bovine muscle 20S proteasome:Ⅰ. Simple purification procedure and enzymatic characterization in relation with postmortem conditions. Meat Science,2006,74:327-336
    [61]Dye B T, Schulman B A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct,2007,36:131-150
    [62]Eleuteri A M, Cuccioloni M, Bellesi J, Lupidi G, Fioretti E, Angeletti M. Interaction of Hsp90 with 20S proteasome: thermodynamic and kinetic characterization. Proteins,2002,48:169-177
    [63]Elsasser S, Gali R R, Schwickart M, Larsen C N, Leggett D S, Muller B, Feng M T, Tubing F, Dittmar G A, Finley D. Proteasome subunit Rpnl binds ubiquitin-like protein domains. Nat Cell Biol,2002,4:725-730
    [64]Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem,1976,70:616-620
    [65]Fahmy A S, Ali A A, Mohamed S A. Characterization of a cysteine protease from wheat Triticum aestivum (cv. Giza 164). Bioresour Technol,2004,91:297-304
    [66]Farout L, Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal,2006,8:205-216
    [67]Farout L, Lamare M, Clavel S, Briand M, Briand Y. Differential expression of ubiquitin and proteasome-dependent pathway components in rat tissues. Comp Biochem Physiol B Biochem Mol Biol,2003,134:297-305
    [68]Farout L, Lamare M C, Cardozo C, Harrisson M, Briand Y, Briand M. Distribution of proteasomes and of the five proteolytic activities in rat tissues. Arch Biochem Biophys,2000,374: 207-212
    [69]Fath A, Bethke P C, Jones R L. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol,2001,126:156-166
    [70]Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar S P, Wei N, Deng X W. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Plant Cell,2003,15: 1083-1094
    [71]Fincher G B. Molecular and Cellular Biology Associated with Endosperm Mobilization in Germinating Cereal Grains. Annual Review of Plant Physiology and Plant Molecular Biology, 1989,40:305-346
    [72]Fischer J, Becker C, Hillmer S, Horstmann C, Neubohn B, Schlereth A, Senyuk V, Shutov A, Muntz K. The families of papain- and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds:developmental patterns, intracellular localization and functions in globulin proteolysis. Plant Mol Biol,2000,43:83-101
    [73]Fisher M T, Stadtman E R. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation. J Biol Chem,1992,267:1872-1880
    [74]Foyer C H, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant,2003,119:355-364
    [75]Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell,2005,17:1866-1875
    [76]Friguet B. Protein repair and degradation during aging. ScientificWorldJournal,2002,2: 248-254
    [77]Friguet B, Szweda L I. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett,1997,405:21-25
    [78]Friguet B, Stadtman E R, Szweda L I. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem,1994,269:21639-21643
    [79]Friguet B, Bulteau A L, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci,2000,908:143-154
    [80]Fu H, Doelling J H, Arendt C S, Hochstrasser M, Vierstra R D. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics,1998,149:677-692
    [81]Fu H, Reis N, Lee Y, Glickman M H, Vierstra R D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J,2001,20:7096-7107
    [82]Gaczynska M, Rock K L, Goldberg A L. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature,1993,365:264-267
    [83]Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A, 2002,99:11519-11524
    [84]Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A,2004,101: 6803-6808
    [85]Genschik P, Jamet E, Philipps G, Parmentier Y, Gigot C, Fleck J. Molecular characterization of a beta-type proteasome subunit from Arabidopsis thaliana co-expressed at a high level with an alpha-type proteasome subunit early in the cell cycle. Plant J,1994,6:537-546
    [86]Glickman M H. Getting in and out of the proteasome. Semin Cell Dev Biol,2000,11:149-158
    [87]Glickman M H, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev,2002,82:373-428
    [88]Goldberg A L. Protein degradation and protection against misfolded or damaged proteins. Nature, 2003,426: 895-899
    [89]Goldberg A L, Akopian T N, Kisselev A F, Lee D H, Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem, 1997,378:131-140
    [90]Goldstein G, Scheid M, Hammerling U, Schlesinger D H, Niall H D, Boyse E A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A,1975,72:11-15
    [91]Gomez J M, Jimenez A, Olmos E, Sevilla F. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot,2004,55:119-130
    [92]Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J,2004,37:626-634
    [93]Granell A, Harris N, Pisabarro A G, Carbonell J. Temporal and spatial expression of a thiolprotease gene during pea ovary senescence, and its regulation by gibberellin. Plant J,1992,2: 907-915
    [94]Gray W M, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature,2001,414:271-276
    [95]Gray W M, del Pozo J C, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby W L, Yang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev,1999,13:1678-1691
    [96]Griffiths C M, Hosken S E, Oliver D, Chojecki J, Thomas H. Sequencing, expression pattern and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain gamma and aleurain. Plant Mol Biol,1997,34:815-821
    [97]Grimaud R, Ezraty B, Mitchell J K, Lafitte D, Briand C, Derrick P J, Barras F. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem,2001,276: 48915-48920
    [98]Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H, Huber R. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci U S A,1999,96:10976-10983
    [99]Grudkowska M, Zagdanska B. Multifunctional role of plant cysteine proteinases. Acta Biochim Pol,2004,51:609-624
    [100]Grune T, Reinheckel T, Davies K J. Degradation of oxidized proteins in mammalian cells. FASEB J,1997,11:526-534
    [101]Grune T, Reinheckel T, Joshi M, Davies K J. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem,1995, 270:2344-2351
    [102]Grune T, Merker K, Sandig G, Davies K J. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun,2003,305:709-718
    [103]Grune T, Jung T, Merker K, Davies K J A. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and'aggresomes'during oxidative stress, aging, and disease. Int J Biochem Cell Biol,2004,36:2519-2530
    [104]Grune T, Blasig I E, Sitte N, Roloff B, Haseloff R, Davies K J. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem,1998,273: 10857-10862
    [105]Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell,2003,115:667-677
    [106]Guo H, Ecker J R. The ethylene signaling pathway: new insights. Curr Opin Plant Biol,2004,7: 40-49
    [107]Gupta K J, Stoimenova M, Kaiser W M. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot,2005,56:2601-2609
    [108]Gupta R B, Masci S, Lafiandra D, Bariana H S, MacRitchie F. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J. Exp. Bot.,1996,47:1377-1385
    [109]Haas A L, Baboshina 0, Williams B, Schwartz L M. Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle. J Biol Chem,1995,270:9407-9412
    [110]Halliwell B, Gutteridge J M C (1999) Free radicals in biology and medicine. Oxford University Press, Oxford
    [111]Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S. Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot,2006,57:1711-1718
    [112]Hansel A, Kuschel L, Hehl S, Lemke C, Agricola H J, Hoshi T, Heinemann S H. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins. FASEB J,2002,16:911-913
    [113]Hara-Nishimura I, Shimada T, Hiraiwa N, Nishimura M. Vacuolar processing enzyme responsible for maturation of seed protein. J Plant Physiol,1995,145:6412-6417
    [114]Hardtke C S, Gohda K, Osterlund M T, Oyama T, Okada K, Deng X W. HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J, 2000,19: 4997-5006
    [115]Harrak H, Azelmat S, Baker E N, Tabaeizadeh Z. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome, 2001,44:368-374
    [116]Hartmann-Petersen R, Seeger M, Gordon C. Transferring substrates to the 26S proteasome. Trends Biochem Sci,2003,28:26-31
    [117]Hatakeyama S, Nakayama K I. U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun,2003,302:635-645
    [118]Hatfield P M, Gosink M M, Carpenter T B, Vierstra R D. The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J,1997,11:213-226
    [119]He J X, Gendron J M, Yang Y, Li J, Wang Z Y. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A,2002,99:10185-10190
    [120]He J X, Gendron J M, Sun Y, Gampala S S, Gendron N, Sun C Q, Wang Z Y. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science,2005a,307:1634-1638
    [121]He Y L, Liu Y L, Cao W X, Huai M F, Xu B G, Huang B R. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in kentucky bluegrass. Crop Sci,2005b,45: 988-995
    [122]Heidari M, Mesri F. Salinity effects on compatible solutes, antioxidants enzymes and ion content in three wheat cultivars. Pak J Biol Sci,2008,11:1385-1389
    [123]Hensley K, Floyd R A. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys,2002,397:377-383
    [124]Herman E M, Larkins B A. Protein storage bodies and vacuoles. Plant Cell,1999,11:601-614
    [125]Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil K B, Fujiwara T, Takahashi E, Tanahashi N, Tamura T, Ichihara A, Tanaka K. Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med,1996,183:1807-1816
    [126]Ho S L, Tong W F, Yu S M. Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol,2000,122:57-66
    [127]Hobler S C, Williams A, Fischer D, Wang J J, Sun X, Fischer J E, Monaco J J, Hasselgren P O. Activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis. Am J Physiol,1999,277:R434-440
    [128]Holm M, Ma L Q Qu L J, Deng X W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev,2002,16: 1247-1259
    [129]Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal,2000,2:811-820
    [130]Holwerda B C, Rogers J C. Purification and Characterization of Aleurain:A Plant Thiol Protease Functionally Homologous to Mammalian Cathepsin H. Plant Physiol,1992,99:848-855
    [131]Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem,1987,262:8303-8313
    [132]Huang L, Kinnucan E, Wang G, Beaudenon S, Howley P M, Huibregtse J M, Pavletich N P. Structure of an E6AP-UbcH7 complex:insights into ubiquitination by the E2-E3 enzyme cascade. Science,1999,286:1321-1326
    [133]Hurkman W J, Tanaka C K. Effect of Salt Stress on Germin Gene Expression in Barley Roots. Plant Physiol,1996,110:971-977
    [134]Ichihara A, Tanaka K. Roles of proteasomes in cell growth. Mol Biol Rep,1995,21:49-52
    [135]Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J,2003,22:3557-3567
    [136]Ingvardsen C, Veierskov B. Ubiquitin- and proteasome-dependent proteolysis in plants. Physiol Plant,2001,112:451-459
    [137]Ishikawa S, Wagatsuma T. Plasma Membrane Permeability of Root-Tip Cells Following Temporary Exposure to Al Ions Is a Rapid Measure of Al Tolerance among Plant Species. Plant Cell Physiol.,1998,39:516-525
    [138]Iwasaki T, Kiyosue T, Yamaguchi S K, et al. The hydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaiana. Plant Physiol,1997,115:1287
    [139]Jentsch S, Seufert W, Hauser H P. Genetic analysis of the ubiquitin system. Biochim Biophys Acta,1991,1089:127-139
    [140]Joazeiro C A, Weissman A M. RING finger proteins: mediators of ubiquitin ligase activity. Cell, 2000,102:549-552
    [141]Jones J T, Mullet J E. A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Mol Biol,1995,28:1055-1065
    [142]Jung R, Scott M P, Nam Y W, Beaman T W, Bassuner R, Saalbach I, Muntz K, Nielsen N C. The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell,1998,10: 343-357
    [143]Jung S, Hansel A, Kasperczyk H, Hoshi T, Heinemann S H. Activity, tissue distribution and site-directed mutagenesis of a human peptide methionine sulfoxide reductase of type B:hCBS1. FEBS Lett,2002,527:91-94
    [144]Jung T, Bader N, Grune T. Oxidized proteins:intracellular distribution and recognition by the proteasome. Arch Biochem Biophys,2007,462:231-237
    [145]Karrer K M, Peiffer S L, DiTomas M E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A,1993,90:3063-3067
    [146]Katsuhara M, Kawasaki T. Salt Stress Induced Nuclear and DNA Degradation in Meristematic Cells of Barley Roots. Plant Cell Physiol.,1996,37:169-173
    [147]Kawahara H, Yokosawa H. Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev Biol,1992,151:27-33
    [148]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature,2005, 435:446-451
    [149]Khanna-Chopra R, Srivalli B, Ahlawat Y S. Drought induces many forms of cysteine proteases not observed during natural senescence. Biochem Biophys Res Commun,1999,255:324-327
    [150]Kiddle G, Pastori G M, Bernard S, Pignocchi C, Antoniw J, Verrier P J, Foyer C H. Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana. Antioxid Redox Signal,2003,5:23-32
    [151]Kiffin R, Christian C, Knecht E, Cuervo A M. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell,2004,15:4829-4840
    [152]Kim H Y, Gladyshev V N. Methionine sulfoxide reduction in mammals:characterization of methionine-R-sulfoxide reductases. Mol Biol Cell,2004,15:1055-1064
    [153]Kingston-Smith A H, Bollard A L, Minchin F R. Stress-induced changes in protease composition are determined by nitrogen supply in non-nodulating white clover. J Exp Bot,2005,56:745-753
    [154]Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J,1999,19:43-53
    [155]Kiyosaki T, Matsumoto I, Asakura T, Funaki J, Kuroda M, Misaka T, Arai S, Abe K. Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic cystatins. FEBS J,2007,274: 1908-1917
    [156]Klionsky D J. The molecular machinery of autophagy: unanswered questions. J Cell Sci,2005, 118:7-18
    [157]Koehler S, Ho T H. Purification and Characterization of Gibberellic Acid-Induced Cysteine Endoproteases in Barley Aleurone Layers. Plant Physiol,1988,87:95-103
    [158]Koehler S M, Ho T H. Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell,1990a,2:769-783
    [159]Koehler S M, Ho T H. A Major Gibberellic Acid-Induced Barley Aleurone Cysteine Proteinase Which Digests Hordein:Purification and Characterization. Plant Physiol,1990b,94:251-258
    [160]Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene, 1993,129:175-182
    [161]Kurepa J, Smalle J A. Structure, function and regulation of plant proteasomes. Biochimie,2008, 90:324-335
    [162]Kuroda M, Kiyosaki T, Matsumoto I, Misaka T, Arai S, Abe K. Molecular cloning, characterization, and expression of wheat cystatins. Biosci Biotechnol Biochem,2001,65:22-28
    [163]Kuroyanagi M, Nishimura M, Hara-Nishimura I. Activation of Arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the C-terminal propeptide. Plant Cell Physiol,2002,43:143-151
    [164]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685
    [165]Lee M H, Hyun D H, Jenner P, Halliwell B. Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem,2001,78:32-41
    [166]Leustek T, Martin M N, Bick J A, Davies J P. Pathways and Regulation of Sulfur Metabolism Revealed through Molecular and Genetic Studies. Annu Rev Plant Physiol Plant Mol Biol,2000, 51:141-165
    [167]Levine R L. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radical Biol Med,2002,32:790-796
    [168]Levine R L, Stadtman E R. Oxidative modification of proteins during aging. Exp Gerontol,2001, 36:1495-1502
    [169]Levine R L, Mosoni L, Berlett B S, Stadtman E R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A,1996,93:15036-15040
    [170]Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, 1990,186:464-478
    [171]Li J, Nam K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science,2002,295:1299-1301
    [172]Li Q Y, Niu H B, Yin J, Wang M B, Shao H B, Deng D Z, Chen X X, Ren J P, Li Y C. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces,2008,65:220-225
    [173]Lid S E, Gruis D, Jung R, Lorentzen J A, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen O A. The defective kernel 1 (dekl) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci U S A,2002,99:5460-5465
    [174]Lin J, Wang Y, Wang G. Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol,2006,163:731-739
    [175]Liu C W, Corboy M J, DeMartino G N, Thomas P J. Endoproteolytic activity of the proteasome. Science,2003,299:408-411
    [176]Liu J, Furukawa M, Matsumoto T, Xiong Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell,2002,10: 1511-1518
    [177]Lopez-Molina L, Mongrand S, Chua N H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A,2001,98:4782-4787
    [178]Lopez-Molina L, Mongrand S, Kinoshita N, Chua N H. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev,2003,17:410-418
    [179]Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science,1995,268:533-539
    [180]Lu X, Michaud C, Orlowski M. Heat shock protein-90 and the catalytic activities of the 20 S proteasome (multicatalytic proteinase complex). Arch Biochem Biophys,2001,387:163-171
    [181]Mφller I M, Kristensen B K. Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci,2004,3:730-735
    [182]Mφller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol,2007,58:459-481
    [183]Muntz K. Proteases and proteolytic cleavage of storage proteins in developing and germinating dicotyledonous seeds. J Exp Bot,1996,47:605-622
    [184]Muntz K, Blattner F R, Shutov A D. Legumains-a family of asparagine-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants. J Plant Physiol,2002,159:1281-1293
    [185]Muntz K, Belozersky M A, Dunaevsky Y E, Schlereth A, Tiedemann J. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J Exp Bot,2001,52:1741-1752
    [186]Maleknia S D, Reixach N, Buxbaum J N. Oxidation inhibits amyloid fibril formation of transthyretin. FEBS J,2006,273:5400-5406
    [187]Marcillat O, Zhang Y, Lin S W, Davies K J. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins. Biochem J,1988,254:677-683
    [188]Marques C, Pereira P, Taylor A, Liang J N, Reddy V N, Szweda L I, Shang F. Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J,2004,18:1424-1426
    [189]Marrocco K, Lecureuil A, Nicolas P, Guerche P. The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol Biol,2003,52:715-727
    [190]Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J,2006,45:423-438
    [191]Mary J, Vougier S, Picot C R, Perichon M, Petropoulos I, Friguet B. Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol,2004,39:1117-1123
    [192]Matarasso N, Schuster S, Avni A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic Acid synthase gene expression. Plant Cell,2005, 17:1205-1216
    [193]Mateo A, Muhlenbock P, Rusterucci C, Chang C C, Miszalski Z, Karpinska B, Parker J E, Mullineaux P M, Karpinski S. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol,2004,136:2818-2830
    [194]Maupin-Furlow J A, Humbard M A, Kirkland P A, Li W, Reuter C J, Wright A J, Zhou G. Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol,2006,75: 125-169
    [195]Merheb C W, Cabral H, Gomes E, Da-Silva R. Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem,2007,104:127-131
    [196]Michaud D, Faye L, Yelle S. Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors. Electrophoresis,1993,14:94-98
    [197]Mitsuhashi W, Oaks A. Development of Endopeptidase Activities in Maize (Zea mays L.) Endosperms. Plant Physiol,1994,104:401-407
    [198]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405-410
    [199]Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev,2004,18:448-460
    [200]Moskovitz J, Singh V K, Requena J, Wilkinson B J, Jayaswal R K, Stadtman E R. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun,2002,290:62-65
    [201]Nakashima K, Shinwari Z K, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol,2000,42: 657-665
    [202]Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J,2003,34:137-148
    [203]Neurath H. Evolution of proteolytic enzymes. Science,1984,224:350-357
    [204]Nielsen N, Jung R, Nam Y, Beaman T, Oliveira L, Bassuner R. Synthesis and assembly of 11S globulins. Plant Physiol,1995,145:641-647
    [205]Noh Y S, Amasino R M. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol,1999,41:181-194
    [206]Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J, 2005,24:1311-1317
    [207]Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A. Redox regulation of ubiquitin-conjugating enzymes:mechanistic insights using the thiol-specific oxidant diamide. FASEB J,1998,12:561-569
    [208]Ogiso Y, Tomida A, Kim H D, Tsuruo T. Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochem Biophys Res Commun,1999,258:448-452
    [209]Ohi M D, Vander Kooi C W, Rosenberg J A, Chazin W J, Gould K L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol,2003,10:250-255
    [210]Okamoto T, Minamikawa T. Purification of a processing enzyme (VmPE-1) that involved in post-translational processing plant cysteine proteinase (SH-EP). Eur Biochem,1995,231: 300-305
    [211]Okamoto T, Minamikawa T. A vacuolar cysteine endopeptidase (SH-EP) that digests seed storage globulin :characterization, regulation of gene expression, and posttranslational processing. J Plant Physiol,1998,152:675-682
    [212]Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T. C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. Plant Physiol,2003,132:1892-1900
    [213]Okuma E, Murakami Y, Shimoishi Y, Tada M, Murata Y. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci Plant Nutr,2004,50:1301-1305
    [214]Ortega J, Heymann J B, Kajava A V, Ustrell V, Rechsteiner M, Steven A C. The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol,2005,346:1221-1227
    [215]Osterlund M T, Hardtke C S, Wei N, Deng X W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature,2000,405:462-466
    [216]Ostrowska H, Ostrowska J K, Worowski K, Radziwon P. Human platelet 20S proteasome: inhibition of its chymotrypsin-like activity and identification of the proteasome activator PA28. A preliminary report. Platelets,2003,14:151-157
    [217]Otegui M S, Noh Y S, Martinez D E, Vila Petroff M G, Staehelin L A, Amasino R M, Guiamet J J. Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J,2005,41:831-844
    [218]Ouaked F, Rozhon W, Lecourieux D, Hirt H. A MAPK pathway mediates ethylene signaling in plants. EMBO J,2003,22:1282-1288
    [219]Palma J M, Sandalio L M, Corpas F J, Romero-Puertas M C, McCarthy I, del Rio L A. Plant proteases, protein degradation, and oxidative stress:role of peroxisomes. Plant Physiol Biochem, 2002,40:521-530
    [220]Parry G, Estelle M. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol,2004,15:221-229
    [221]Passmore L A, Barford D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J,2004,379:513-525
    [222]Pechan T, Ye L, Chang Y, Mitra A, Lin L, Davis F M, Williams W P, Luthe D S. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell,2000,12:1031-1040
    [223]Pena L B, Pasquini L A, Tomaro M L, Gallego S M. Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci,2006,171:531-537
    [224]Pena L B, Pasquini L A, Tomaro M L, Gallego S M.20 S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry, 2007,68:1139-1146
    [225]Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem,2001,70:503-533
    [226]Pinheiro C, Kehr J, Ricardo C P. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta,2005,221:716-728
    [227]Pintard L, Kurz T, Glaser S, Willis J H, Peter M, Bowerman B. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol,2003,13:911-921
    [228]Poeppel P, Habetha M, Marcao A, Bussow H, Berna L, Gieselmann V. Missense mutations as a cause of metachromatic leukodystrophy. Degradation of arylsulfatase A in the endoplasmic reticulum. FEBS J,2005,272:1179-1188
    [229]Pompella A, Maellaro E, Casini A F, Comporti M. Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol,1987,129:295-301
    [230]Poole L B, Karplus P A, Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol,2004,44:325-347
    [231]Potokina E, Sreenivasulu N, Altschmied L, Michalek W, Graner A. Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct Integr Genomics,2002,2:28-39
    [232]Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell,2003,115:679-689
    [233]Poulle M, Jones B L. A proteinase from germinating barley. Purification and some physical properties. J Plant Physiol,1988,88:1454-1460
    [234]Poxleitner M, Rogers S W, Lacey Samuels A, Browse J, Rogers J C. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J,2006,47:917-933
    [235]Qiao J, Mitsuhara I, Yazaki Y, Sakano K, Gotoh Y, Miura M, Ohashi Y. Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells-their possible contribution through improved function of organella. Plant Cell Physiol,2002,43:992-1005
    [236]Rao M B, Tanksale A M, Ghatge M S, Deshpande V V. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev,1998,62:597-635
    [237]Reinheckel T, Ullrich O, Sitte N, Grune T. Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys, 2000,377:65-68
    [238]Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies K J, Grune T. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J,1998,335 (Pt 3):637-642
    [239]Ren H, Santner A, del Pozo J C, Murray J A, Estelle M. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J,2008,53: 705-716
    [240]Requena J R, Levine R L, Stadtman E R. Recent advances in the analysis of oxidized proteins. Amino Acids,2003,25:221-226
    [241]Rivett A J, Hearn A R. Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. Curr Protein Pept Sci,2004,5: 153-161
    [242]Rivett A J, Bose S, Brooks P, Broadfoot K I. Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie,2001,83:363-366
    [243]Roberts I, Murray P F, Passeron S, Barneix A J. The activity of the 20S proteasome is maintained in detached wheat leaves during senescence in darkness. Plant Physiol Biochem,2002 40 161-166
    [244]Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg A L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell,1994,78:761-771
    [245]Rodriguez R, Redman R. Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci U S A,2005,102:3175-3176
    [246]Rojo E, Martin R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sanchez-Serrano J J, Baker B, Ausubel F M, Raikhel N V. VPEgamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol,2004,14:1897-1906
    [247]Romero-Puertas M C, Palma J M, Gomez M, Del Rio L A, Sandalio L M. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ,2002,25:677-686
    [248]Rui Q, Xu L L. Characterization of Endopeptidases in wheat leaves during dark induced senescence. Acta Bot Sin 2003,45:1049-1054
    [249]Samach A, Klenz J E, Kohalmi S E, Risseeuw E, Haughn G W, Crosby W L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J,1999,20:433-445
    [250]Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot,1999, 41:105-130
    [251]Scheffner M, Nuber U, Huibregtse J M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature,1995,373:81-83
    [252]Schlereth A, Standhardt D, Mock H P, Miintz K. Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta,2001,212:718-727
    [253]Schlereth A, Becker C, Horstmann C, Tiedemann J, Muntz K. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J Exp Bot,2000,51:1423-1433
    [254]Schnell J D, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem,2003,278:35857-35860
    [255]Schwechheimer C, Serino G, Deng X W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell,2002,14:2553-2563
    [256]Schwechheimer C, Serino G, Callis J, Crosby W L, Lyapina S, Deshaies R J, Gray W M, Estelle M, Deng X W. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science,2001,292:1379-1382
    [257]Seo H S, Yang J Y, Ishikawa M, Bolle C, Ballesteros M L, Chua N H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature,2003,423:995-999
    [258]Serino G, Deng X W. The COP9 signalosome: regulating plant development through the control of proteolysis. Annu Rev Plant Biol,2003,54:165-182
    [259]Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev,2000,32:307-326
    [260]Shang F, Taylor A. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem J, 1995,307:297-303
    [261]Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem,1997,272: 23086-23093
    [262]Shang F, Nowell T R, Jr., Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res,2001,73:229-238
    [263]Sharov V S, Ferrington D A, Squier T C, Schoneich C. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett,1999,455: 247-250
    [264]Shen W H, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell,2002,13:1916-1928
    [265]Shi C, Xu L L. Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol,2009,51:52-57
    [266]Shringarpure R, Grune T, Davies K J. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci,2001,58:1442-1450
    [267]Shringarpure R, Grune T, Mehlhase J, Davies K J. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem,2003,278:311-318
    [268]Simpson D J. Proteolytic degradation of cereal prolamins--the problem with proline. Plant Sci, 2001,161:825-838
    [269]Singh V K, Wood S M, Knowles V L, Plaxton W C. Phosphite accelerates programmed cell death in phosphate-starved oilseed rape (Brassica napus) suspension cell cultures. Planta,2003, 218:233-239
    [270]Skoda B, Malek L. Dry Pea Seed Proteasome:Purification and Enzymic Activities. Plant Physiol,1992,99:1515-1519
    [271]Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004,55:555-590
    [272]Smalle J, Kurepa J, Yang P, Babiychuk E, Kushnir S, Durski A, Vierstra R D. Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell,2002,14:17-32
    [273]Smalle J, Kurepa J, Yang P, Emborg T J, Babiychuk E, Kushnir S, Vierstra R D. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell,2003,15:965-980
    [274]Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell,1999,11:431-444
    [275]Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25:207-218
    [276]Stirnberg P, van De Sande K, Leyser H M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development,2002,129:1131-1141
    [277]Subbaiah C C, Kollipara K P, Sachs M M. A Ca(2+)-dependent cysteine protease is associated with anoxia-induced root tip death in maize. J Exp Bot,2000,51:721-730
    [278]Sun H C, Li X M, Xue Q, Chen J, Gao D M, Tang Z Y. Study of angiogenesis induced by metastatic and non-metastatic liver cancer by corneal micropocket model in nude mice. World J Gastroenterol,1999,5:116-118
    [279]Sutoh K, Kato H, Minamikawa T. Identification and possible roles of three types of endopeptidase from germinated wheat seeds. J Biochem,1999,126:700-707
    [280]Sweetlove L J, Fell D, Fernie A R. Getting to grips with the plant metabolic network. Biochem J, 2008,409:27-41
    [281]Szweda P A, Friguet B, Szweda L I. Proteolysis, free radicals, and aging. Free Radic Biol Med, 2002,33:29-36
    [282]Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi S I, Watanabe M, Nishimura M, Hara-Nishimura I. Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J,2003,35:545-555
    [283]Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil K B, Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem,2000, 275:14336-14345
    [284]Tanaka E, Takagi Sawada M, Sawada H. Enzymatic properties of the proteasome purified from starfish oocytes and its catalytic subunits involved in oocyte maturation. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,2000,125: 215-223
    [285]Tanaka K. Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol,1994,56:571-575
    [286]Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature,2007,448:661-665
    [287]Thompson A R, Vierstra R D. Autophagic recycling:lessons from yeast help define the process in plants. Curr Opin Plant Biol,2005,8:165-173
    [288]Tiedemann J, Schlereth A, Muntz K. Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds. Planta,2001,212:728-738
    [289]Toyooka K, Okamoto T, Minamikawa T. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol,2000,148:453-464
    [290]Triboi E, Martre P, Triboi-Blondel A M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J Exp Bot,2003,54:1731-1742
    [291]Tsuji A, Tsuji M, Takami H, Nakamura S, Matsuda Y. Molecular cloning and expression analysis of novel wheat cysteine protease. Biochim Biophys Acta,2004,1670:84-89
    [292]Turner J G, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell,2002,14 Suppl: S153-164
    [293]Ueda T, Seo S, Ohashi Y, Hashimoto J. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Mol Biol,2000,44:649-657
    [294]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature,2005,437:693-698
    [295]Ullrich O, Grune T. Proteasomal degradation of oxidatively damaged endogenous histones in K562 human leukemic cells. Free Radic Biol Med,2001,31:887-893
    [296]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A,2000,97: 11632-11637
    [297]Ustrell V, Hoffman L, Pratt G, Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J,2002,21:3516-3525
    [298]Van Breusegem F, Dat J F. Reactive oxygen species in plant cell death. Plant Physiol,2006,141: 384-390
    [299]van Nocker S, Vierstra R D. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem,1993,268: 24766-24773
    [300]Verdecia M A, Joazeiro C A, Wells N J, Ferrer J L, Bowman M E, Hunter T, Noel J P. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell,2003,11:249-259
    [301]Verma R, Aravind L, Oania R, McDonald W H, Yates J R,3rd, Koonin E V, Deshaies R J. Role of Rpnll metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 2002,298:611-615
    [302]Vierstra R D. Proteolysis in plants: mechanisms and functions. Plant Mol Biol,1996,32: 275-302
    [303]Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci,2003,8:135-142
    [304]Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem,1999,68:1015-1068
    [305]Vougier S, Mary J, Friguet B. Subcellular localization of methionine sulphoxide reductase A (MsrA):evidence for mitochondrial and cytosolic isoforms in rat liver cells. Biochem J,2003,373: 531-537
    [306]Vougier S, Mary J, Dautin N, Vinh J, Friguet B, Ladant D. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. J Biol Chem,2004,279:30210-30218
    [307]Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot, 2002,53:1227-1236
    [308]Wagstaff C, Leverentz M K, Griffiths G, Thomas B, Chanasut U, Stead A D, Rogers H J. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot,2002,53:233-240
    [309]Wang H M, Zhu C H. Ubiquitin proteasome pathway in reproductive tissues. Prog Biochem Biophys,2002,29:31-34
    [310]Wang N, Gottesman S, Willingham M C, Gottesman M M, Maurizi M R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A,1993,90:11247-11251
    [311]Wang T. The 26S proteasome system in the signaling pathways of TGF-beta superfamily. Front Biosci,2003,8:1109-1127
    [312]Wang Z Q, Yuan Y Z, Ou J Q, Lin Q H, Zhang C F. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. J Plant Physiol,2007,164:695-701
    [313]Welchman R L, Gordon C, Mayer R J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol,2005,6:599-609
    [314]Wilkinson M, de Andrade Silva E, Zachgo S, Saedler H, Schwarz-Sommer Z. CHORIPETALA and DESPENTEADO:general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation. Development,2000,127:3725-3734
    [315]Wing S S. Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol,2003,35:590-605
    [316]Woo H A, Chae H Z, Hwang S C, Yang K S, Kang S W, Kim K, Rhee S G Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science,2003,300: 653-656
    [317]Woo H R, Chung K M, Park J H, Oh S A, Ahn T, Hong S H, Jang S K, Nam H G. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell,2001,13:1779-1790
    [318]Yamada C, Izumi H, Hirano J, Mizukuchi A, Kise M, Matsuda T, Kato Y. Degradation of soluble proteins including some allergens in brown rice grains by endogenous proteolytic activity during germination and heat-processing. Biosci Biotechnol Biochem,2005,69:1877-1883
    [319]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6: 251-264
    [320]Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol,2001, 125:199-208
    [321]Yan N, Doelling J H, Falbel T G, Durski A M, Vierstra R D. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol,2000,124:1828-1843
    [322]Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell,2005,120:249-259
    [323]Yin Y, Wang Z Y, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell,2002,109:181-191
    [324]Zenk M H. Heavy metal detoxification in higher plants-a review. Gene,1996,179:21-30
    [325]Zhang N, Jones B L. Characterization of germinated barley endoproteolytic enzymes by two dimensional gel electrophoresis. J Cereal Sci,1995,21:145-153
    [326]Zhang N, Jones B L. Purification and partial characterization of a 31-kDa cysteine endopeptidase from germinated barley. Planta,1996,199:565-572
    [327]Zhao D, Yu Q, Chen M, Ma H. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development,2001,128:2735-2746
    [328]Zhao J, Peng P, Schmitz R J, Decker A D, Tax F E, Li J. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol,2002,130:1221-1229
    [329]Zheng J, Yang X, Harrell J M, Ryzhikov S, Shim E H, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell,2002a,10:1519-1526
    [330]Zheng N, Wang P, Jeffrey P D, Pavletich N P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell,2000,102:533-539
    [331]Zheng N, Schulman B A, Song L, Miller J J, Jeffrey P D, Wang P, Chu C, Koepp D M, Elledge S J, Pagano M, Conaway R C, Conaway J W, Harper J W, Pavletich N P. Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex. Nature,2002b,416:703-709
    [332]于晓敏,蓝兴国,李玉花.泛素/26S蛋白酶体途径与显花植物自交不亲和反应.植物学通报,2006,23:197-206
    [333]宁顺斌,宋运淳,王玲,李霞. 盐胁迫诱导的植物细胞凋亡——植物抗盐的可能生理机制.实验生物学报,2000,33:245-251