组元添加对Zr-Cu-(M)合金结晶过程及非晶形成能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以铜模铸造法制备楔形非晶合金样品,以示差扫描量热仪(DSC)、扫描电镜(SEM)、X射线衍射仪为主要手段,分别研究了作为较大原子的Al、Ag对Zr-Cu二元合金结晶过程的干扰作用和规律,及作为小原子的Fe对Zr-Cu-Al与Zr-Cu-Ag三元非晶形成能力的影响。
     分析结果表明,具有较大原子半径的Al、Ag作为第三组元,对Zr-Cu二元共晶结晶过程有较强烈的干扰作用。具体表现为:1)试验中所采用的Zr-Cu-Al与Zr-Cu-Ag三元合金都具有较强的玻璃形成能力。2)在Zr-Cu-Al,及Zr-Cu-Ag合金楔形试样的结晶组织中,Al、Ag元素在领先析出的Zr-Cu相中的浓度较低,在领先相周围具有较高的浓度,说明Al、Ag元素通过在领先相析出的过程中发生溶质浓度再分配现象,从而对Zr-Cu金属间相的形成起着阻碍作用,这样从另一方面来说,提高了非晶形成能力。
     具有较小原子半径的Fe,作为Zr-Cu-Al与Zr-Cu-Ag三元合金的第四组元,虽然符合与其它原子半径相差超过12%的条件,但其添加的结果却是对上述两种合金系的结晶过程起到了促进作用,从而破坏了非晶形成能力。具体表现为:1)对于Zr-Cu-Ag合金来说,添加Fe后,由于Fe的原子半径较小,易于扩散,所以降低了Ag对Zr-Cu析出相的阻碍作用,从而促进ZrCu相的形成,进而引起整个体系结晶过程提前,破坏了非晶形成能力;2)对于Zr-Cu-Al合金来说,Fe的加入大大减低了楔形试样非晶区的大小。SEM分析表明,含Fe 5%的Zr-Cu-Al-Fe合金中在结晶前发生了相分离的现象,相分离的结果使得在过冷液相中形成了富Fe、Al区和富Cu区,在随后的冷却过程中,两个区域分别结晶,从而加速了整体的结晶过程。这样大大恶化了非晶形成能力。
The fundamental questions related to the formation of a metallic glass, e.g., the disturbance and the frustration effect of the third component, such as Al or Ag,on the crystallization process of binary Zr-Cu alloy, and the glass forming ability deterioration caused by Fe addition to the ternary Zr-Cu-Al and Zr-Cu-Ag alloys have been studied by means of DSC, SEM, and XRD etc. in this dissertation.
     The results show that the third component, such as Al or Ag, which has a comparatively larger atomic radius, has a strong disturbance effect to the crystallization process of Zr-Cu alloy, thus lead to a good glass forming ability for the Zr-Cu-Al or Zr-Cu-Ag alloy. The reasons are as follows: i) fully glassy wedge ingots of the Zr-Cu-Al or Zr-Cu-Ag alloy with a diameter of over 5mm have been obtained by copper mould casting, showing a large glass forming ability of the two alloys. ii) the solute element redistribution of Al or Ag around the primary crystals of Zr-Cu phase in Zr-Cu-Al or Zr-Cu-Ag alloy has been found by means of SEM energy spectrum.
     The Fe element, which has a small atomic radius, have a deteriorate effect to glass forming ability when added as the fourth component into the Zr-Cu-Al or Zr-Cu-Ag alloy,though it has a atomic radius difference of more than 12% from other elements. For the Zr-Cu-Ag alloy, the addition of Fe leads to a in advance crystallization of the CuZr phase, which is probably due to that there is a positive mixing enthalpy between Fe and Cu. Thus, the glass forming ability of this Zr-Cu-Ag-Fe alloy is getting worse.
     For the Zr-Cu-Al alloy, the addition of Fe leads to a phase segregation in the liquid. Two different regions, one is rich in Fe and Al, and the other is rich in Cu, were found in the wedge ingot of Zr-Cu-Al-Fe alloy. Crystallization in the two different regions may occur easily, due to the deviation from the primary composition of Zr-Cu-Al alloy, which has a good GFA. So it is clear for the mechanism of the GFA decreasing by the Fe addition: it is due to the phase segregation in liquid by Fe addition.
引文
1 [美] F.E.卢博斯基(Luborsky)博士主编,柯成,唐与,罗阳,何开元译.非晶态金属合金,冶金工业出版社,1989,北京
    2王一禾,杨膺善,非晶态合金,冶金工业出版社,1989,北京
    3 H. Men, Z. Q. Hu, J. Xu. Bulk metallic glass formation in the MgCu–Zn–Y system. Scripta Materialia. 2002,46(10):699-703
    4 A.Inoue, T Zhang T Masumoto. La-Al-Ni amorphous alloys with a supercooled liquid region. Mater. Trans. JIM 1989,30(12):965-972
    5 Inoue A.Zhang T. Master Trans,1996,37(2):185
    6 Peker A, Johnson WL. Appl Phys Lett 1993; 63:2342
    7 Inoue A., Nishiyama N., Kimura H. Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter. Mater.Trans.JIM, 1997,38(2):179-183
    8 Xu DH, Duan G, Johnson WL. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper Phys.Rev.Lett. 92 ,245504 (2004)
    9 Shen J, Chen QJ, Sun JF, Fan HB, Wang G. Appl Phys Lett 2005;86:151907
    10 Kim YC, Kim WT, Kim DH. Mater Sci Eng A 2004; 375-377:127.
    11 Lee JY, Bae DH, Kim DH. J.Mater.Res. 2004;19:2221
    12 Donghua Xu, Gang Duan, William L Johnson Carol Garland Formation and properties of new Ni-based amorphous alloys with critical casting thickness to 5mm Acta Materialia 2004 52 3493-3497
    13 Zhang T, Inoue A. Mater Trans JIM 2002; 43:708
    14 Na JH, Han KH, Kim WT, Kim DH. Mater Sci Forum 2005;475-479:3435
    15 M. Telford. The case for bulk metallic glass. Materials Today. 2004,7(3):36-43
    16 R. B. Schwarz, Y. He. Formation and properties of bulk amorphous Pd-Ni-P alloys. Materials Science Forum. 1997, 235-238: 231-240
    17 C. T. Liu, L. Heatherly, D. S. Easton. Test environments and mechanical properties of Zr-based bulk amorphous alloys. Metall Mater Trans A. 1998, 29(7): 1811-1820
    18 T. D. Shen, R. B. Schwarz, J. D. Thompson. Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd-Ni-Fe-P alloys. Journal of Applied Physics. 1999, 85(81): 4110-4119
    19 G. Wilde, S. G. Klose, W. Soellner, G. P. Gorler, K. Geropoulos, R. Willnecker, H. J. Fecht. On the stability limits of the undercooled liquid state of Pd-Ni-P. Materisls Science and Engineering. 1997, A226-228: 434-448
    20 X. Hu, Y. Li, S. C. Ng. Observation of glass transition upon cooling in Pd40Ni10Cu30P20 alloy by DSC. Materials Letters. 1999, 40: 294-297
    21 W.L. Johnson. Foundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys. Mater. Sci. Forum. 1996, 225-227: 35-50.
    22 A. Peker, W.L. Johnson. A Highly Processable Metallic Glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett.. 1993, 63(17): 2342-2344.
    23何建军,陈鼎,陈清.大块非晶体材料的研究发展.湖南冶金. 2002, 5: 3-16
    24 A. Inoue, H. Koshiba, and T. Itoi. Ferromagnetic Bulk Glassy Alloys with Useful Engineering Properties. Materials Science Forum. 2000, 343-346:81-90
    25田学雷,沈军,孙剑飞大块非晶合金的热物性及冷却过程的数值模拟特种铸造及有色合金.2003(1):29-32
    26 A.Inoue, T.Negishi, H.M.Kimura, T Zhang, A.R.Yavari. Mater. Trans. JIM 39(1997) 318
    27 Matsubara E, Tamura T, Waseda Y. A Sturaral Study of Amorphous Mg50Ni30La20 Alloys by the Anomalous X-ray Scattering(AXS) Method. Mater.Trans. JIM, 1991, 31(3) 228-231
    28 T.Nakamura, E.Matsubara, M.Iamfuku, H.Koshiba, A.Inoue, Y.Waseda, Mater. Trans. 2001 ,42:1530
    29 Holland Mbritz D Short-range Order and Solid-liquid Interfaces in Undercooled Metallic Metals. Mater. Sci. and Eng. 2001, A304-306:108-112
    30 C.F.Li, J.Saida, M.Matsushita, A.Inoue, Appl.Phys.Lett.77(2002)528
    31 J.Saida, M.Matsushita, A.Inoue, Mater. Trans. 2002,43:1937
    32 A.Inoue,A.Takeuchi, Recently progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys , Mater.Sci.and Eng.A375-377 (2004) 16-30
    33 A.Inoue, Bulk Amorphous Alloys, Trans Tech Publications ,Zurich. 1998, 1-116
    34 A.Ionue, Non-Equilibrium Processing of Materials, PergamonPress, 1999, 375-414
    35 A.Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Mater. 2000, 48: 279-306
    36 A.Inoue,A.Takeuchi, Mater. Trans.2002,43: 1892
    37边赞,大体基非晶材料的研究,北京科技大学博士学位论文,2000
    38 W.H.Wang, C.Dong, C.H.Shek Bulk metallic glasses Materals Sciences and Engineering R44(2004) 45-89
    39 A. Inoue, T. Zhang, A. Takeuchi. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM= IV–VIII group transition metal) system. Applied Physics Letters. 1997,71: 464
    40袁子洲,王冰霞,郝雷,陈学定块体非晶合金形成机理及成分设计研究评述特种铸造及有色合金2005, 135-38
    41 Masubara E, Wascda Y, Studies of New Metallic Amorphous Alloys with Wide Supercooled Liquid Region. Mater. Trans. JIM.1995, 36(7):883-889
    42 Senkov O N, Miracle D B. Effect of the Atomic Size Distribution on Glass Forming Ability of Amorphous Metallic Alloys. Mater. Res. Bull, 2001,36 (12) 2183-2198
    43 Chen H.S, Park B K. Role of Chemical Bonding in Metallic Glasses. Acta Mater.1973,21 (4) 395-414
    44 R.Busch, Y.J.Kim, W.L.Johnson, J.Appl. Phys. 77(1995) 4039
    45 R.Busch, W.Liu, W.L.Johnson, J.Appl. Phys. 83(1998) 4134
    46 X.H. Lin, Bulk Glass Formation and Crystallization of Zr-Ti Based Alloys. Thesis of California Institute of Technology. 1997:27-30, 62-64, 69-81
    47 A. Inoue, Y. Shinohara, Y. Yokoyama. Solidification Analysis of Bulky Zr60Al10Ni10Cu15Pd5 Glass Produced by Casting into Wedge-Shape Copper Mold. Mater. Trans, JIM. 1995, 36(10):1276-1281
    48 J. M. Barandiaran, J.Colmenero. Continuous Cooling Approximation for the Formation of a Glass. Journal of Non-Crystalline Solids. 1981, 46 (3): 277-287
    49 Akihisa Inoue. Bulk Amorphous Alloys Preparation and Fundamental Characteristics. Trans Tech Publications Ltd. Switzerland, 1998: 2-4, 8-10, 11-15, 30-32, 38-40, 80-83, 85-86
    50 J.扎奇斯基,玻璃与非晶态材料,第9卷,科学出版社, 2001: 77-80, 157-58, 226-227,430-435,444-446,465-469
    51 M.Barandiaran, J.Colmenero. Continuous Cooling Approximation for the Formation of a Glass. Journal of Non-Crystalline Solids. 1981, 46 (3): 277-287