不同灌溉模式对冬小麦籽粒产量、水分利用效率和氮素利用效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在田间试验条件下,以冬小麦多穗型品种山农15和大穗型品种泰农18为供试材料,设置4种灌溉模式:不灌水(W0)、拔节水+开花水(W2)、越冬水+拔节水+灌浆水(W3)、拔节水+越冬水与灌浆水实施交替灌溉的交替隔畦灌溉(AFI)。研究了不同灌溉模式对冬小麦籽粒产量、水分利用效率和氮素利用效率的影响。研究结果如下:
     1不同灌溉模式对冬小麦籽粒产量及其构成因素的影响
     多穗型品种山农15和大穗型品种泰农18两个品种冬小麦籽粒产量均随灌水量的增加而提高,不同灌溉模式显著影响冬小麦籽粒产量,交替隔畦灌溉(AFI)与常规灌2水(W2)相比,灌水量相同,但交替隔畦灌溉(AFI)的籽粒产量显著提高;交替隔畦灌溉(AFI)与常规灌3水(W3)相比,灌水量减少1/3,但交替隔畦灌溉(AFI)处理的籽粒产量降低不显著。从产量构成因素上分析,交替隔畦灌溉(AFI)与常规灌2水(W2)相比较,单位面积穗数显著提高。随灌水量的增加,各灌水处理的千粒重随之降低,其中常规灌3水(W3)处理显著低于交替隔畦灌溉(AFI)处理和常规灌2水(W2)处理。多穗型品种山农15和大穗型品种泰农18两个品种的收获指数均以交替隔畦灌溉(AFI)处理的最高,且交替隔畦灌溉(AFI)处理的收获指数显著高于常规灌3水(W3)处理。表明交替隔畦灌溉方式能够通过提高小麦的收获指数,保持较高的籽粒产量。
     2不同灌溉模式对冬小麦水分利用效率的影响
     随灌水量的增加,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种,不同灌水处理对土壤贮藏水的消耗量呈现逐渐降低的趋势,不同灌溉模式显著影响冬小麦对土壤贮藏水的吸收利用,其中常规灌2水(W2)处理的土壤贮藏水消耗量显著低于交替隔畦灌溉(AFI)处理。随灌水量的增加,两个冬小麦品种整个生育期内总耗水量呈增加的趋势,相同灌水量条件下,常规灌2水(W2)处理的总耗水量显著低于交替隔畦灌溉(AFI)处理。
     随灌水量的增加,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种的水分利用效率均呈现降低的趋势。灌水处理间相比较,交替隔畦灌溉(AFI)处理的水分利用效率和灌溉水利用效率显著高于常规灌2水(W2)处理和常规灌3水(W3)处理。表明在本试验条件下,交替隔畦灌溉的灌水方式是兼顾高产和高效的最佳灌水处理模式。
     3不同灌溉模式下影响水分利用效率变化的因子
     不同灌溉模式下影响作物水分利用效率变化的因子主要包括土壤棵间蒸发量,作物光合特性,土壤水消耗,旗叶的生理生化指标。2009/2010冬小麦生长季,开花到成熟这段时间内,不灌水(W0)处理的总积累蒸发量显著低于灌水处理。灌水处理间比较,各灌水处理的总积累蒸发量关系为W3> W2> AFI。表明土壤蒸发是土壤水分损失的重要途径之一,而交替隔畦灌溉可以减少土壤表面蒸发损失的三分之一。而且土壤蒸发主要是通过灌水畦损失的,不灌水畦的土壤蒸发损失量仅占总土壤蒸发量的30%左右。说明采用交替隔畦灌溉通过减少地表湿润面积可明显地降低棵间土壤蒸发量。
     本研究表明,随灌水量的增加,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种生长季内0~200cm各土层的土壤贮水消耗量呈减少的趋势。W0处理0~200cm各土层的土壤贮水消耗量最高,表明干旱提高了冬小麦对土壤水的消耗。灌水处理间比较,常规灌3水(W3)处理0~120cm各土层的土壤贮水消耗量显著低于其他处理,表明常规灌3水(W3)处理不利于提高土壤水利用效率;在相同灌水量条件下,常规灌2水(W2)和交替隔畦灌溉(AFI)处理0~60cm各土层的土壤贮水消耗量差异较小,交替隔畦灌溉(AFI)处理60~140cm各土层土壤贮水消耗量显著高于常规灌2水(W2)处理,表明交替隔畦灌溉能更有效的利用土壤水,尤其是深层土壤贮水,从而提高水分利用效率。
     泰农18品种2009/2010和2010/2011两个生长季内,光合水分利用效率在整个灌浆期内呈现逐渐下降趋势。浇灌浆水前,交替隔畦灌溉(AFI)处理的光合水分利用效率显著高于常规灌2水(W2)处理,与常规灌3水(W3)处理差异不显著;浇灌浆水后,交替隔畦灌溉(AFI)处理的光合水分利用效率显著高于常规灌3水(W3)处理。结果表明,与常规灌溉方式相比,交替隔畦灌溉方式能保持相同净光合速率,但可以减低蒸腾速率,因此能提高光合水分利用效率。
     与常规灌2水(W2)处理相比较,灌水量相同,交替隔畦灌溉(AFI)处理的旗叶水势、渗透势和相对含水量显著高于常规灌2水(W2)处理;交替隔畦灌溉(AFI)与常规灌3水(W3)处理相比较,灌水量减少,但是二者水势和渗透势差异不显著。表明交替隔畦灌溉(AFI)处理在灌水量减少的条件下,既能节约水资源,又能够使冬小麦旗叶保持较高的水势、渗透势和相对含水量,提高了旗叶的渗透调节能力,避免植株水分胁迫的危害。
     4不同灌溉模式对冬小麦氮素利用效率的影响
     本试验研究表明,随灌水量的增加,,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种,植株氮素总积累量呈增加的趋势,与灌3水处理相比较,交替隔畦灌溉(AFI)虽然植株氮素总积累量显著降低,但是由于交替隔畦灌溉(AFI)显著提高了氮素吸收效率、氮素收获指数和氮肥偏生产力,促进了冬小麦对氮肥的吸收利用及向籽粒的分配,能够协调冬小麦籽粒产量和氮素利用率的关系,获得高产高效。
     利用15N同位素示踪法,本研究表明,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种,植物氮素总积累量中来自肥料氮的比例为33.76%~40.49%,来自土壤氮为59.51%~66.24%。随灌水量的增加,植株氮素总积累量、来自肥料氮的量和来自土壤氮的量均呈现增加的趋势。在相同灌水量条件下,交替隔畦灌溉(AFI)处理对肥料氮的吸收量显著高于常规灌2水(W2)处理,表明交替隔畦灌溉方式更有利于对肥料氮的吸收,提高肥料氮的回收利用率。
     随灌水量的增加,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种不同灌水处理的氮素总积累量、氮素利用效率、氮肥利用率和氮肥偏生产力均呈增加的趋势,不灌水(W0)处理显著低于其他灌水处理。说明灌水有利于增加氮素在植株中的积累总量,提高对肥料氮的回收效率和增加肥料氮所能生产的作物籽粒产量。相同灌水量条件下,交替隔畦灌溉(AFI)处理的氮素总积累量、氮肥生产效率和氮肥利用效率均显著高于常规灌2水(W2)处理。氮素收获指数反映成熟期氮素在籽粒和营养器官中的分配状况,随灌水量的增加,氮素收获指数呈降低的趋势。表明在本试验条件下,交替隔畦灌溉方式提高了提高对肥料氮的回收效率和增加肥料氮所能生产的作物籽粒产量,促进了冬小麦对氮肥的吸收利用及向籽粒的分配,能协调冬小麦籽粒产量和氮素利用率的关系,获得高产高效。
     随灌水量增加,多穗型品种山农15和大穗型品种泰农18两个冬小麦品种,成熟期0~200cm土层土壤硝态氮积累量呈降低趋势,灌水量相同条件下,交替隔畦灌溉(AFI)处理土壤硝态氮积累量显著高于常规灌2水(W2)处理。随灌水量增加,0~100cm土层土壤硝态氮积累量占0~200cm土壤硝态氮总积累量的比例逐渐减小,其中交替隔畦灌溉(AFI)处理显著高于常规灌2水(W2)和常规灌3水(W3)处理;100~200cm土层土壤硝态氮积累量占0~200cm土壤硝态氮总积累量的比例逐渐增大,其中交替隔畦灌溉(AFI)处理显著低于常规灌2水(W2)和常规灌3水(W3)处理。表明随着灌水量和灌水次数的增加,土壤硝态氮从0~100cm土层迁移到100~200cm土层中的量增加,而交替隔畦灌溉能够有效减少土壤硝态氮向100cm以下土层的淋溶。
The field experiment was carried out at Shandong Agricultural university, Tai’an,Shandong province, China (36°09′N,117°09′S) in the growing seasons of2009/2010and2010/2011. The experimental design was a complete randomized block design with threereplicates. The experimental winter wheat (Triticum aestivum L.) cultivars, Shannong15(SN15) and Tainong18(TN18), were sown on9and10October in2009and2010, respectively,at a seeding rate of270seeds m-2as part of a larger experiment. Four irrigation levels wereused:(1) W0, no irrigation was applied.(2) W2, irrigating at jointing and anthesis.(3) W3,irrigating at before-wintering and jointing and grain filling.(4) AFI (alternate furrowirrigation), irrigating at jointing, before-wintering and grain filling was alternately irrigatedbetween the two neighboring plot (one of the two neighboring plots irrigating before-wintering and jointing, the other one irrigating at jointing and grain filling.). Effects ofdifferent irrigation regimes on yield, water use efficiency, and nitrogen use efficiency ofwinter wheat were investigated. The main results are shown as follows:
     1The effects of different irrigation regimes on grain yield and its components
     With the increase of irrigation, the spike numbers and kernel numbers of per spikeincreased, but1000-grain weight decreased in the treatments. The spike numbers in the AFItreatment was significantly higher than that of W2treatment with the same irrigation amount.1000-grain weight in AFI treatment was significantly higher than that of W3treatment.
     With increasing amount of irrigation, the grain yields increased. The grain yield intheAFI treatment was significantly higher than that of W2treatment, and there was nosignificant difference in grain yield between AFI and W3. The results indicated that the AFImethod could maintain the same grain yield as that of conventional irrigation with highirrigation amount.
     2The effects of different irrigation regimes on water use efficiency
     With the increase of irrigation amount, total water consumption amount and ratio ofirrigation amount to total water consumption amount both increased significantly, but theamount of soil water was decreased. The variation coefficient of proportion of soil waterconsumption amount to total water consumption amount was significantly higher than that ofprecipitation to total water consumption amount, and this indicated that the regulation rangeof soil water use efficiency was relatively larger. The proportion of soil water consumptionamount to total water consumption amount of treatment AFI was significantly higher than thatof treatments W2and W3.With increasing amount of irrigation, the water use efficiency (WUE) decreased. The WUE oftrearment AFI was significantly higher than those of other irrigation treatments, whichirrigation water use efficiency was also rather higher. The results above indicated thattreatment AFI was the best irrigation treatment that got high yield and high efficiency.
     3Factors affecting water use efficiency of different irrigation regimes
     The changes of water use efficiency (WUE) in different irrigated winter wheat plantingcould be attributed to amount of soil evaporation, photosynthetic characteristics, soil waterconsumption and physiological and biochemical indexes of flag leaf. In two growing season,from anthesis to maturity, the cumulative evaporation in treatmemt W0was significantlylower than that of other irrigation treatments. The difference in the total accumulatedevaporation of two cultivars was observed among different irrigation treatments with the rankof W3> W2> AFI. Results showed that soil evaporation is one of the important ways to soilmoisture loss, and alternate irrigation can reduce soil surface evaporation loss1/3, soilevaporation mainly through the loss of irrigation furrow. The alternate irrigation by reducingthe surface humid area can significantly reduce soil evaporation among plants.
     With the increase of irrigation water, soil water consumption of wheat growing season in0-200cm soil layer decreases. Soil water consumption in treatment W0was the highest, andtreatment W3was the lowest. The results showed that water deficit increased soil waterconsumption of wheat, and waterlog is not conducive to improving the use efficiency. Nosignificantly difference of the soil water consumption amount of0~60cm soil layer betweentreatments W2and AFI, and the soil water consumption amount of60~140cm soil layer intreatment W2was lower than that of treatment AFI. Alternate irrigation can make moreeffective use of soil water, especially in deep soil water storage, to improve water useefficiency.
     Photosynthesis water use efficiency (WUEphoto) in the whole grain filling stage decreasedgradually. Before irrigation at grain filling, photosynthesis water use efficiency in treatment AFI was significantly higher than that of treatment W2, and there were no significantlydifference between treatments AFI and W3. After irrigation at grain filling, photosynthesiswater use efficiency in treatment AFI was significantly higher than that of treatment W3. Theresults show that alternate irrigation method can keep the same photosynthetic rate, but canreduce the transpiration rate, thus can enhance photosynthesis water use efficiency.
     Compared to treatment W2, the same irrigation amount, the water potential, osmoticpotential and relative water content of flag leaf in treatment AFI was significantly higher thanthat of treatment W2; but there was no significant difference between treatments AFI and W3.The results suggested that alternative irrigation reduce the amount of irrigation, saving waterresources, and make the wheat flag leaves maintained higher water potential and osmoticadjustment ability.
     4The effects of different irrigation regimes on nitrogen use efficiency
     The total nitrogen accumulation amount of plant derived from fertilizer proportion is33.76%~40.49%, derived from soil proportion59.51%~66.24%. With the increasing ofirrigation amount, total nitrogen accumulation amount, nitrogen accumulation amount derivedfrom fertilizer and soil increased. Compared to treatment W2, the same irrigation amount, thederived from fertilizer amount in treatment AFI was significantly higher than that of treatmentW2, but there was no significant difference between treatments AFI and W3. The derivedfrom fertilizer proportion in treatment AFI was significantly higher than that of treatment W3.The results showed that alternate irrigation is more conducive to the absorption of nitrogenfertilizer, to improve the utilization rate of fertilizer nitrogen.
     With the increase of irrigation amount, the total nitrogen accumulation, nitrogenproductive efficiency and nitrogen uptake efficiency increased significantly, while thenitrogen use efficiency and nitrogen harvest index decreased. The total nitrogen accumulation,nitrogen productive efficiency and nitrogen uptake efficiency in treatment AFI weresignificantly higher than that of W2treatment, the nitrogen use efficiency and nitrogenharvest index in treatment AFI were significantly higher than that of treatment W3. Theresults showed that the alternate irrigation increased N uptake efficiency, nitrogen harvestindex and nitrogen fertilizer production efficiency, promote the wheat to nitrogen uptake andutilization and to the distribution of grain, energy utilization rate of the relationship betweengrain yield and nitrogen in wheat, obtain high yield and high efficiency.
     With increase of amount irrigation, the soil NO3--N content of irrigation treatments in0~200cm soil layer gradually reduces with increasing the soil depth. In the same irrigationamount,0~200cm soil NO3--N accumulation in treatment AFI was significantly higher than that of treatment W2. With increasing amount of irrigation, the soil NO3--N content ofirrigation treatments in0~100cm soil layer significantly reduces with increasing amount ofirrigation, but increases in varying degrees in100~200cm.0~100cm soil NO3--Naccumulation in treatment AFI was significantly higher than that of treatments W2and W3. Itshowed that, alternate irrigation reduce the content of soil NO3--N leaching from0~100cmsoil layer to100~200cm soil layer.
引文
陈冠雄,商曙辉,于克伟.植物释放N2O的研究.应用生态学报,1990,1(1):94-96
    陈培元.作物对水分胁迫的生理反映[M].见:山仑,陈培元主编.旱地农业生理生态基础,北京:科学出版社,1998(1),18-34
    陈四龙,孙宏勇,陈素英,张喜英,孙振山,裴冬.不同冬小麦品种(系)叶绿素荧光差异分析[J].麦类作物学报,2005,25(3):57-62
    陈晓远,罗远培.土壤水分变动对冬小麦干物质分配及产量的影响.中国农业大学学报,2001,6(1):96-103
    程维新.农田蒸发与作物耗水研究[M].北京:气象出版社,1993
    程献云,秦海英,王宪章.灌水量对耗水量及小麦产量的影响[J].作物杂志,2002,2:18-19
    崔晓军.不同水分处理旱稻农田蒸散特征和水分利用效率[J].农业工程学报,2008,24(4):49-54
    董树连,王卫国,李春茂,等.旱地高产小麦光合速率与产量变化的研究[J].莱阳农学院学报,2000,17(3):194-195
    董树亭.高产冬小麦群体光合能力与产量关系的研究.作物学报,1991,17(6):461-469
    董振国,于沪宁.农田作物层环境生态[M].北京:中国农业科技出版社,1994,324
    杜守宇,马自清,高新华,吴建龙,黄治国,安云,王亚军,侯晓宁,张力.冬麦灌水次数对产量的影响[J].宁夏农林科技,2003,4
    杜太生,康绍忠,张建华.不同局部根区供水对棉花生长与水分利用过程的调控效应[J].中国农业科学,2007a,40(11):2546-2555
    杜太生,康绍忠,王振昌,王锋,杨秀英,苏兴礼.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007b,33(12):1982-1990
    段爱旺,白晓君.美国灌溉现状分析.灌溉排水,1999
    段爱旺,肖俊夫,张寄阳,孙景生,张淑敏,俞希根,崔文军.控制交替隔沟灌中灌水控制下限对玉米叶片水分利用效率的影响[J].作物学报,1999,25(6):766-771
    段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究[J].农业工程学报,2000,16(4):41-44
    樊小林,李玲,何文勤,尚浩博,汪沛洪.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J].植物营养与肥料学报,1998,4(2):131-137
    樊引琴,蔡焕杰,王健.冬小麦田棵间蒸发的试验研究[J].灌溉排水,2000,19(4):1-4
    范雪梅,姜东,戴廷波.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    房全孝,陈雨海.节水灌溉条件下冬小麦耗水规律及其生态基础研究[J].华北农学报,2003,18(3):18-22
    冯广龙,罗远培,刘建利,杨培岭.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.千旱地区农业研究,1997,15(2):73-79
    冯广志.农业部农林水利司,中国灌溉排水技术开发中心编著.旱作物地面灌溉节水技术[M].北京,中国水利水电出版社,1999
    高阳,段爱旺,刘祖贵,陈金平,王和洲,刘战东.玉米/大豆不同间作模式下土面蒸发规律试验研究[J].农业工程学报,2008,24(7):44-48
    郭清毅,黄高宝, Guangdi Li, Yin Chan.保护性耕作对旱地麦-豆双序列轮作农田土壤水分及利用效率的影响[J].水土保持学报,2005,19(3):165-169
    郭翔云,贾茂平.太行山山前平原区冬小麦生长期供需水规律分析[J].河北水利,2005,10
    郭天财,朱云集.小麦栽培关键技术问答.北京,农业出版社,1998,40-47
    韩艳丽,康绍忠.控制性分根交替隔畦灌溉对玉米养分吸收的影响.灌溉排水,2001,20(2):5-7
    侯爱新,陈冠雄,吴杰,王正平, Oswald Van Cleemput. CH4和N2O排放关系及其微生物学机理和一些影响因子.应用生态学报,1997,8(3):270-274
    黄明镜,晋凡生,池宝亮,陈奇恩.地膜覆盖条件下旱地冬小麦的耗水特征[J].干旱地区农业研究,1999,17(2):20-23
    籍增顺,聂安全,赵海祯,齐宏立,刘建华,韩迎高.覆盖补水施肥对旱地小麦产量及土壤环境的影响[J].干旱地区农业研究,2001,19(2):1-8
    贾树龙,孟春香,唐玉霞,刘春田.水分胁迫条件下小麦的产量反应及对养分的吸收特征[J].土壤通报,1995,26(1):6-8
    居辉,兰霞,周殿玺,兰林旺.不同时期灌溉对冬小麦物质积累与分配的影响[J].干旱地区农业研究,2000,18(4):66-71
    康绍忠.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6
    康少忠.控制性分根交替灌溉-常规节水灌溉技术的新突破[J].灌溉排水,2000,19(1):32-35
    康绍忠,潘英华,石培泽,张建华.控制性作物根系分区交替灌溉的理论与试验.水利学报,2001,(11):80-86
    兰霞,周殿玺,兰林旺.灌溉制度对冬小麦产量结构形成与产量物质来源的影响[J].中国农业大学学报,2001,6(1):17-22
    李彩霞,马三力.冬小麦的需水规律.农业与技术,2005,25(4):68-69
    李凤民,鄢珣,郭安红,山仑.试论麦类作物非水力根信号与生活史对策[J].生态学报,2000,20(3):510-513
    李建民,王璞,周殿玺,兰林旺.灌溉制度对冬小麦耗水及产量的影响[J].中国农业生态学报,1999,7(2):23-26
    李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响[J].作物学报,2001,27(4):434-441
    李静宇.栽培措施对强筋小麦产量及品质调控效应的研究.山西农业大学硕士学位论文,2005,6
    李全起,陈雨海,于舜章,吴巍,周勋波.董庆裕,余松烈.覆盖与灌溉条件下农田耕层土壤养分含量的动态变化[J].水土保持学报,2005,20(1):37-41
    李生秀,李宗让,田霄鸿,王朝辉.植物地上部分氮素的挥发损失.植物营养与肥料学报,1995,1(2):19-25
    李世娟,周殿玺,诸叶平,李建民,兰林旺.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报,2002,17(1):69-75
    李雁鸣,张立言,李振国.春季肥水运筹对冬小麦籽粒产量和品质的影响[J].河北农业大学学报,1996,19(1):1-6
    李秧秧,刘文兆.灌水对小麦旗叶光合功能衰退的影响[D].西北植物学报,2001,21(1):75-80
    李运生,王菱,刘士平,王吉顺.土壤-根系界面水分调控措施对冬小麦根系和产量的影响[J].生态学报,2002,22(10):1680-1687
    李志军,张富仓,康绍忠.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17-21
    连彩云.春小麦垄作交替隔沟灌溉研究[J].甘肃农业科技,2006,(8):21-22
    梁建生,曹显祖,徐生,朱庆森,宋平.水稻籽粒库强与其淀粉积累之间关系的研究.作物学报,1994,20(6):686-691
    梁银丽.小麦根系生长及对土壤水分的反应[M].见:山仑,陈培元主编.旱地农业生理生态基础,北京:科学出版社,1998(1),203-213
    梁宗锁,康绍忠,石培泽,潘英华,何立绩.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益.中国农业科学,2000,33(6):26-32
    刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究.水利学报,1998,(10):36-39
    刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响.山东农业大学学报,1991,22(2):37-44
    刘殿英,石立岩,黄炳茹,董庆裕.栽培措施对冬小麦根系及其活力和植株性状的影响.中国农业科学,1993,26(5):51-56
    刘浩,段爱旺,高阳.间作种植模式下冬小麦棵间蒸发变化规律及估算模型研究[J].农业工程学报,2006,22(12):34-38
    刘彦军.灌水量灌水时间对麦田耗水量及冬小麦产量的影响[J].河北农业科学,2003,6(2):6-11
    刘昌明,于沪宁.土壤—植物—大气系统水分运行实验研究[Z].北京:气象出版社,1996
    刘永贤,李伏生,农梦玲.烤烟不同生育时期分根区交替隔畦灌溉的节水调质效应[J].农业工程学报,2009,25(1):16-20
    吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋洗效应影响的研究[J].植物营养与肥料学报,1999,5(4):307-315
    吕凤荣,季书勤,赵淑章.灌水次数和时期对小麦产量的影响.河南农业科学,2000,10:5-6
    吕金印,山仑.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究,2003,21(2):77-81
    吕耀.苏南太湖地区水稻土中硝态氮淋溶的定位研究[J].土壤通报,1999,30(3):113-114
    马富裕,张旺锋,李锦辉,张勇,刘莉君.棉花群体光合作用测定方法探讨.石河子大学学报,1998,1:46-50
    马俊永,李科江,曹彩云,郑春莲,刘淑双.小麦隔畦灌溉种植的节水效应研究.河北农业科学,2005(1):18-21
    马瑞昆.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究,1991,9(3):1-10
    马瑞昆,贾秀领,蹇家利,王学臣.前期控水条件下冬小麦的根系和群体光合作用特点[J].麦类作物学报,2001,21(2):88-91
    马兴华,王东,于振文,王西芝,许振柱.不同施氮量下灌水量对小麦耗水特性和氮素分配的影响.生态学报,2010,30(8):1955-1965
    马元喜,王晨阳.水分逆境对冬小麦根系膜脂过氧化及保护酶活性的影响.全国冬小麦高产栽培研讨会论文集,山东大学出版社,1994
    买自珍,罗世武,程炳文,王勇.玉米二元覆盖农田水分动态及水分利用效率研究[J].中国生态农业学报,2007,15(3):68-70
    潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响[J].农业工程学报,2000,16(1):39-43
    彭琳,彭祥林,卢宗藩.土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用[J].土壤学报,1981,18(3):212-222
    彭羽.花后灌水对两种筋型小麦品种品质及产量影响的研究.河南农业大学国家冬小麦工程技术研究中心硕士学位论文,2002.6
    裴冬,张喜英,李坤.华北平原作物棵间蒸发占蒸散比例及减少棵间蒸发的措施.中国农业气象,2000,21(4):33-37
    亓新华,于振文,刘芳,田奇卓,许玉敏.中高产麦田水分变化规律及其节水灌溉方案的研究[J].山东农业科学,1993,24(1):55-62
    苘辉民.旱地冬小麦生育后期有关光合特性及光合产物分配规律研究[J].核农学报,1999,13(4):206-213
    单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报,2006,26(2):127-129
    沈维良,柳建国.作物耐旱性与叶片水势简报[J].中国生态农业学报,2001,9(4):100-101
    水利部农村水利司.节水灌溉,北京:中国农业出版社,1998
    石岩,林琪,位东斌,李忠军,李华.不同灌水处理冬小麦耗水规律与节水灌溉方案确立[J].干旱地区农业研究,1996,14(4):7-11
    苏轶醒.隔畦灌技术及其节水机理研究[D].北京工业大学硕士毕业论文,2006,6
    孙宏勇,刘昌明,张喜英,张永强,裴冬.华北平原冬小麦田间蒸散与棵间蒸发的变化规律研究[J].中国生态农业学报,2004,12(3):62-64
    孙宏勇,张喜英,张永强,刘昌明.用micro-Lysimeters和大型蒸渗仪测定夏玉米蒸散的研究[J].干旱地区农业研究,2002,(4):72-76
    孙景生,康绍忠,蔡焕杰,胡笑涛.控制性交替灌溉技术的研究进展.农业工程学报,2001,17(4):1-5
    唐立松,张建龙,李彦,周斌.植物对土壤水分变化的响应与控制性分根交替灌溉[J].干旱区研究,2005,22(1):90-93
    汤章城.植物对干旱的反应和适应性[J].植物生理学通讯,1983,19(4):1-7
    王朝辉,刘学军,巨晓棠,张福锁.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定.生态学报,2002,22(3):359-365
    王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报,2004,15(8):1339-1343
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7(4):1-8
    王晨阳,郭天财,彭羽,朱云集,马冬云,张灿军.花后灌水对冬小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031-1035
    王凤新,冯绍元,黄冠华.喷灌条件下冬小麦水肥耦合效应的田间试验研究.灌概排水,1999.18(1):10-13
    王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展[J].灌溉排水,2001,20(4):73-75
    王健,蔡焕杰,康燕霞,陈凤.夏玉米棵间土面蒸发与蒸发蒸腾比例研究[J].农业工程学报,2007,23(4):17-22
    王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响[J].西北植物学报,2000,20(2):193-200
    王立秋,靳占忠,曹敬山,王文元,杨路华.水肥措施对春小麦产量及其构成因素的影响.麦类作物学报,1996,(6):40-43
    王韶华,刘群昌,苏轶醒.隔畦试验初步研究[J].节水灌溉,2007,(1):14-17
    王晓燕,陈洪松.红壤坡地不同土地利用方式土壤蒸发和植被蒸腾规律研究.农业工程学报,2007,23(12):41-45
    王晓英,贺明荣,刘永环,张洪华,李飞,华芳霞,孟淑华.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响.生态学报,2008,28(2):685-694
    王万里,林芝萍,章秀英,吴亚华.灌浆-成熟期间土壤干旱对小麦籽粒充实和物质运转的影响[J].植物生理学报,1982,8(1):67-80
    王月福,于振文,潘庆民,李素美.水分处理与耐旱性不同的小麦光合特性及物质运转[J].麦类作物,1998,18(3):44-47
    王振昌,杜太生,杨秀英,唐青运.隔沟交替灌溉对棉花耗水、产量和品质的调控效应[J].中国生态农业学报,2009,17(1):13-17
    王志敏,王璞,兰林旺.黄淮海地区优质小麦节水高产栽培研究[J].中国农学通报,2003,19(4):22-25
    王志敏,王璞,李绪厚,李建民,鲁来清.冬小麦节水省肥高产简化栽培理论与技术[J].中国农业科技导报,2006,8(5):38-44
    温美丽.渗灌条件下不同质地土壤水分入渗特征的初步研究[D].山西农业大学,2001,35-42
    吴乃元,梁丰香,张衍华,齐斌,杨荣光,张需海.有限水分胁迫对小麦生长状况的影响及合理灌溉的土壤相对湿度指标[J].应用气象学报,2000,11:170-177
    武永军,刘红侠,梁宗锁,康绍忠.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报,1999,19(4):605-611
    邢维芹,王林权,李生秀.半干旱区夏玉米的水肥空间耦合效应.农业现代化研究,2001,22(3):150-153
    许卫霞.水磷耦合对小麦耗水特性和产量形成的影响及其生理基础[D].山东农业大学,2008
    许旭旦,诸涵素.植物根部的水分倒流现象[J].植物生理学通讯,1995,31(4):241-245
    许振柱,于振文,李晖,余松烈.限量灌水对冬小麦光合性能和水分利用的影响[J].华北农学报,1997,12(2):65-70
    许振柱,李长荣,陈平,于振文,余松烈.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究,2000,18(1):113-118
    许振柱,于振文,王东,张永丽.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687
    许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,2004a,22(4):75-79
    许振柱,于振文,王东,张永丽.灌溉量对冬小麦氮素吸收和运转的影响[J].作物学报,2004b,30(10):1002-1007
    杨荣,苏永中.农田利用方式和冬灌对沙地农田土壤硝态氮积累的影响[J].应用生态学报,2009,20(3):615-623
    杨思河,陈冠雄,林继惠,吴杰,马越强.几种木本植物N2O释放与某些生理活动的关系.应用生态学报,1995,6(4):337-340
    杨晓亚,于振文,许振柱.灌水量和灌水时期对冬小麦耗水特性和氮素积累分配的影响.生态学报,2009,29(2):846-853
    于保静,石培泽,杨秀英.干旱区大田玉米控制性交替隔沟灌溉需水量及需水规律研究[J].甘肃水利水电技术,2006,42(3):209-212
    于利鹏,黄冠华.喷灌冬小麦耗水与棵间蒸发试验[J].中国农业科学,2009,42(9):3179-3186
    于振文.优质专用冬小麦品种及栽培[M].北京:中国农业出版社,2001
    于振文,岳寿松,沈成国,王福俊,元新华.冬小麦高产高效灌水方案的研究.山东农业科学,1994(2):3-6
    于振文,岳寿松,沈成国,张炜,余松烈.高产低定额灌溉对冬小麦旗叶衰老的影响[J].作物学报,1995,21(4):503-508
    袁新民,同延安,杨学云,李晓林,张福锁.灌溉与降水对土壤NO3--N累积的影响[J].水土保持学报,2000,14(3):71-73
    张娟,张正斌,谢惠民,董宝娣,胡梦芸,徐萍.小麦叶片水分利用效率及相关生理性状的关系研究[J].作物学报,2005,31(12):1593-1599
    张利.水浇地冬小麦耗水规律研究[J].土壤通报,1994,25(4):149-151
    张秋英,李发东,张依章,欧国强,刘孟雨.水分对冬小麦产量及水分利用效率的影响[J].西南农业大学学报(自然科学版),2005,27(6):809-812
    张喜英,刘昌明.华北平原农田节水途径分析:节水农业应用墓础研究进展[Z].石元春,刘昌明,龚元石.北京:中国农业出版社,1995,156-163
    张旭东,柯晓新,杨兴国,万信.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究,1999,17(1):39-44
    张永丽. CHA杂种冬小麦光合生产力及其措施调控效应的研究[D].保定:河北农业大学,2000
    张永胜,成自勇,张芮,冯静霞,闫江鸿.控制性交替隔沟灌溉对甜椒农田蒸散特征的影响[J].水土保持学报,2009,23(2):223-22
    赵秉强,张福锁,李增嘉,李凤超,史春余,张骏,张新春,申加祥,潘海军,赵甲美,尹玉波,武传杰.间作冬小麦根系数量与活性的空间分布及变化规律[J].植物营养与肥料学报,2003,9(2):214-219
    赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响[J].植物营养与肥料学报,2000,6(3):260-266
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356
    赵满兴,周建斌,杨绒,郑险峰,翟丙年,李生秀.不同施氮量对旱地不同品种冬小麦氮素累积、运输和分配的影响[J].植物营养与肥料学报,2006,12(2):143-149
    赵世伟,管秀娟,吴金水.不同生育期干旱对冬小麦产量及水分利用效率的影响.灌溉排水,2001,12(4):56-59
    郑成岩.高产小麦耗水特性和干物质积累与分配及水分利用效率的研究[D].山东农业大学.2008
    郑海雷,黄子琛.绿洲生态条件下春小麦的蒸发蒸腾特性及其影响因子[J].植物生态学报,1994,18(4):362-371
    周凌云.封丘地区雨养麦田的水分供应和产量潜力[J].土壤学报,1993,30(3):297-303
    朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992
    Bahman Ehdaie, J. Giles Waines.Variation in water-use efficiency and its components inwheat: Ι Well-watered pot experiment. Crop science,1993,33
    Baker, J M., VanBaver C. H. M. Water transfer through cotton plants connecting soil regionsof differing water potential [J]. Agronomy Journal,1988,80:993-997
    Blackman P G, Davies W J. Root to shoot communication in maize plants of the effects ofsoil drying[J]. Journal of Experimental Botany.1985,36:39-48
    Boyer, J S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at variousleaf potentials. Plant Physilology,1970,46:233-236
    Choudhury T M A, Khanif Y M. Evaluation of effects of nitrogen and magnesiumfertilization on rice yield and fertilizer nitrogen efficiency using15N tracer technique [J].Journal of Plant Nutrition,2001,24(6):855-871
    Craterol Y Van E., Eisenhauer Dean E, Elmore Roger W. Alternate-furrow irrigation forsoybean production. Agricultural Water Management,1993,24:133-145
    Davies W J, Zhang J H. Root signals and the regulation of growth and development of plantsin drying soil [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76
    Du T S, Kang S Z, Zhang J H, Li F S. Water use and yield responses of cotton to alternatepartial root-zone drip irrigation in the arid area of north-west China. Irrigation Science,2008,26(2):147-159
    FAO, Water Reports7-15, FAO, Rome,1995-1998
    Hamlin A. The influence of soil structure on water movement, crop root growth and wateruptake [J]. Advances in Agronomy,1985,38:95-158
    Hanks R. J. Model for predicting plant yields as influenced by water use. Agronomy Journal,1974,66:60-665
    Howell T A, Steiner J L, Schneider A D. Evett S. R. Evapotranspiration of irrigated winterwheat: Southern High Plains. Trans ASAE1995,38:745-59
    Li F M, Liu X L, Guo A H. Effects of early soil moisture distribution on the dry matterpartition between root and shoot of winter wheat [J]. Agricultural Water Management,2001,49:163-171
    Jones O R, Popham T W. Cropping and tillage systems for dryland grain production in theSouthern High Plains. Agronomy Journal,1997,89:222-232
    John H M, Thornlcy. Modelling sboot, root rclations: the only way forward? Annals ofBolanv,1998,81:165-171
    Kang S Z, Hu X T, Du T S, Zhang J. H., Jerie P. Transpiration coefficient and ratio oftranspiration to evapotranspiration of pear tree (Pyrus communis L) under alternativepartial rootzone drying condition. Hydrol Processes,2003,17(6):1165-1176
    Kang S Z, Hu X T, Jerie P, Zhang J. H. The effects of partial rootzone drying on root, trunksap flow and water balance in an irrigated pear (Pyrus communis L.) orchard. Journal ofHydrology,2003,280(1-4):192-206
    Kang S Z, Liang Z S, Wei H, Zhang J H. Water use efficiency of controlled alternateirrigation on root-divided maize plants. Agricultural Water Management,1998,38:69-76
    Kimball B A, Pinter Jr. P J, Garcia R L, Lamorte R L, Wall G W, Hunsaker D J, Wechsung G,Wechsung F, Kartschall T. Productivity and water use of wheat under free-air carbondioxide enrichment. Global Change Biology,1995,1:429-442
    Mc Cree K J, Richardson S G. Salt increases the water use efficiency in water stressed plants.Crop Science,1987,27:543-547
    Meyer W S, Gree G C. Water use by wheat and plant indicators of available soil water.Agronomy Journal,1980,72:253-256
    Musick J T, Jones O R, Stewart B A, Dusek D A. Water–yield relationship for irrigated anddryland wheat in the US Southern Plains. Agronomy Journal,1994;86:980-986
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheatunder stressed conditions [J]. Agricultural Water Management,2003,63:37-56
    Passioura J B. Grain yield, harvest index, and water use of wheat [J]. Journal of AustralianInstitute of Agricultural Science,1977,43:117-120
    Rasmussen P E, Rohde C R., Tillage. Soil depth and precipitation effects on wheat responseto nitrogen [J]. Soil Science Society America Journal,1991,55:121-124
    Sinclair T R, Pinter P J, Kimball B A. Leaf nitrogen concentration of wheat subjected toelevated [CO2] and either water or N deficits [J]. Agriculture Ecosystems andEnvironment,2000,79:53-60
    Scartazza A, Lauteri M, Guido M C, Brugnoli E. Carbon isotope discrimination in leaf andstem sugars, water-use efficiency and mesophyll conductance during differentdevelopmental stages in rice subjected to drought [J]. Australian Journal of PlantPhysiology,1998,25:489-498
    Shahnazari A, Liu F L, Andersen M N, Jacobsen S, Jensen C R. Effects of partial root-zonedrying on yield, tuber size and water use efficiency in potato under field conditions[J].Field Crops Research.2007,100:117-124
    Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory.Quarterly Journal of the Royal Meteorological Society,1985,111:839-855
    Shuttleworth W J. Evaporation model in hydrology, land surface evaporation: Measurementand parameterization. T. J. Schmugge and J. C. Andre, Eds, Springer-Verlag,1991,93-120
    Singh N T, Singh R, Mahajan P S, Vig A C. Influence of supplemental irrigation and pre-sowing soil water storage on wheat. Agronomy Journal1979,71(3):483-486
    Singh B N, Hazarika U K, Srivastava S P. Effect of irrigation based on physiological stageson growth, yield, and water use efficiency of wheat. Indian Journal of AgriculturalScience,1984,54(12):1052-1055
    Sofield I, Evans L T, Cook M G., Wardlaw I F. Factors influencing the rate and duration ofgrain filling in wheat. Australian Journal of Plant Physiology,1977,4:785-797
    Stanhill G. Water use efficiency. Advances in Agronomy,1986,39:53-85
    Stanhill G. Irrigation in Israel: past achievements, present challenges, and feature possibilities.Water Use Efficiency in Agriculture [M]. Priel Publishers,1992
    Stewart J I, Cuenca R H, Pruitt W O, Hagan R M, Tosso J. Determination and utilization ofwater production functions for principal California crops. W-67California ContributingProject Report. Davis, USA, University of California,1977
    Stone J F, Nofziger D L. Water use and yields of cotton grown under wide-spaced furrowirrigation [J]. Agricultural Water Management,1993,24:27-28
    Suprayogo D M, van Noordwijk K H, Cadisch G. The inherent safety net of Ultisols:Measuring and modeling retarded leaching mineral nitrogen [J]. European Journal ofSoil Science,2002,53:185-194
    Tong Y A, Emteryd O, Lu D Q, Grip H. Effect of organic manure and chemical fertilizer onnitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile [J]. Nutr CyclAgroecosyst,1997,48(3):225-229
    Xu Z Z, Yu Z W, Wang D. Nitrogen translocation in wheat plants under soil water deficit.Plant and Soil,2006,280:291-303
    Xue Q W, Zhu Z X, Jack T M, Stewart B A, Dusek D A. Physiological mechanismscontributing to the increased water-use efficiency in winter wheat under deficit irrigation.Journal of Plant Physiology,2006,163(2):154-164
    Wang G Y, Ma Y X. Ecological and physiological effects on root systems of wheat underdifferent soil water conditions. Acta Apaculturae Boreli-Sinica,1992,7(4):1-6
    Wang G Y, Ma Y X, Zhou S M. Study on effects of soil drought stress on winter wheatsenescence. Acta Agriculturae Uniuzersitatis Henanensis,1996,30(4):309-313
    Yang C H, Huang G B, Chai Q, Luo Z X. Water use and yield of wheat/maize intercroppingunder alternate irrigation in the oasis field of northwest China. Field Crops Research,2011,124:426-432
    Yang X Y, Yu Z W, Xu Z Z. Effects of irrigation regimes on water consumptioncharacteristics and nitrogen accumulation and allocation in wheat. Acta Ecologica Sinica,2009,29(2):846-853