Zr-Cu-Al-Hf(Ag)块体非晶复合材料的形成及力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了Zr-Cu-Al-Hf(Ag)块体非晶复合材料的形成机制,以及室温条件下的压缩力学行为。
     利用铜模吸铸法制备了(Zr_(50)Cu_(40)Al_(10))_(98)Hf_2合金及(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3合金楔形试样,显微组织分析、SEM背散射电子分析、能谱分析及XRD分析表明,两种合金都是在相分离机制下析出晶化相形成块体非晶复合材料的。前者在于高熔点元素Hf较强的析出倾向性;后者由于Ag具有与其他组元较小负的混合焓,进一步促进了相分离的倾向。
     (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2合金楔形试样过渡区中领先析出相为单质Hf和Al_3Zr相,晶化区由Hf、Al_3Zr、Cu_(10)Zr_7和CuZr_2四种晶化相组成;由于Ag组元的加入,对合金的相析出产生了影响,(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3合金过渡区中领先析出相除单质Hf和Al_3Zr外,还有少量的AgZr相,结晶区则是由单质Hf、AgZr、Al_3Zr和CuZr_2四种析出相组成。并通过估算得到了(Zr_(50)Cu_(40)Al_(10))_(98)Hf_2及(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3块体非晶合金原位自生复合材料形成的临界冷却速率分别为2170K/s和1799K/s,后者的非晶形成能力大于前者。
     以铜模吸铸法制备了直径为Φ3mm的Zr50Cu40Al10合金、(Zr_(50)Cu_(40)Al_(10))_(98)Hf_2合金和(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3合金圆柱形试样,显微组织及XRD分析表明,Zr50Cu40Al10合金试样为非晶材料,(Zr_(50)Cu_(40)Al_(10))_(98)Hf_2和(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3合金试样都是块体非晶复合材料。
     室温压缩实验表明,(Zr_(50)Cu_(40)Al_(10))_(98)Hf_2块体非晶合金复合材料的强度和塑性较Zr50Cu40Al10非晶合金及(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3块体非晶复合材料都有所提高。其最大应力σmax为2002MPa,最大塑性应变量εp达到8%。通过对三种合金压缩变形行为的研究,确定表征合金塑性变形量大小的最好参数应该是主剪切带与主应力夹角的最大值θ_C~(max)。θ_C~(max)值越大,合金的塑性越好。并建立了剪切角和塑性应变之间的关系式。
     通过(Zr50Cu40Al10)Hf2合金和(Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3合金塑性变形区的锯齿流变现象,结合该关系式,验证了试样压缩过程中主剪切带的形成有一定的先后次序,并且在变形过程中,主剪切带会发生一定的偏转,最后试样沿后形成的主剪切带断裂。
The forming mechanism and the compressive behavior under room temperature of a bulk amorphous Zr-Cu-Al-Hf(Ag) alloy have been studied in this paper.
     Wedge-shaped samples of (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 and (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2Ag3 amorphous alloy have been fabricated by copper-mould casting method. The optical microscopy, SEM backscattering, SEM energy spectrum analysis, electron back scattering diffraction (EBSD) technique and X-ray diffraction were used for determining the microstructure, the precipitation phases in different regions of the wedge-shaped samples. The results indicate that the formation of these two bulk amorphous composites were due to the phase segregation before precipitation. The reason lies in the higher melting point for Hf, and the positive mixing enthalpy for Ag with other elements.
     The precipitation phases in the transition zone for the (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 amorphous alloy wedge ingot are Hf and Al_3Zr, and the crystallization zone is composed of Hf、Al_3Zr、Cu_(10)Zr_7 and CuZr_2; while the precipitation phases are Hf, Al_3Zr, and AgZr in the transition zone for the (Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3 amorphous alloy wedge ingot, and the crystallization zone is composed of Hf、AgZr、Al_3Zr and CuZr_2. The critical cooling rates for the above two alloys were estimated as 2170 K/s and 1799 K/s, respectively. Obviously the later has better glass forming ability than the first one, owing to the addition of Ag element.
     Rods of 3mm in diameter for the Zr50Cu40Al10, (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 and (Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3 alloys have been made by copper mould casting. Microscopy and XRD analyse indicate that the rod for Zr50Cu40Al10 alloy is fully amorphous, and the rods for (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 and (Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3 alloy are bulk amorphous alloy composites.
     Compressive test indicates that the (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 alloy has both the best compressive strength and ductility among the three alloys, and the maximum stressσmax is as high as 2002Mpa, and the maximum strainε_p is as large as 8%. Based on the compression behavior and the theoretical analysis of the three alloys, the best parameter for describing the ductility strain of the amorphous alloy is the maximum of the angleθ_C~(max) between the main sheer band and the main stress. Largerθ_C~(max) means better ductility for an amorphous alloy. And a relation between the shear band angles and the ductility strain has been established.
     Based on this relation and the serrated flow in the ductile deformation region for (Zr_(50)Cu_(40)Al_(10))_(98)Hf_2 and (Zr_(50)Cu_(40)Al_(10))_(95)Hf_2Ag_3 alloys, it is verified that the main sheer bands were formed in sequence, and would deflect during the process of deformation, and the whole sample would break along the last main sheer band.
引文
1何国,陈国良.大体积非晶态合金材料.材料导报. 1999, 13(3): 32-33
    2汪卫华,董闯,石灿鸿.大块非晶合金.科学观察. 2007, 2(5): 37
    3 A. Inoue. Stabilization of metallic supercooled 1iquid and bulk amorphous alloys. Acta Materialia. 2000,48(1): 279-306
    4 J. Gilbert, R. O. Ritchie, W. L. Johnson. Fracture Toughness and Fatigue- Crack Propagation in a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass. Appl. Phys. Lett. 1997, 71(4): 476-478
    5 H. Choi-Yim, R. D. Conner, F. Szuecs, W. L. Johnson. Processing microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Materialia. 2002, 50: 2737-2745
    6 C. Hays, C. P. Kim, W. L. Johnson. Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Materials Science and Engineering A. 2001,304-306: 650-655
    7 A. Inoue. High Strength Bulk Amorphous Alloys With Low Critical Cooling Rates. Materials Transactions, JIM. 1995, 36(7): 867-868
    8 W. L. Johnson. Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Materials Science Forum. 1996, 35: 225-227
    9 A. Inoue, T. Zhang, T. Masumoto. Al-La-Ni Amorphous Alloy With a Wide Supercooled Liquid Region. Materials Transactions, JIM. 1989, 30(12): 965-972
    10 A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni Amorphous Alloy With High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM. 1990, 31(3): 177-183
    11 A. Inoue, T. Nakamura and N. Nishiyama et al. Mg-Cu-Y Bulk Amorphous Alloys With High Tensile Strength Produced By a High-Pressure Die Casting Method. Materials Transactions, JIM. 1992, 33(10): 937-945
    12 A. Inoue, Y. Miyouchi, A. Makno et al. Microstructure and soft magnetic properties of nanocrystalline Fe-Zr-B-Al, Fe-Zr-B-Si and Fe-Zr-B-Al-Si Alloys With Zero Magnetostriction. Materials Transactions, JIM. 1996, 37(1): 78-88
    13 W. L. Johnson. Bulk glass-forming metallic alloys: Science and technology. MRS Bulletin. 1999, 10: 42-56
    14 J. F. Loeffler. Bulk Metallic Glass. Intermetallics. 2003, 11(6): 529-540
    15 M. F. Oliveira, W. J. Botta and A. R. Yavari, Shaping joining and engraving ofbulk metallic using an electromechanical process. Mater. Sci. Forum. 2001,360: 1-6
    16 M. F. Oliveira, W. J. Botta, A. R. Yavari, Connecting assemblage and electro- chemical shaping of bulk metallic. Mater. Trans. JIM. 1996, 41(11): 1501-1504
    17 A. Inoue, J. S. Gook, Fe-based ferromagnetic glassy alloys with wide supercooled liquid region, Mater. Trans. JIM. 1995, 36: 1180-1184
    18 A. Inoue. Stabilization and high strain-rate superplasticity of metallic super- cooled liquid. Mater. Sci. Eng. 1999, 267A: 171-183
    19 P. G. Debenedtti and F. H. Stillinger. Supercooled liquids and the glass transition. Nature. 2001, 410: 259-267
    20 Turnbull D. Under what condition can a glass be formed. Contemp Phys. 1969, 10(5): 473-488
    21袁子洲,王冰霞,郝雷,陈学定.块体非晶合金形成机理及成分设计研究述评.特种铸造及有色合金. 2005, 25(1): 35-58
    22 E. Luborsky, J. L. Walter. Stability of amorphous metallic alloys. Journal of Applied Physics. 1976, 47(8): 3648-3650
    23 J.扎奇斯基.玻璃与非晶态材料.第9卷,科学出版社, 2001: 77-80,157-158
    24蔡安辉,潘冶,孙国雄.大块金属玻璃非晶形成能力表征参数探讨.特种铸造及有色合金, 2004, 2: 18-19
    25 T. A. Waniuk, J. Schroers, W. L. Johnson. Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett. 2001, 78: 1213-1215
    26 M. Heilmaier. The fluidity and molding ability of glass-forming Zr-based alloy melt . J. Mater. Pro and Tech. 2001, 117: 374-380
    27 J. Eckert, M. Seidel, L. Q. Xing. Nanophase compostes in easy glass forming system. Nanostructured Mater. 1999, 12: 439-442
    28邢大伟,黄永江,沈军,杨黎,孙剑飞. ZrCuNiAlTi块体非晶合金的变温晶化行为.稀有金属材料与工程. 2007, 36(7): 1181-1184
    29 F. Szuecs, C. P. Kim, W. L. Johnson. Mechanical properties of ZrTiCuNiBeNb ductile phase reinforced bulk metallic glass composite. Acta materialia. 2001, 49: 1507-1513
    30 Kato and A. Inoue. Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles. Mater. trans. JIM. 1997, 38: 793
    31 A. A. Kundig, M. Ohnuma, D. H. Ping. In situ formed two-phase metallic glass with surface fractal microstructure. Acta Materialia. 2004, 52: 2441-2448
    32 Marco E. Siegrist, Esther D. Amstad, et al. Tribological properties of graphite and ZrC reinforced bulk metallic glass composites. Available online. 2007, 15:1228-1236
    33 Choi-Yim, R. D. Conner. Processing microstructure and properties of ductile metal particulate reinforced ZrNbAlCuNi bulk metallic glass composite. Acta materialla. 2002, 50: 2737-2745
    34 Choi-Yim, R. Busch. Synthesis and characterization of particulate reinforced ZrNbAlCuNi bulk metallic glass composites. 1999, 47(8): 2455-2462
    35 P. Kim, R. Busch. Processing of carbon-fiber-reinforced ZrTiCuNiBe Bulk Metallic glass composites. Appl.Phys.Lett. 2001, 79(10): 1456-1458
    36 R. D. Conner, W. L. Johnson. Mechanical properties of tungsten and steel fiber reinforced ZrTiCuNiBe metallic glass matrix composites. Acta mater. 1998, 46(17): 6089-6102
    37邱克强,王爱民,张海峰.渗流铸造制备Zr55Al10Ni5Cu30大块非晶复合材料.材料研究学报. 2002, 16(4): 389
    38 Hao Li, Ke Lib, Ghatu Subhash, et al. Micromechanical modeling of tungsten- based bulk metallic glass matrix composites. Materials Science and Engineering A. 2006, 429: 115-123
    39 Zhang Z F, He G, Eckert J, et al. Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett. 2003, 91(4): 045504
    40 Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51(4): 1167-1179
    41 Zhang Z F, Eckert J, Schultz L. Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. J Mater Res. 2003, 18(2): 456-465
    42 Zhang Z F, Eckert J, Schultz L. Fatigue and fracture behavior of bulk metallic glass. Metall Mater Trans A. 2004, 35(11): 3489-3498
    43 Zhang Z F, Zhang H, Pan X F, et al. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett. 2005, 85(10): 513-521
    44 Alpas A T, Edwards L, Neid C N. Fracture and fatigue crack propagation in a Nickel-base metallic metallic glass. Metall Mater Trans A. 1989, 20(8): 1395-1409
    45 Bengus V, Diko P, Csach K, et al. Fracture crack orientation at ductile shear fracture of Fe80?X NiX B20 metallic glass ribbons. J Mater Sci. 1990, 25(3): 1598-1602
    46 Davis L A, Kavesh S. Deformation and fracture of an amorphous metallic alloy at high pressure. J Mater Sci. 1975, 10(3): 453-459
    47 Davis L A, Yeow Y T. Flow and fracture of a Ni-Fe metallic glass. J Mater Sci.1980, 15(1): 1557-1564
    48 Mark Telford. The case for bulk metallic glass. Materials Today. 2004, 3: 36
    49 Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans. 2001, 42(4): 642-649
    50 X. Li, G. B. Shan, K.W. Gao, et al. In situ SEM study of formation and growth of shear bands and microcracks in bulk metallic glasses. Materials Science and Engineering A, 2003, A354: 337-343
    51 Wu F F, Zhang Z F, Mao S X. Compressive properties of bulk metallic glass with small aspect ratio. J Mater Res, 2007, 22(2): 501-507
    52 Lu J, Ravichandran. G. Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J Mater Res. 2003, 18(9): 2039-2049
    53 Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress. Nature Mater. 2006, 5(11): 857-860
    54 Conner R D, Choi-Yim H, Johnson W L. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J Mater Res. 1999, 14(8): 3292-3297
    55 Choi-Yim H, Conner R D, Szuecs F, et al. Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 2002, 50(10): 2737-2745
    56 Bian Z, Pan M X, et al. Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites. Appl Phys Lett. 2002, 81(25): 4739-4741
    57 Calin M, Eckert J, Schultz L. Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 2003, 48(6): 653-658
    58 Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett. 2005, 85(2): 77-87
    59 Ashby M F, Greer A L. Metallic glasses as structural materials. Scripta Mater. 2006, 54(3): 321-326
    60 Lewandowski J J, Shazly M, Nouri A S. Intrinsic and extrinsic toughening of metallic glasses. Scripta Mater. 2006, 54(3): 337-341
    61 Schroers J, Johnson W L. Ductile bulk metallic glass. Phys Rev Lett. 2004, 93(25): 255506
    62 Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature. Science. 2007, 315(5817): 1385-1388
    63 Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass. Appl Phys Lett. 2006, 88(12): 122106
    64孙剑飞,黄永江,邢大伟等. Zr-Cu-Ni-Ta-Al块体非晶合金复合材料的合成及力学性能.稀有金属材料与工程. 2007, 7(36): 153-156
    65 X. H. Xin, W. L. Johnson, W. K. Rhim. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans, JIM. 1997, 38(5): 473-477
    66 A. Leonhard, L. Q. Xing, M. Heilmaier, A. Gebert, J. Eckert and L. Schultz. Effect of crystalline precipitation on the mechianical behavior of bulk glass forming Zr-based alloys. Nanostructure Materials. 1998, 10(5): 805-817
    67边赞.大体积非晶材料的研究.北京科技大学博士学位论文. 2001: 91-92
    68 K. C. Russell. Linked flux analysis of nucleation in condensed phase .Acta Metall. 1968, 16(5): 761-769
    69 K. F. Kelton. Phil. A new model for nucleation in bulk metallic glasses. Mag. Lett. 1998, 77(6): 337-343
    70卢柯.非晶态合金向纳米晶体的相转变.金属学报. 30(1): B1-21
    71 Takayama S. Review amorphous structures and their formation and stability. Journal of Materials Science. 1976, 11(1): 164-185
    72林柏年等.金属热态成形传输原理.哈尔滨工业大学出版社. 2000: 164-181
    73 X. H. Lin, W. L. Johnson. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. Journal of Applied Physics. 1995,78(11): 6514-6519
    74 Zhang Z F, He G, Zhang H, et al. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites. Scripta Mater. 2005, 52(9): 945-949
    75 H.米格兰比.材料的塑性变形与断裂.科学出版社. 1998: 42
    76 Z. Bian, G. L. Chen, G. He, X. D. Hui. Microstructure and Ductile-Brittle Transition of As-Cast Zr-Based Bulk Glass Alloys under Compressive Testing. Mater. Sci. Eng. 2001, A316: 135-144
    77陈德民,孙剑飞,沈军.块体非晶合金绝热升温与锯齿流变机制.金属学报. 2005, 41(2): 196-198