中国野生板栗(Castanea mollissim Blume)群体遗传结构和核心种质构建方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板栗(Castanea mollissim Blume)起源于中国大陆,种质资源极为丰富。在长期的生态适应过程中,中国板栗在各地迥异的地理气候条件下形成了不同的生态群,分为长江流域、华北、西北、东南、西南生态群。其中中国野生板栗被认为是世界栽培板栗的原生起源种,曾在世界栽培板栗的驯化过程中起过决定性的作用,并且蕴藏着大量的优良珍稀类型。但是,近二十年来,由于国内外市场的巨大需求,板栗良种产业化进程加快,从野生和半野生种质向良种集约化栽培迈进,野生资源遭到严重破坏,致使一些珍贵的种质消失。本文利用分子系统学的原理和方法,结合传统的表型研究体系,采用荧光AFLP标记对中国野生板栗群体遗传结构和遗传变异进行分析,并应用分子标记和表型数据,分别探讨了中国野生板栗核心种质构建方法,研究结果将对这一珍贵资源的科学保护和有效利用以及丰富生物进化理论有重要意义。主要研究结果如下:
     1.对中国板栗秦岭山脉生态区、泰沂山脉生态区和燕山山脉生态区的3个种下居群118个野生株系的叶片、果实形态和坚果主要营养成分进行了调查研究,结果表明,3个居群的叶片大小、叶柄长度和粗度以及果实形状、大小等形态性状的变异系数均在10%以上,表现出丰富的遗传多样性,其中以叶面积及单粒重变异幅度和变异系数最大;而果形指数变异幅度和变异系数最小,是较稳定的植物学性状,3个居群的变异趋势基本一致;3个居群118个野生株系果肉中水分、总糖、淀粉、蛋白质、脂肪、灰分和维生素C等各种主要营养成分的含量在单株间差异显著,变异系数6.2% - 28.3%,其中以坚果蛋白质含量的变异幅度和变异系数最大,遗传多样性丰富,3个居群的变异趋势基本一致;
     2.对中国野生板栗的同一性状在秦岭山脉、泰沂山脉和燕山山脉的3个不同生态区下的遗传变异研究表明:同一性状在不同居群间大都存在显著或极显著差异,其中单叶面积和单粒重以秦岭山脉居群最小,分别为56.34cm2和2.95g,而维生素C含量最高(96.7mg/100g鲜果),分别是燕山山脉和泰沂山脉居群的2.29倍和2.22倍。相关分析结果显示,单粒重和单叶面积与降雨量和经度显著正相关,与海拔高度显著负相关,而维生素C含量与降雨量显著负相关,与海拔高度正相关,表明环境对板栗表型性状的遗传变异具有较大影响;
     3.以长江流域生态群、华北生态群、西北生态群、东南生态群和西南生态群的120个中国板栗株系为试材,利用荧光AFLP标记对中国野生板栗五个生态群的群体遗传结构进行了研究,结果表明:8对EcoR I /Mse I引物(其中Mse I引物为FAM荧光标记物)平均扩增多态位点数为180.88,平均多态位点百分比为83.31%。五个生态群的多态位点数和多态位点百分比比较表明:长江流域生态群(A = 150.38;P = 73.80%)>华北生态群(A = 147.75;P = 71.93%)>西北生态群(A = 137.88;P = 68.00%)>东南生态群(A = 90.50;P = 50.32%)>西南生态群(A = 86.00;P = 48.29%);中国板栗在种级水平Nei’s基因多样度(H = 0.206)和Shannon信息指数(I = 0.326)显著或极显著高于群体水平。在群体水平上,长江流域生态群的Nei’s基因多样度和Shannon信息指数(H = 0.191;I = 0.302)高于华北生态群(H = 0.185;I = 0.295)和西北生态群(H = 0.182;I = 0.289),但无显著性差异,显著高于东南(H = 0.142;I = 0.229)和西南生态群(H = 0.139;I = 0.218);对中国野生板栗5个生态群的群体遗传多样性和群体遗传结构分析认为,长江流域生态群的遗传多样性最为丰富,揭示了长江流域为中国板栗遗传多样性中心的可能性;
     4.本研究对中国野生板栗群体遗传结构的参数------遗传分化系数和基因流进行了分析。中国野生板栗5个生态群的遗传分化系数(Gst = 0.0952)显示,中国野生板栗的遗传变异主要存在于群体内,占总变异的90.48%,而群体间的遗传变异仅占总变异的9.52%。通过遗传分化系数计算得Gst基因流Nm = 4.752,说明中国野生板栗5个生态群存在适度的基因交流,这种遗传变异空间结构模式的形成可能是长距离基因流、自然气候、地理距离隔离等诸因素综合作用的结果;
     5.中国野生板栗5个生态群的Nei’s群体遗传一致度在0.8876 - 0.9665之间,遗传距离在0.0341 - 0.1193之间,说明群体间的相似程度较高,遗传距离较小。对5个生态群用UPGMA法进行聚类分析发现,西南和东南生态群首先聚在一起,之后华北和西北生态群聚在一起,最后长江流域生态群同西北和华北生态群聚在一起,此聚类图从直观上表明西南生态群和东南生态群相似性最高,遗传关系最近;
     6.以297个中国野生板栗株系的19个表型性状的遗传多样性数据为基础,探讨了采用表型性状构建中国野生板栗核心种质的方法,结果表明,采用马氏距离聚类优于欧氏距离,5种聚类方法比较,类平均法、离差平法和法和最长距离法优于最短距离法和中间距离法,偏离度取样策略优于随机和优先取样策略。对构建的核心种质采用主成分分析(PCA)对其进一步的确认,分布图显示核心种质遍布整个主成分图,并且远离中心的,具有特异性状的株系都入选为核心株系,确保了核心种质的代表性。本研究显示,当取样比例为20%时,采用马氏距离,利用离差平法和法进行多次聚类,结合偏离度取样策略构建的核心种质最有代表性,是采用形态学数据构建中国野生板栗核心种质的最佳的方法;
     7.采用荧光AFLP分子标记,以120个中国板栗野生株系为材料,研究了利用分子标记构建中国野生板栗核心种质的方法。同对照随机取样策略比较,位点优先取样策略能构建一个更有代表性的核心种质。采用主坐标对位点优先取样策略构建的核心种质的代表性进行确认,分布图显示核心种质遍布了整个坐标图,确保了核心种质的代表性。当选取25个株系时,根据SM、Jaccard或Nei & Li遗传距离进行多次聚类,采用位点优先法,是构建中国野生板栗核心种质较合适的方法。
Chestnut (Castanea mollissima Blume) is an ancient deciduous fruit tree crop in the temperate zones, which originates in China. Because of diversity of ecological inhabits and differences and selections of adaptability between chestnut for ecological environments, and a long selection by natural factors, chestnut trees evolutes and forms different geo-ecological groups under different geo-ecological conditions: the Yangtze group, the Northern China Group, the Northwest Group, the Southwest Group and the Southeast group. The diversity of 3 wild chestnut intraspecific populations was analyzed using morphological traits, the genetic diversity and population genetic structure for five geo-ecological groups using principles of molecular systematics and fluorescent-AFLP marker techniques, and the methods of constructing core collection were studied by morphology traits and molecular markers, respectively, in order to provide science evidence for conservation and utilization, to construct core collection of C. mollissima Bl. and breed the cultivated chestnut. The main results are as follows:
     1. The diversity of leaf, petiole and nut in 3 wild intraspecific populations (the Qinling Mountains ecotype, the Taiyi Mountains ecotype, and the Yanshan Mountains ecotype) of C. mollissima Bl. were investigated. The results indicated: There were significant differences among and within population. The morphological traits, such as leaf length, width, leaf shape index, length of petiole and nut shape, size, color, have great morphological diversity with variation coefficient (CV) of more than 10%. The range of nut weight varied from 1.69g to 3.89g in the Qinling Mountains population with CV 18.3%. The range and CV of leaf area and nut weight were the largest, and those of leaf shape index were the smallest; The content of main nutrition composition (water, total sugar, starch, protein, fat, ash and Vc) in ripe nuts determined in obtained 118 seedlings at the Qinling Mountains, the Taiyi Mountains and the Yanshan Mountains was analyzed and presented considerable genetic variations with CV of 6.2% - 28.3%, and the range and CV of the protein were the largest. There were the same trends in the 3 wild intraspecific populations;
     2. Compared with the diversity of the same trait in the different conditions, the result showed that, there was significant difference between site conditions with smallest CV in leaf area and nut weight and highest CV of Vitamin C contents in the Qinling Mountains; Correlation analysis revealed that mean weight of a single nut with annual rainfall and the longitude of each ecotype, in contrast, they were negatively correlated with the altitude. Vitamin C contents in the nuts from different ecotype were negatively regulated by annul rainfall. These relationships indicated that environmental conditions had impact on genetic diversity in Chinese wild chestnut.
     3. Population genetic structure was studied using fluorescent-AFLP markers on 120 Chinese Chesnut (Castanea mollisima Blume) accessions collected from the Yangtze River group, the Northern China group, the Northwest group, the Southeast group, and the Southwest group of fluorescent-AFLP markers. The purpose of this study was to determine the genetic structure and genotypic diversity amongst the different eco-geographical populations of Chinese chestnut. The results showed that the average number of polymorphic loci (A) was 180.88, the percentage of polymorphic loci (P) was 83.31% by 8 pairs of EcoR I /MseI (Mse I - a FAM fluorescent marked primer) primers in Chinese chestnut of five groups. Analysis for the average number of polymorphic loci (A) and the percentage of polymorphic loci (P) in five Chinese chesnut groups indicated that the Yangtze River group (A = 150.38; P = 73.80%)> the Northern China group (A = 147.75; P = 71.93%)> the Northwest group (A = 137.88; P = 68.00%)> the Southeast group (A = 90.50; P = 50.32%)> the Southwest China group (A = 86.00; P = 48.29%); Nei’s gene diversity (H = 0.206) and Shannon information index (I = 0.326) at species level was significant or high significant higher than at group level. At group level, Nei’s gene diversity and Shannon information index (H = 0.191; I = 0.302) in the Yangtze River group was higher than those in the Northern China group (H = 0.185; I = 0.295)and in the Northwest group(H = 0.182; I = 0.289), there were no significant differences; but they were significant higer than those in the Southeast group(H = 0.142; I = 0.229)and the Southwest group(H = 0.139; I = 0.218).The analysis of five population diversity and genetic structure from five geo-ecological groups showed that genetic diversity of wild chestnut population in the Yangtze Group was most abundant. This suggested that chestnut originated in the Yangtze geo-ecological group, then diffused to the northern China and the southern China by natural factors.
     4. The parameters--genetic differentiation coefficient and gene flow of population genetic structure in wild chestnut were analyzed in this study. Genetic differentiation coefficient (Gst = 0.0952) for five wild chestnut groups showed that wild chestnut genetic variation was mainly within the groups and accounted for 90.48% of total variations. The genetic variation between groups accounted for 9.52% of total variations. The gene flow Nm was 4.752 according to the genetic differentiation coefficient between groups (Gst = 0.0952). This indicated that there are partly gene exchanges among five wild chestnut groups. It is suggested that the main way of gene exchanges could be main factors of the long distance gene flow, natural climate, geographical barriers geography distance et al.
     5. Nei’s genetic identities in five wild chestnut groups were between 0.8876 - 0.9665. Genetic distances were between 0.0341 - 0.1193. It was suggested that there were higher similarity between various geo-ecological groups in wild chestnut and lower genetic distance. The similarity between the Southwest group and the Southeast group was highest (99.06%), which showed that genetic differentiation was lowest between both groups in wild chestnut. The results from UPGMA cluster analysis for five groups showed that the Southeast and Southwest wild chestnut in the southern China was clustered together firstly and the Northern China and Northwest wild chestnut in northern China, then the Yangtze Group and the Northern China and Northwest group were clustered together. This indicated further that the similarity between the Southeast group and the Southwest group wild chestnut was highest and genetic relationship was closest.
     6. The diversity of 7 leaf traits and 12 nut traits from 297 accessions of C. mollissima Bl. was used to study method for constructing C. mollissima Bl. core collection using morphology. The results showed that Mahalanobis distance was the much better than Euclidean distance; UPGMA, Ward’s method and Complete linkage was better than Single linkage and Median method, and deviation sampling was more suitable than random sampling and preferred sampling for constructing core collection. When 20% accessions were selected, Mahalanobis distance and Ward’s method using stepwise clustering combining with Deviation sampling can construct a most reprehensive core collection and was the most suitable method for constructing C. mollissima Bl. core collection.
     7. The method for constructing core collection of C. mollissima Bl. based on molecular markers data was proposed, according to fluorescent AFLP marker, using 120 accessions of C. mollissima Bl. Compared with the random sampling strategy, allele preferred sampling could construct more representative core collections. When 25 accessions of C. mollissima Bl. was selected, allele preferred sampling strategy combined with SM, Jaccard or Nei & Li genetic distances using stepwise clustering was the suitable method for constructing C. mollissima Bl. core collection.
引文
1.艾呈祥,余娴美,刘庆忠,张力思.栗属植物DNA提取及RAPD和SSR分析.西北植物学报, 2006,26(3):624 - 627
    2.暴朝霞,黄宏文.板栗主栽品种的遗传多样性及其亲缘关系分析.园艺学报,2002,29(1):13 - 19
    3.毕晓颖.苹果属显性矮生主基因分子标记的筛选.沈阳农业大学. 2000,博士论文
    4.蔡永立,王希华,宋永昌.中国东部亚热带青冈果实形态变异的研究.生态学报,1999,19(4):581 - 586
    5.陈亮,梁春阳,孙传清. AFLP和RFLP标记检测水稻亲本遗传多样性比较研究.中国农业科学,2002,35(6):143 - 148
    6.陈在新,李俊凯,廖咏玲.栗仁中主要营养成分含量的相关分析.安徽农业科学, 2005, 33 (8):1410 - 1417
    7.程丽莉.燕山板栗实生居群遗传多样性研究与核心种质初选.北京林业大学,2005,硕士论文
    8.董玉琛、曹永生、张学勇.中国普通小麦初选核心种质的产生.植物遗传资源学报,2003,4(1):1 - 8
    9.冯涛,陈学森,张艳敏.新疆野苹果叶片抗氧化能力及多酚组分的研究.中国农业科学. 2008,22(4):156 - 161
    10.冯涛,张红,陈学森,张艳敏,何天明,冯建荣,许正.新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株.植物遗传资源学报,2006,7(3):270 - 276
    11.高悍东,黄宝龙.板栗主要栽培品种的分子鉴别.林业科学,2001,37(1):64 - 71
    12.高捍东.板栗主要栽培品种的遗传分析.江苏林业科技,2001,28(4):1 - 3
    13.高志红,章镇,韩振海,房经贵.中国果梅核心种质的构建与检测.中国农业科学,2005,38(2):363 - 368
    14.葛颂,洪德元.濒危植物裂叶沙参及其广布种泡沙参遗传多样性的对比研究.遗传学报,1999,26:410 - 417
    15.葛颂.同工酶和植物进化生物学.见:陈家宽,杨继编著,植物进化生物学.武汉:武汉大学出版社,1994,pp. 153 - 208
    16.何天明,陈学森,吴燕.从蔷薇科果树硅胶干燥叶片中制备DNA.石河子大学学报,2004,22 (4):316 - 319
    17.侯立群,杜振宇,李金芬.板栗叶面积计算方法的探讨.河北林果研究,2002,17(1):48 - 51
    18.胡晋,徐明海,朱军.保留特殊种质材料的核心库构建方法.生物数学学报, 2001,16(3):348 - 352
    19.胡晋,徐明海,朱军.基因性值多次聚类法构建作物种质资源核心库.生物数学学报,2000,15(1):103 - 109
    20.贾继增,张正斌,Devos K, Gale M D.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑),2001,31(1):13 - 21
    21.姜国高.板栗早实丰产栽培技术.北京:中国农业出版社,1995. 8:7– 8
    22.孔德军.板栗品种资源保存利用与研究.河北农业科学,2003,7(增刊):51 - 54
    23.兰彦平,周连第,周家华,姚砚武,王尚德.中国板栗北方种群表型变异频率研究.华北农学报,2007,22(5):106 - 109
    24.郎萍,黄宏文.栗属中国特有种居群的遗传多样性及地域差异.植物学报,1999,41(6):651 - 657
    25.李保国,张林平,郭素萍,刘明典,郝宪智.板栗果实可溶性糖及淀粉含量的联合测定法研究.河北林果研究,17(2):122 - 125
    26.李保印,张启翔.我国园艺作物核心种质研究进展.果树学报,2007,24(2):204 - 209
    27.李昌珠.板栗品种经济性状遗传多样性与稳定性研究.中南林学院,2003,硕士论文
    28.李长涛,石春海,吴建国.利用基因型值构建水稻核心种质的方法研究.中国水稻科学,2004,18(3):218 - 222
    29.李天俊,胡忠惠,王丽.利用过氧化物酶同工酶测定新疆野苹果多态性试验简报.天津农业科学, 2003, 9 (3):27 - 29
    30.李银霞,高其洁,李天红.基于果实相关性状的桃品种初级核心种质取样策略研究.果树学报,2006,23 (3):359 - 364
    31.李自超,张洪亮,孙传清,王象坤.植物遗传资源核心种质研究现状与展望.中国农业大学学报,1999,4(5):51 - 62
    32.李自超,张洪亮,曾亚文.云南地方稻种质资源核心种质取样方案研究.中国农业科学,2000,33(5): 1 - 7
    33.李自超、张洪亮、曹永生.中国地方稻种质资源初级核心种质取样策略研究.作物学报,2003,29(1):20– 24
    34.李作洲,郎萍,黄宏文.中国板栗居群间等位酶基因频率的空间分布.武汉植物学研究. 2002,20(3):165 - 170·
    35.廖应廷,苏淑贞. 14种牧草维生素C含量的测定.牧草与饲料,1989,(1),6 - 18
    36.林培均,崔乃然.天山野果林资源-伊犁野果林综合研究.北京:中国林业出版社,2000
    37.刘崇琪,陈学森,吴传金,张红.新疆野生樱桃李(Prunus cerasifera Ehrh.)茎段与叶片培养及其植株再生.果树学报. 2007, 25(1):49 - 53
    38.刘峰,东方阳,邹继军.应用SSR进行大豆种质多样性和遗传变异分析.遗传学报,2000,27(7):628 - 633
    39.刘孟军.中国野生果树.北京:中国农业出版社,1998. 1 - 8
    40.刘晓丽.核桃SSR反应体系的优化及群体遗传结构的多样性分析.山东农业大学. 2007,硕士论文
    41.刘旭,马缘生,谭富娟.小麦特殊遗传材料核心样品的建立.植物遗传资源科学, 2000,1(2):1 - 8
    42.刘勇,孙中海,刘德春,吴波,陶建军.柚类种质资源AFLP与SSR遗传多样性分析.中国农业科学,2005,38(11):2308 - 2315
    43.刘勇,孙中海,刘德春,吴波,周群.利用分子标记技术选择柚类核心种质资源.果树学报,2006,23(3):339 - 345
    44.吕长平,石雷晖,杨国顺,刘昆玉.水分胁迫对草莓叶片SOD活性以及MDA和Vc含量的影响.湖南农业大学学报,1996, 22(5):451 - 455
    45.马克平,刘玉明.生物群落多样性的测定方法I a多样性的测定方法.生物多样性,1994,(4):231 - 239
    46.马玉敏.泰山板栗良种选育及高效优质栽培技术研究.山东农业大学,2004,硕士论文
    47.明军,张启翔,兰彦平.梅花品种资源核心种质构建.北京林业大学学报,2005,27(2):65 - 69
    48.庞晓明.柑橘属及其近缘属植物的亲缘关系研究.华中农业大学,2002,博士论文
    49.秦岭,刘德兵,范崇辉.陕西实生板栗居群遗传多样性研究,西北植物学报, 2002,22(4):970 - 974
    50.邱丽娟,曹永生,常汝镇.中国大豆(Glycine max)核心种质构建1.取样方法研究.中国农业科学,2003,36(12):1442 - 1449
    51.沈永宝,施季森,林同隆.福建建瓯锥栗、茅栗遗多样性分析.南京林业大学学报, 2004,28(6):15 - 17
    52.孙传清,李自超,王象坤.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究.作物学报,2001,27(3):313 - 318
    53.田彬彬.寒地苹果种质资源RAPD分子标记及其核心种质初步构建.吉林农业大学,2007,硕士论文
    54.王红霞.核桃遗传多样性分析及核心种质的构建.河北农业大学,2006,博士论文
    55.王建华,刘鸿先,徐同.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,(1): 1 - 7
    56.王静慧,吴文良.我国燕山板栗生产带的优势、问题与对策研究.中国农业资源与区划,2003,24(4):24 - 28
    57.王庆芬.抗寒梨种质资源RAPD的分子标记及其核心种质初步构建.吉林农业大学,2007,硕士论文
    58.王涛.应用AFLP标记、RAPD标记构建桃遗传连锁图普及基因定位的研究.中国农业大学. 1999,博士论文
    59.王同坤,柏素花,董超华,胡彦江,齐永顺,张京政.燕山板栗种质资源AFLP遗传多样性分析.分子植物育种,2007,5(1):121 - 127
    60.王同坤,于凤鸣.不同品种过氧化物同工酶研究.河北农业大学学报,1998,15(2):65 - 67
    61.王峥峰,王伯荪,李铭光.锥栗种群在鼎湖山三个群落中的遗传分化研究.生态学报,2000,69(6):665 - 670
    62.魏兴华,汤圣祥,余汉勇.浙江梗稻地方品种和新样品的构建方法.作物学报. 2001,27(3):324- 328
    63.魏兴华,颜启传,应存山.浙江地方粳稻资源核心样品的构建方法研究.浙江农业大学学报,1999a,11(5):223 - 228。
    64.魏兴华,应存山,颜启传.建立浙江地方粳型稻种质资源的核心样品的研究.中国水稻科学,1999b,11(3):81 - 85
    65.魏振国,刘维国.矮化板栗表型特征及早期鉴定.落叶果树,2001,33(3):4 - 6
    66.吴子龙.山葡萄种质遗传多样性的SSR分析及核心种质初步构建.东北林业大学,2007,硕士论文
    67.夏铭,周晓峰,赵士洞.天然蒙古栎群体遗传多样性的RAPD分析.林业科学,2001,37(5):126 - 133
    68.项艳,朱苏文,程备久. 14个板栗品种遗传多样性的RAPD分析.激光生物学报,2003,12(4):259 - 263
    69.徐海明,胡晋,邱英雄.利用分子标记和数量性状基因型值构建作物核心种质库的研究.生物数学学报,2005,20(3):351 - 355
    70.徐海明,胡晋,朱军.构建作物种质资源核心库的一种有效抽样方法.作物学报,2000,26(2):157 - 162
    71.徐海明,邱英雄,胡晋,王建成.不同遗传距离聚类和抽样方法构建作物核心种质的比较.作物学报. 2004,30(9):932 - 936
    72.阎爱民,陈文新.苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析.生物多样性. 1999,7(2):1 - 8
    73.杨剑,涂炳坤,谢谱清.湖北的主要板栗品种资源极其野生近缘种.广西植物,2001,21(2):187 - 190
    74.易干军,霍合强,陈大成.荔枝品种亲缘关系的AFLP分析.园艺学报,2003a,30(4):399 - 403
    75.易干军,霍合强,蔡长河.适于AFLP分析用的荔枝DNA提取方法.华南农业大学学报,1999,20(3):123 - 124
    76.易干军,谭卫萍,霍合强.龙眼品种(系)遗传多样性及亲缘关系的AFLP分析.园艺学报,2003b,30(3):272 - 276
    77.余萍,李自超,张洪亮.中国普通野生稻初级核心种质取样策略.中国农业大学学报,2003,8(5):37 - 41
    78.苑兆和.杏属植物(Armeniaca Mill.)种质资源分子系统学研究.山东农业大学. 2007,博士论文
    79.张春雨.新疆野苹果群体遗传结构和核心种质构建方法.山东农业大学,2008,博士论文
    80.张峰. AFLP银染法及其在植物基因组多态性研究中的应用.南开大学,1999,博士论文
    81.张红,张艳敏,陈晓流,陈学森.欧李自交不亲和S基因的克隆及序列分析,西北植物学报2008,20(1):80 - 84
    82.张洪亮.云南地方稻种资源核心种质研究.中国农业大学,2000,硕士论文
    83.张辉,柳鎏,Villani F.板栗在6个同工酶位点上的遗传变异.生物多样性,1998a,6(4):282 - 286
    84.张辉,柳鎏.板栗群体的遗传多样性及人工选择的影响.云南植物研究, 1998b,20(1):80 - 88
    85.张小燕,陈学森,彭勇,王海波,石俊,张红.新疆野苹果矿质元素与糖酸组分的遗传多样性.园艺学报,2008,35(2):277 - 280
    86.张新时.伊犁野果林的生态地理特征和群落学问题.植物学报,1973,15(2):239 - 253
    87.张秀荣,郭庆元,赵应忠.中国芝麻资源核心收集品研究.中国农业科学,1998,31(3):49 - 55
    88.张袖丽,胡颖蕙,檀华榕.板栗品质的化学成分分析和评价.安徽农业科学,1996,24(4):330 - 331, 334
    89.张艳敏,王琦,苑兆和,张红,石俊,张小燕,陈学森.矮生樱组3个野生种果实性状的变异.果树学报,2007,24(3):369 - 372
    90.张宇和,王福堂,高新一,赵永孝.板栗.北京:中国林业出版社,1989:9 - 12
    91.张忠慧,王圣海,黄宏文,陈绪中.湖北省的野生果树资源.园艺学报,2004,31(6):788 - 790
    92.赵晓光.蒙山山区蔷薇科野生果树资源研究.安徽农业科学,2005,33(3):434,426
    93.郑殿升,杨庆文.中国的农业野生植物原生境保护区(点)建设.植物遗传资源学报,2004,5(4):386 - 388
    94.周劲松.青海野生果树资源.中国果树,2003, 7:13 - 15
    95.周连弟.板栗种质资源遗传多样性研究.中国农业大学,2005,博士论文
    96.周连第,兰彦平,韩振海.板栗品种资源分子水平遗传多样性研究,华北农学报,2006,21(3):81 - 85
    97.祝军,王涛,赵玉军.苹果AFLP分析体系的建立.中国农业大学学报,2000,5(3):63 - 67
    98.邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究---基于RAPD分析.植物分类学报,1999,37(3):220 - 227
    99. Abel B C, Pollak L M. Rankeom parisons of unadapted maize germplasm by testers and perse evaulation. Crop Sci., 1991, 31: 650 - 656.
    100. Antonovics J, Bradshaw A D. Heavy metal tolerance in plants. Adv. Ecol. Res. 1971, 7: 1 - 58
    101. Aranvanopoulos F A, Bucci G, Akka A, Blanco S R, Botta R, Buck E, Cherubini M, Drouzas A D, Fernándeziópez J, Mattoni C, Marionid, Papdima A, Russen K, Zas R, Villani F. Molecular population genetics and dynamics of chestnut (Castanea sativa) in Europe: Inferences for gene conservation and tree improvement. Acta Hort, 2005, 693: 403 - 411
    102. Arens P, Coops H, Jansen J. Molecular genetic analysis of black poplar (Populas nigra L.) along Dutch rivers. Mol Ecol., 1998,7(1): 3 - 10
    103. Barrett S C H, Eckert C G. Variation, evolution of mating systems in seed plants. In: Kawano S (ed.) Biological Approaches, Evolutionary Trends in Plants. London: Academic Press, 1990: 229 - 254
    104. Bengtsson B O, Weibull P, Ghatnekar L. The loss of alleles by sampling: A study of the common outbreeding grass Festuca ovina over three geographical scales. Hereditas, 1995, 122: 221 - 238
    105. Bisht I S, Mahajan R K, Patel D P. The use of characterization data to establish the Indian mungbeancore collection and assessment of genetic diversity, Genetic Resources and Crop Evolution, 1998, 45: 127 - 133
    106. Bonierbale M, Beebe S, Tohme J. Molecular genetics techniques in relation to sample strategies the development of core collections. In Ayad W G, et al. Ed. Molecular genetic techniques for plant genetic resources, Rome, Italy:IPGRI, 1997, 98 - 102
    107. Boukemaet I W, van Hintum T J L, Astley D. Creation and composition of the Brassica oleracea core collection. Plant Genetic Resources Newsletter, 1997, 111: 29 - 32
    108. Bouton J H. Screening the alfalfa core collection for acid soil tolerance. Crop Sci., 1996, 36: 198 - 200
    109. Bradshaw A D. Plant evolution in extreme environments. In: Creed R (ed.) Ecological Genetics and Evolution. Qxford: Blackwell, 1984
    110. Brochmann C, Soltis P S. Recurrent formation and polyphly of Nordic polyloids in Draba (Brassicaceae). Amer. J. Bot. 1992, 79(6):1436 - 1439
    111. Brown A H D. Core collection: A practical approach to genetic resources management. Genome, 1989b, 31:818– 824
    112. Brown A H D. The case for core collection. In: Brown A H D, Frankle Oh, Marshall R D, et al., Ed. The Use of Plant Genetic Resources. Cambridge Univ Press, 1989a, 136 - 156
    113. Caujapé-castells J, Pedrola-Monfort J. Designing ex-situ conservation strategies through the assessment of neutral genetic markers: Application to the endangered Androcymvium gramineun. Conservation Genetic, 2004, 5: 131 - 144
    114. Chandra S, Huaman Z, Hari K. S, Ortiz R. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data - a simulation study. Theor and Appl Genetics, 2002, 104: 1325 - 1334
    115. Chase M, Kesseli R, Bawa K. Microsatellite markers for population and conservation genetics of tropical trees. Ameri Jour Bot., 1996a, 83: 51 - 57
    116. Chase M, Moller C, Kesseli R. Distance gene flow in tropical trees. Nature (London), 1996b, 383 (6 599): 398 - 399
    117. Chen X S, Feng T, Zhang Y M, He T M, Feng J R. Genetic diversity in Malus sieversii (Lebed.) Roem. Ⅲ, Genetic diversity of volatile components in M. sieversii. Acta Genetica Sinica, 2007, 34(2): 171 - 179
    118. Crossa J. Practical considerations for maintaining germplasm in maize. Theor Appl Genet, 1994, 89 - 95
    119. Cruzan, M B. Genetic markers in plant evolutional ecology, 1998, Ecology, 79: 400 - 412
    120. Dane F, Lang P, Huang H W. Intercontinental genetic divergence of Castanea species in eastern Asia and easter North America. Heredity, 2003, 91(3): 3211 - 3214
    121. Demeke T, Adams R P, Chibbar R. Potential taxonomic use rasdom amplified polymorphic DNA (PAPD): a case study in Brassica. Theor Appl Genet., 1992,84: 990 - 994
    122. Dice, L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26: 297 - 302
    123. Dirlewanger E, Cosson P, Taavaud M, Aranzana M J, Poziat C, Zanetto A, Arús P, Laiget F.Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet, 2002, 105(1): 127 - 138
    124. Diwan N, Bauchan G R, Mclntosh M S A. Core collection for the United Statws annunal Medicago germplasm collection. Crop Sci., 1994, 34: 279 - 285
    125. Diwan N, Mclntosh M S A,.Bauchan G R. Methods of developing a core collection of annual medicago species. Theor Appl genet, 1995, 90: 755 - 761
    126. Duque E M C, Gonzalez D O, Beebe S. Analysis of the genetics structure of wild bean core collection with AFLP (Amplified Fragment Length Polymorphism). International symposium on statistics in agriculture and environment research: Proceedings: satellite conference. Cali. Colombia CIAT, 1995, 193 - 209
    127. Ehrlich P R, Raven P H. Differentiation of populations. Science, 1969, 165: 1228 - 1232
    128. Erskine W, Muchlbauer F J. Allozyme and morphological variability outcrossing rate and core collection formation in lentil germplas. Theor Appl Genel. 1991, 83: 119 - 125
    129. Falk D A, Holsinger K E. Genetics and conservation of rare plants. Oxford Unuiversity Press, New York, 1991
    130. Ferguson A R. The need for characterization and evaluation of germplasm: kiwifruit as an example. Euphytica, 2007: 154: 371 - 382
    131. Figdore S S. Assessment of the degree of restriction fragment length polymorphism in Brassia. Theor Appl Genet, 1988. 75: 833 - 840
    132. Francis C Y, Yang R C, Popgene version 1.32. http//www.ualberta.ca/_fyeh/index.htm, 2000
    133. Frankel O H, Brown A H D. Current plant genetic resources acritical appraisal. Genetics: New Frontiers Vol. IV. Oxford and IBH Publishing, 1984a
    134. Frankel O H, Brown A H D. Plant genetic resources today: a critical appraisal. In: Hoden H W, Williams JT (Eds) Crop genetic resources: conservation and evaluation. Geoge Allen and Unwin, London, UK, 1984b, pp 249 - 257
    135. Gayle M V, Christopher M R, Reilley A A, Adam D H. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 2005, 130: 203 - 210
    136. Ge S, Olivera G C X, Schaal B A. RAPD variation within and between matural populations of the wild rice Oryza rufi-pogon from China and Brazil. Heredity, 1999, 82: 638 - 644
    137. Ghislain M, Zhang D P, Fajardo D, Huamán Z, Hijmans R Z. Marker-assisted sampling of the cultivated Andean potato Solanum Phureja collection using RAPD markers. Genetic Resources and Crop Evolution, 1999, 46: 547 - 555
    138. Gianfranceschi L, Seglias N, Tarchini R. Simple sequence repeat for the genetic analysis of apple. Theor Appl Genet, 1998, 96: 1069 - 1076
    139. Gómez A, González-Martínez S C, Collada C, Clement J, Gil L. Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markes. Theor Appl Genet, 2003, 107: 1123 - 1131
    140. Goodman M M. Distance analysisin biology. Syst. Zool. 1972, 21: 174 - 186
    141. Gower J C. A general coefficient of similarity and some of its properties. Biometrics, 1971, 27: 857 - 872
    142. Grant V. The evolutionary process: a critical study of evolutionary theory. New York: CUP, 1991
    143. Greef J M, Deuter M, Jung C, Schondelmaier J. Genetic diversity of European Miscanthuns species revealed by AFLP finger-printing. Genetic Resources and Crop Evolution, 1997, 44(2): 185 - 195
    144. Greiposson S, Davy A J. Seed mass and germination behaviour in population of the dune-buiing grass Leymusarenarius. Ann. Of Botany, 1995, 76, 493 - 501
    145. Greniera Hamonb P,Bramel C P G. Collection of Sorghum II. Comparison of Three Random Sampling Strategies, Crop Science, 2001, 41: 241 - 246
    146. Hamon S, Noirot M, Anthony F. Developing a coffee collection using the principal componments score strategy with quantitative data. In Hodgkin T et al., Ed Core Collection of Plant Genetic Resources Chochester, UK: John Wiley-Sons Publication, 1995, 117 - 126
    147. Hamrick J L, Godt M J W, Suasanl S B. Factors influencing levels of genetic diversity in woody plant species. New Forests. 1992, 6(1-4): 95 - 124
    148. Hamrick J L, Loveless M D. Associations between the breeding system and the genetic structure of tropical tree populations. In: Bock J. and Linbart Y.B. Evolutionary ecology of plants. 1989, Weelview, Boulder, 129 - 146
    149. Hamrick J L. Gene flow distribution of genetic variation in plant populations. In: Urbanska K.Differentiation patterns in higher plants. New York: Academ Press. 1987, 53 - 57
    150. Harpre J L, Lovell P H, Moore K G.. The shapes and sizes of seeds. Ann. Rev. of Eco. And Sys., 1970, 1: 327 - 356
    151. Hartl L, Seefelder S. Diversity of selected hop cultivars detected by fluorescent AFLPs. Theor Appl Genet, 1998, 96 (1): 112 - 116
    152. He G, Prakash C S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica, 1997, 97(2): 143 - 149
    153. He T M , Chen X S, Xu Z, Gao J S, Lin P J, Liu W, Liang Q, Wu Y. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution, 2006, 00: 1 - 10.
    154. Heinkel R, Hartmann W, Stosser R. On the origin of the plum cultivars Cacaks Beauty, Cacaks Best, Cacaks Early, Cacaks Fruitful as investigated by the inheritance of random amplified polymorphic DNA(RAPD)fragments. Scientia Horticulturae, 2002, 83 (2): 149 - 157
    155. Hill I D. Algorithm A S, the normal integral. Applied Statistics, 1973, 22 (3): 424 - 427
    156. Hill M, Witsenboer H, Zabeau M. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet, 1996,93 (8): 1202 - 1210
    157. Hintum van T J L, Bothmer van R, Visser D L.Sampling strategies for composing a core collection of cultivated barley (Hordeum vnlgare slat) collection in China. Hereditas, 1995, 122: 7 - 17
    158. Hintum van T J L. Comparison of market system and construction of a core collection in a pedigree ofEuropean spring barley. Theor Appl Genet,1994, 89: 991 - 997
    159. Hodgkin T. Core collection and conservation of genetic resources. In Arora RK, Ed. Scsame Bio-diversity in Asia, Conservation, Evalution and improvement. New Delhi, India, 1993
    160. Hokanson S C, Lamboy W F, Szewc-McFadden A K, McFerson J R. Microsatellite (SSR) variation in a collection of Malus sieversii (apple) species and hybrids. Euphytica, 2001, 18: 281 - 294
    161. Hokanson S C, Szewc-McFadden A K, Lamboy W F, McFerson J R. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus×domestica borkh. Core subset collection. Theor Appl Genets, 1998, 97: 671 - 683
    162. Holbrook C C. An efficient approach for utilization of peanut genetic resources. Journal of Peanut Science, 2001, 30(3):2 - 8
    163. Hongtrakul V, Huestis G M, Knapp S. Amplifiled fragment length polymorphisms as a tool for DNA fingerpringting sunflower germplasm: Genetic diversity among oilseed inbred lines .Theor Appl Genet, 1997, 95 (3): 400 - 407
    164. Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepswise clustering with three sampling strategies based on the genotypic values crops. Theor Appl Genet, 2000, 101 (1 - 2): 264 - 268
    165. Huaman Z, Aguilar C, Ortiz R. Selecting a peruvia sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet, 1999, 98: 840 - 844
    166. Huaman Z, Orliz R, Comez R. Selecting a Solanum tuberosum subsp andifena core collection using morphological, geographical disease and pest descriptors. American Journal of Potato Research. 2000, 77 (3): 183 - 190
    167. Huang H W, Dane F, Kubisiak T L. Allozyme and RAPD analysis of the genetic and geographic variation in wild population of the American chestnut Castanea dentata (Fagaceae). Amer J Bot, 1998, 85: 1013 - 1021
    168. Huang H W, Dnae F G, Norton J D. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea soo.). The Appl Genet, 1994, 88: 981 - 985
    169. Huang H W. Central-China origin of genus Castanea section eucastanon: a new evidence of allozyme genetic diversity. In: X. Shen (Eds). Forest tree improvement in the Asia-Pacific region. Beijing, P.R.China: China Forestry Publishing House. 1995, 34 - 40
    170. Huang J C, Sun M. A modified AFLP with fluorescence-labeled primers and automoated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Techniques, 1999, 13: 277 - 278
    171. Jaccard P. Contribution au problème de 1'immigration post-glaciaire de la flore alpine. Bulletin de la SociétéVaudoise des Sciences Naturelles, 1900, 37: 547 - 579
    172. Jaccard P. Nouvelles rescherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 1908, 44: 223 - 270
    173. Jansen J, van Hintum T H. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivatied lettuce. Theor Appl Genet, 2007,114: 421 - 428
    174. Janynes R A. Chestnuts. In: Janick J, Moore JN Eds. Advances in fruit breeding. West Lafayette Indiana: Pudure University Press, 1975 Cassoli M, Mattoni Cherubini M, et al, A genetic linkage map of European chestnut (Castean sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor Appl Genet, 2001, 102: 1190 - 1199
    175. Jordano P, Godoy J A. RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol. 2000, 9(9): 1293 - 1305
    176. Kardolus J P, Van Eck Herman J, van Den Berg Ronald G. The potential of AFLP in biosystematics: A first application in So-lanum taxonomy (Solanaaceae). Plant Syst Evol., 1998, 210 (1-2): 87 - 103
    177. Katayama H, Adachi S, Yamamoto T, Uematsu C. A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate,Japan revealed by SSR and chloroplast DAN markers. Genet Resour Crop Evol, 2007, 54: 1573 - 1585
    178. Kim M Y, Ha B K, Jun T H, Hwang E Y, van K, Kuk Y I, Lee S K. Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean. Euphytica, 2004, 135:169 - 177
    179. Koch G, Jung C. Phylogenetic relationship of industrial chicory varieties revealed by RAPDs and AFLPs. Agronoma Paris, 1997,17 (6 - 7) : 323 - 333
    180. Krauss S L, Peakell R. An evaluation of the AFLP fingerprinting technique for the analysis of paternity in natural population of Persoonia mollis (Proteaceae). Australian Jour Bot., 1995, 46(3): 533 - 546
    181. Lamboy W F, Yu J, Forsline P L, Weeden N F. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. Journal of the American Society for Horticultural Science, 1996, 121: 982 - 987
    182. Lanham P G, Bremman R M. Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. J. Hort. Sci. & Biotech, 1999, 74(3): 361 - 366
    183. Lerceteau E, Robert T, Petiard. Evaluation of the extent of genetic variability among Theobroma cacao accession using RAPD and RFLP markers. Theor Appl Gene, 1997, 95: 10 - 19
    184. Levin D A, Kerster H W. Gene flow in seed plants. Evol. Biol., 1974, 7: 139 - 220
    185. Li C T, Shi C H, Wu J G, Xu H M, Zhang H Z, Ren Y L. Methods of developing core collections based on the predicted genogypic value of rice (Oryza sativa L.). Theor Appl Genet, 2004, 108: 1172 - 1176
    186. Li G, Quiros C F. Sequence --- related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455 - 461
    187. Li Z C, Zhang H L, Zeng Y W. Studies on sampling schemes for the establishment of core collection of rice landraces in Yuanan, China. Genetic Resources and Crop Revolution, 2002, 49: 67 - 74
    188. Lima M L A, Garcia A A F, Oliveira K M, Matsuoka S, Arizono H, de Souza C L J, de Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharus spp.). Theor Appl Genet, 2002, 104: 30 - 38
    189. Loveless M P, Hamrick J L. Ecological determinant of genetic structure in plant populations. Ann. Rev. Ecol. Syst, 1984, 15: 65 - 95
    190. Luis G, Luis C, Cristina M. Comparing RAPD and AFLP analysis in discrimination and estimation of genetic similarities among apple ( Malus domestica Borkh.) cultivars . Euphytica, 2001, 119: 259 - 270
    191. Machey M C. Utilizing wheat genetic resources in Australia. Wheat Breeding Society of Australia, 1989, 253 - 2581
    192. Magurran A E. Ecological diversity and its measurement New Jersey: Princeton University, 1988
    193. Mahalanobis P C. On the generalized distance in stastics. Proc Natl Inst Sci India, 1936, 2(1): 49 - 55
    194. Margis R, Elix D, Caldas J F. Genetic differentiation among three neighboring Brazil cherry (Eugeniaunmora L.) population within the Brazillian Atlantic rain forest. Biodiversity and Conservation, 2002, 11(1): 149 - 163
    195. Markert G L, Moller F. Multiple forms of enzymes: tissue, onto genetic and species specific patterns. Proc Natl Acad Sci. U S A., 1959, 45: 753 - 763
    196. Marshall D R, Brown A H D. Optimum sampling strategies in genetic conservation. In Frankel OH, Hawkes J D (eds) Crop genetic resources for today and tomorrow. Cambridge: Cambridge University Press, 1975, 53 - 80
    197. Martins M, Tenreiro R, Oliveira M M. Genetic relatedness of Portuguess almond cultivars assessed by RAPD and ISSR markers. Plant Cell Rep, 2003,22: 71 - 78
    198. Masato Orita, Hiroyuki Iwahana, Hiroshi Kanazawa, Kenshi Hayashi, Takao Sekiya. Detection of polymorphisms of human DNA by gel electrophresis as single - strand conformation polymorphisms. Proc Natl Acad Sci, 1989, 86: 2766 - 2770
    199. Mayr E. Animal Species, Evolution. Cambridge: Harvard University Press, 1963
    200. Mccauley D E, Stevens J E, Peroni P A. The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of Silene alba (Caryophyllaceae), 1996, American Journal of Botany, 83(6): 727 - 731
    201. McDermott J M, McDonald B A. Gene flow in plant pathosystems. Ann. Rev. Phytopathol., 1993, 31: 353 - 373
    202. Mergel. K. Principled Plant Nutrition. Beijing: Beijing Agricultural University, 1982, 262 - 264
    203. Merrell D J.黄瑞复等译.生态遗传学.北京:科学出版社,1991
    204. Michelle R L, Westoby M, Jurado E. Correlates of seed size variation: a comparison among five temperate floras. Jounal of Ecology. 1995, 83: 517 - 530
    205. Miklas P N, Delorme R, Hannan R, Dickson M H. Using of subsample of the core collection to identify new sources of resistance to white mold in common bean. Crop Sci., 1999, 39: 569 - 573
    206. Nami G Y. Phenetic clustering of grapes (Vitis spp) by AFLP analysis. Breeding science, 2000, 50 :53 - 57
    207. Nei M, Li H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, 6: 5269 - 5273
    208. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 1973. 70(12): 3321 - 3323
    209. Nei M. Molecular Evolutionary Genetics. New York: Columbia Univ. Press, 1987: 187 - 192
    210. Ortize R,Madsen S,Ruiz-TaPia E N,Jaebosne S E,Mujiea-Sanehez A,Christiansne J L, Stolne O. Validating a core colleetion of Puervianu quinoa germplam. Gene. Resour. Crop. Evol., 46: 285 - 290
    211. Pandey A, Nayar E R, Venkateswaran K, Bhandari D C. Genetic resources of Pruns (Rosaceae) in India. Genet Resour Crop Evol, 2008, 55: 91 - 104
    212. Paran l, Afergoot E, Shifriss C. Variation in Capsicurn annuum revealed by RAPD makers. Euphytica, 1998, 99 (3): 167 - 173
    213. Paul S, Wachira F N, Powell W. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet, 1997, 94 (2): 255 - 263
    214. Peeters J P, Marti J A. Hlerarchical cluster analysisi as a tool to manage variation in germplas colection. Theor Appl Genet, 1989, 78: 42 - 48l
    215. Perera L, Russell J R, McNicol J W. Evaluating genetic relationship between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet, 1998, 96 (3 - 4): 545 - 550
    216. Perry M C, Mclntosh M S, Stocr A K. Geographical patterns of variation in the USDA soybean germplasm collection: Allozyme frequencies Crop Sci., 1991, 31: 1356 - 11360
    217. Plant breeder. In: Core Colleetions of Plant Gneetie Resoucres. Hodgkin T, et al. (eds), Chichester,UK,Jhon Wiley Sons Publieation,pp: 213 - 28.
    218. Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2 (3): 225 - 237
    219. Rahman M S M, Shimada T, Yamamoto T. Genetic diversity of cherimoya cultivars revealed by amplified fragment length polymorphism (AFLP) analysis. Breeding Science, 1998, 48 (1): 5 - 10
    220. Rey J R, Strong, D R. Immigration and extinction of salt marsh arthropods on islands: an experimental study. Oikos, 1983, 41: 396 - 401
    221. Richard M. Clark, Gabriele Schweikert, Christopher Toomajian. 2007. Common sequence polymorphisms shaping genetic diversity in arabidopsis thaliana. Science, 317: 338 - 342
    222. Richter T S, Soltis P S, Soltis D E. Genetic variation within and among populations of the narrow endemic, Delphinium viridescens (Ranunculaceae). American Journal of Botany, 1994, 81: 1070 - 1076
    223. Roa A C, Maya M M, Tohme J. AFLP analysis of relationship among cassava and other Manihot species. Theor Appl Genet, 1997, 95 (5 - 6): 741 - 750
    224. Roach D A, Wulff R D. Maternal effects in plants. Annual Review of Ecology and Systematics, 1987, 18: 209 - 223
    225. Rouppe van der Voort J, Wolters P, Folkertsma R. Mapping of nematode resistance locus Gap. In potato using a strategy based on comigrating AFLP markers. Theor Appl Genet, 1997b, 95: 874 - 880
    226. Rouppe van der Voort J, Zandvoort P van E H J, Folkertsma F T, Hutten R C B, Draaistra J, GommersF J, Jacobsen E, Helder J, Bakker J. Allele specificity of comigrating AFLP markers used to align genetic maps from different potato genotypes. Mol. Gen. Genet., 1997a, 255: 438 - 447
    227. Rutter P A, Miller G, Payne J A. Chestnuts. In: Moore J N, Ballington, Jr JReds. Genetic resources of temperate fruit and nut crops. Wageningen, The Netherlands: The International Society for Horticultural Science, 1990, 761 - 788
    228. Sachidanan dam R. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409: 928 - 933
    229. Sharma S K, Knox M R, Ellis T H N. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor Appl Genet, 1996, 93(5 - 6): 751 - 758
    230. Sheldon I, Guttman, Lee A. Weight, Morphological, electrophoretic, and ecological analysis of quercus macrocarpa population in the Black Hills of South Dakota and Wyoming. Can. J. Bot. 1990, 68: 2185 - 2194
    231. Shinya K, Keizo Y, Akihiko S. Analysis of the genetic relationships among Pollination-constant and Non-astrigent (PCNA) cultivars of Persimmon (Diospyros kaki Thunb.) from Japan and China using Amplified Fragment Length Polymorphism (AFLP). J. Japan. Soc. Hort. Sci., 2000, 69 (6): 665 - 670
    232. Slatkin M. Rare alleles as indicators of gene flow. Evolution, 1985, 39 (1): 53 - 65
    233. Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 1958, 38: 1409 - 1438
    234. Sokal R R. Distance as a measure of taxonomic similarity. Systematic Zoology, 1961, 10 (2): 40 - 51
    235. Soltis D E, Soltis P S Eds. Isozyme in Plant Biology. Portland OR: Dioscorides Press, 1989
    236. Spagnoletti Z P, Qualsct L. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theor Appl Gene, 1993, 87: 295 - 304
    237. Steven D T, McCouch S R. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063 - 1066
    238. Suh Y, Kim S, Park C W. AFLP examination for putative hybrids between Aconitrm japonicum ssp. Napifome and A. jalu-ence (Ranunculaceae). Korean Jour Plant Tax., 1997, 27(1) : 59 - 71
    239. Sun S J, Gao W, Lin S Q, Zhu J, Xie B G,Lin Z B. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Applied Microbiology and Biotechnology, 2006,72(3): 537 - 543
    240. Tai P Y P, Miller J D. A Core Collection for Saccharum spontaneum L. from the World Collection of Sugarcane. Crop Science, 2001, 41: 879 - 885
    241. Travis S E, Maschiniski J, Keim P. An analysis of biological variation in Astragalus cremnophyax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol., 1996, 5 (6): 735 - 745
    242. Upadliyaya H D, Ortiz R, Bramel P J. Development of a groundnut core collection using taxonomical, geographical and morgraphical descriptors. Genetic Resources and Crop Revolution. 2003, 50: 139 - 148
    243. Upadliyaya H D,Ortiz R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop imporovement. Theor Appl Genet, 2001, 102: 1292 - 1298
    244. van Treuren R, Tchoudinova I, van Soest L J M, van Hintum Th J L. Marker-assisted acquisition andcore collection formation: a case study in barley using AFLPs and pedigree data. Genetic Resources and Crop Evolution, 2006, 53: 43 - 52
    245. Vanghan A D. Choosing rice germplasm for evaluation. Euphytica, 1991, 54: 1479 - 1541
    246. vanToai Tara T, Pentg J, St-Martin S K. Using AFLP markers to determine the genomic contribution of parents to populations. Crop Science, 1997,37 (4):1370 - 1377
    247. Vendramin G G, Anzidei M, Madaghiele A, Buggi G. Distribution of genetic diversity in Pinus pinaster Ait. As revealed by chloroplast microsatellite. Theor Appl Genet, 1998, 97(3): 456 - 463
    248. Villani F, Benedettelli S, Paciucci M. Genetic variation and differentiation between natural populations of chestnut (Castanea sativa Mill) from Italy. In: Fineschi S, Malvoti M E, and Cannata Eeds. Biochemical markers in the population genetics of forest trees. The Hague: SPBA cademic Publishing, 1991, 91 - 103
    249. Villani F, Pigliucci M, Cherubini M. Evolution of Castanea sativa Mill. In Turkey and Europ. Genet Res Cambridge, 1994, 63: 109 - 116
    250. Villani F, Pigliuccu M, Benedettelli S. Genetic differentiation among Turkish chestnut (Castanea sativa Mill) populations. Heredity, 1991, 66: 131 - 136.
    251. Volk G M, Richards C M, Reilley A A, Henk A D, Forsline P L, Aldwinckle H S. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 2005, 130 (2): 203 - 215
    252. Vos P R, Hogers M, Benedettelli S. AFLP: a new technique for DNA fingerprinting. Neu Acid Res, 1995, 23 (21): 4407 - 4414
    253. Wang J C, Hu J, Xu H M, Zhang S. A strategy on constructing core collections by least distance stepwise sampling. Theor Appl Genet, 2007, 115: 1 - 8.
    254. Warren F L, Yu J, Fogsline P L, Weeden N F. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J. Amer. Soc. Hort. Sci., 1996, 121 (6): 982 - 987
    255. Waugh R, Bonar N, Baird E. Homology of AFLP products in three mapping populations of barley. Mol Gen Genet, 1997, 255 (3): 31l - 321
    256. Weir B S. Sampling properties of gene diversity. In: Brown A H D, Clegg M T, Kahler A L, Weir BS (Eds) Plant population genetics, breeding, and genetic resources. Sinauer Assoc, Sunderland, Mass., 1990: 23 - 42
    257. Weising K R, Fung W M, Kelling D J. Characterization of microsatellites from Actinidia chinensis. Molecular Breeding, 1996, 2: 117 - 131
    258. Winfield M O, Arnold G M, Cooper F. A study of genetic diversity in Populas nigra subsp. betulifolia in the upper Sever area of the UK using AFLP marker. Mol Ecol., 1998, 7 (1): 3 - 10
    259. Wright S. Evolution mendelian population. Genetics, 1931, 16: 97
    260. Wright S. The genetical structure of populations. Ann. Eugen, 1951,15: 323 - 354
    261. Xu D H, Wahyyui S, Sato Y, Yamaguchi M, Tsunemastu H, Ban T. Genetic diversity and relationships of Japanese peach (Prunus persica L.) cultivars revealed by AFLP and pedigree tracing. Genet Resour Crop Evol, 2006, 53(5): 1 - 7
    262. Yamamoto T, Shimada T, Kotobuki K. Genetic characterization of Asian chestnut varieties assessed by AFLP. Breeding Science, 1998, 48 (4) : 359 - 363
    263. Yan G R, Long H, Song W Q, Chen R Y. Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genetic Resources and Crop Evolution, 2008, 55(1): 171 - 181
    264. Yonezawa K, Nomura T,Morishisma H. Sampling strategies for use in stratified germplasm collection. In Hodgkin T. et al., Eds. Core colledtion of Plant Genetic Resourse Chichester. Uk:John Wiley-Sons Publication. 1995. 35 - 53
    265. Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y. Population genetic structure in apricot (prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern Xinjiang, China. Journal of Genetics and Genomics, 2007, 34: 947 - 952
    266. Zabeai M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerinting. European Patent Appli-cation Number: 92402629.7, Publication Number EP 0534858 A I 1993
    267. Zewdie Y, Tong N, Bosland P. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, 2004, 51: 147 - 151
    268. Zhang C Y, Chen X S, He T M. 2007. Genetic structure of Malus sieversii population from Xingjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 34 (10): 947 - 955
    269. Zhang Q F, Maroof M A S, Lu T Y. Genetic diversity and differentiation of indica an japonica rice detected by RFLP analysis. Theor Appl Genet, 1992, 83: 495 - 499
    270. Zhang X R,Zhao Y Z. Establislment of sesame germplasm core collection in China. Genetic Resource and Crop Evolution, 2000, 47: 273 - 279
    271. Zheng Z. The characteristics of the flora and an outline of the distribution of plants in Hubei Province. J Wuhan Bot Res, 1983 ,1: 165 - 175
    272. Zoharry D, Hopf M, Domestication of plants in the world. Poxford: Clarendon Press, 1998,37(3):220 - 227