时效及塑性变形对Cu-Cr-Zr合金组织性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用真空熔炼法制备Cu-0.85Cr-0.1Zr、Cu-0.85Cr-0.1Zr-0.1Ag两种合金坯料,利用光学显微镜、扫描电子显微镜及能谱分析仪、透射电子显微电镜、电阻测试仪、万能实验机和显微硬度计等分析手段,研究添加微量Ag、不同的时效时间、塑性变形处理工艺对Cu-Cr-Zr系合金组织性能的影响。
     对Cu-0.85Cr-0.1Zr、Cu-0.85Cr-0.1Zr-0.1Ag两种合金,采用热挤压—960℃/1h固溶、水淬—450℃/0.5~2h时效—冷拉拔等工艺处理后,结果发现:在时效时间为90min,形变量为75%时,Cu-0.85Cr-0.1Zr合金的电导率为50%IACS,抗拉强度为510MPa。而Cu-0.85Cr-0.1Zr-0.1Ag合金,在时效时间为75min,形变量为75%时,其电导率为81.15%IACS,抗拉强度为466MPa。可见添加微量Ag提高了Cu-Cr-Zr系合金的综合性能。
     研究了Cu-0.85Cr-0.1Zr、Cu-0.85Cr-0.1Zr-0.1Ag两种合金的时效分解和第二相的析出过程。根据相变动力学Avrami经验方程,得到了两种合金时效分解的相变动力学方程及相应的电导率方程。
     通过对Cu-0.85Cr-0.1Zr、Cu-0.85Cr-0.1Zr-0.1Ag两种合金的固溶强化、沉淀强化、加工硬化等强化方式的研究,发现冷塑性变形引起的加工硬化是提高合金力学性能的主要方法,其强化相是富Cr相。
     观察与表征富Cr析出相的形貌特征及分布规律,并对其不同处理态下的变化规律进行了总结,结果发现:随着时效时间的延长,富Cr析出相不断析出,并在2h后有粗化趋势;随着形变量的加大,富Cr析出相在垂直加工方向上破碎呈颗粒状,在加工方向上呈纤维状。
Cu-0.85Cr-0.1Zr and Cu-0.85Cr-0.1Zr-0.1Ag alloy were fabricated by vacuum melting method. Using light microscope、SEM and energy spectrum analysis、TEM、resistance testing instrument、mechanical properties testing machine and microhardness instrument,The effect of the additional of Ag、different aging time、plastic deformation technology upon the microstructures and properties were studied.
     Cu-0.85Cr-0.1Zr and Cu-0.85Cr-0.1Zr-0.1Ag were processed by the same process such as hot extrusion-960℃/ 1h solution hardening-450℃/ 0.5h~2h aging-cold plastic deformation. Resultes showed that better comprehensive performances for Cu-0.85Cr- 0.1Zr will display if the aging time is 90min and plastic deformation degree is 50%, the conductivity and tensile strength can arrive at 50%IACS and 510MPa. While Cu-0.85Cr-0.1Zr-0.1Ag alloy will display better comprehensive performances, the conductivity is 81.15%IACS and tensile strength is 466MPa, if the aging time is 75min and plastic deformation degree is 75%.
     The precipitation course of supersaturated Cu-0.85Cr-0.1Zr and Cu-0.85Cr-0.1Zr -0.1Ag alloys were investigated and the behavior of second-phases precipitation was discussed. The Avrami dynamic equations about two kinds of Cu-Cr-Zr alloy aging course were establish, and the conductivity equations of above two kinds of Cu-Cr-Zr alloy were created according to the Avrami empirical equations.
     Various strengthening models of Cu-0.85Cr-0.1Zr and Cu-0.85Cr-0.1Zr-0.1Ag alloy were analyzed, including solution strengthening、work-hardening、fiber strengthening、precipitation strengtheing and so on. Work-hardening effect from the cold plastic deformation after aging treatment was a key method to improve mechanical property of Cu-Cr-Zr, the main hardening phases should be Cr-rich particles.
     The morphology of Cr-rich phase were observed and characterized, and the distribution characteristics were generalized. The evolution laws of Cr-rich phase at different treatment condition were studied: with extension of aging time, Cr-rich phase precipitated continuously, and had tendency to grow up after aging 2h; with extension of sizing reduction, Cr-rich phase were like grainess on the transverse direction, and nemaline on the rolling direction.
引文
[1]尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-5.
    [2]王庆娟,徐长征.高强高导铜合金的研究现状[J].西安建筑科技大学学报(自然科学版),2006,38(5):732-735.
    [3]方善锋.高强高导Cu-Cr-Zr系合金材料的研究进展[J].材料导报.2003,17(9):21-24.
    [4]美国金属学会.金属手册(第九版)[M].北京:机械工业出版社,1979.
    [5] Motohisa M. Development trends in new copper and alloy for lead-frame [J].Journal of Japan Copper and Brass Research Association, 1990, (29):18-21.
    [6] Arnberg L. A new high strength high conductivity Cu-0.5wt%Zr alloy produced by rapid solidification technology [J].Meter Sic Eng, 1986, 83(1):115-121.
    [7]须藤雄一郎.Cu-Zr系合金的制造和特性.伸铜技术研究会会志,1997,36:33-36.
    [8] Spaic S. Effect of a small addition of alloys on the structure and performance of a copper alloy [J]. Metall, 1985, 36(1):43.
    [9]小林正男.高强度高导电性引线框架用铜合金[J].伸铜技术研究会志,1988,27(4):284-286.
    [10] Motohiro Kanno. Effect of a small addition of zirconium on hot ductility of a Cu-Cr alloy [J].Zeit fur Metall, 1988, 79(10):684-688.
    [11]李华清.Cu-Cr-Zr-Mg合金真空熔铸工艺研究[J].特种铸造及有色合金,2006,26(7):397-399.
    [12] Batawi E, Morris D G, Morris M A. Effect of small alloying additions on behavior of rapidly solidified Cu-Cr alloy [J]. Mater Sci Technol, 1990, 6(9):832-899.
    [13]刘平.快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶[J].中国有色金属学报.1999,9(2): 241-246.
    [14]谢春生,周健,任合等.稀土铬锆铜合金强化工艺研究[J].金属热处理,2001,(6):12-14.
    [15]刘技文.稀土铜铬锆合金性能的研究.上海金属(有色分册),1993,14(5):10-13.
    [16]李伟.Cu-Cr-Zr-Ce合金时效特性的研究[J].热加工工艺,2004,(6):3-4.
    [17]邬震泰.半导体器件引线框架材料的现状与发展[J].材料科学与工程,2001,19(3):127-130.
    [18]崔兰,季小娜,陈小平等.高强高导纯铜线材及铜基材料的研究进展[J].稀有金属,2004,28(5): 917-920.
    [19]王庆娟,许长征,郑茂盛等.高强高导电铜合金的研究现状[J].西安建筑科技大学学报, 2006,38(5):731-736.
    [20]吴朋越.高速列车用铜合金接触线用材料及其加工工艺[J].稀有金属,2006,30(2):203-208.
    [21]钟卫佳,马可定,吴维治等.Cu铜加工技术实用手册[M].北京:冶金工业出版社,2007,24-25.
    [22] David L.E., Gary M .M.Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning [J].NASA Contractor Report 185144, 1689.
    [23]李华清,谢水生,米绪军.Cu-Cr-Zr合金线材织构研究[J].稀有金属,2006,30(5):600-602.
    [24]钟卫佳,马可定,吴维治等.Cu铜加工技术实用手册[M].北京:冶金工业出版社,2007, 825-827.
    [25] Batra I.S., Dey G.K., Kulkarni U.D., et al. Precipitation in a Cu-Cr-Zr alloy [J]. Material Science and Engineering. 2002, A356:32-36.
    [26] Jin Y, Adachi K, Takeuchi T, et al. Correlation between the electrical conductivity and aging treatment for a Cu-15 wt % Cr alloy composite formed in-suit[J]. Material Letters, 1997, 32:307- 311.
    [27]李华清,谢水生,米绪军等.Cu-Cr-Zr合金热处理工艺研究[J].热加工工艺,2006,35(20):39-42.
    [28] Raabe D., Miyake K., Takahara H., et al. Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites [J]. Materials Science and Engineering A, 2000, 291: 186–197.
    [29]行如意,康布熙,苏娟华等.时效参数与变形量对Cu-Cr-Zr-Mg合金组织和性能的影响[J].热加工工艺,2004,3:1-3.
    [30]刘勇,刘平,董企铭等.变形量对接触性用Cu-Cr-Zr-Y合金时效特性的影响[J].中国有色金属学报,2006,16(3):417-421.
    [31]黄振山.稀土铜铬锆的试制[J].江苏冶金.1999,(4):14-16.
    [32]何启基.金属的力学性能[M].北京:冶金出版社,1982:193.
    [33] Bloom T. A. Rapid solidification of High-Conductivity Copper Alloys [J]. Chicago Illinois Institute of Technology, 1989.
    [34] Yang H. W. and Fan Z. F. Study on morphology of chromium in Chilled Cu-0.14 %-1.0 % Cr alloys [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 655 - 660.
    [35]王深强,陈志强.高强高导铜合金的研究概述[J].材料工程,1997,7:3.
    [36] Luo C. P., Dahmen V., Westmacott W K. H. Morphology and crystallography of Cr precipitated in a Cu-0.33 wt % Cr alloy. Acta. Metall. Mater., 1994, 47(14):3855- 3868.
    [37]廖素三.Cu-Cr和Cu-Cr-Zr合金的组织和性能[J].中南工业大学,长沙,2000,1:3.
    [38]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[J].北京:冶金工业出版社,2005,57-60.
    [39]束德林.金属力学性能[M].北京,机械工业出版社,1997,10:16.
    [40]马凤仓.铜铬合金制备方法研究现状[J].材料开发与应用,2002,17(3)35-38.
    [41]李伟.微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J].金属热处理.2005,30(2): 38-40.
    [42] Xie M., Liu J.L., Lu X.Y., et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Materials Science and Engineering A., 2001, 30506: 529-533.
    [43]李华清,谢水生.轨道交通专用铜合金导线的研究与创新[J].特种铸造与有色金,2005,25(12) : 729-731.
    [44]黄崇祺.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学,2001, 22(1): 1-5.
    [45]张强,宋卫星.我国铜及铜合金接触线与承力索的研究和创新[J].现代城市轨道交通,2004, 18-22.
    [46]温宏权.铜电车线材料的研究进展[J].材料导报,1998,12(1): 25-28.
    [47]刘来宁.电力牵引用接触线的沿革及部分特性探讨[J].电线电缆,1997(1):2-9.
    [48] Zheng K.J, Hamalainen M., Lilius K.Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram[J].Scripta Metallurgica et Materialia,1995,3 2(12) :2009-2014.
    [49] Ellis D. L.Observation of a cast Cu-Cr-Zr alloy [J] .NASA TM-2006-213968, 2006.
    [50] Huang F.X., Ma J. S., Ning H.L., et al. Analysis of phases in a Cu-Cr-Zr alloy [J] .Scripta Materialia, 2003, 48:97-102.
    [51] Morris M A,Leboeuf M,recrystallization mechanisms in a Cu-Cr-Zr alloy with a bimodal distribution of particles[J].Materials science and engineering A,1994(188):255~265.
    [52] Uwe Holzwarth,Hermann Stamm,The precipation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J].Journal of Nuclear Materials,2000(279):31-45.
    [53]赵冬梅,董企铭,刘平等.高强高导铜合金化机理[J].中国有色金属学报,2001,11:21-24.
    [54] Chakrabarti D. J., Laughlin D. E. The Cr-Cu (Chromium-Copper) system [J]. Bulletin of Alloy Phase Diagrams, 1984, 5(1): 59-68.
    [55]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002,11:27-304.
    [56] Tang N Y, Taplin DMR, Precipitation and aging in high-conductivity Cu-Cr alloy with additions of Zirconium and magnesium [J]. Materials science and technology, 1985(1):270~274.
    [57]刘平,黄金亮,顾海澄等.快速凝固高强度高导电Cu-Cr合金的组织和性能[J].兵器材料科学与工程,1999,22(1):12~16.
    [58]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[J].北京:冶金工业出版社,2005,48-49.
    [59] Takeuchi T.,Togano K.,Inoue K.,et al.Fibrous Chromium and Molybdenum Fabricated by Cold Working Cu-Cr and Cu-Mo Binary Alloys[J].Journal of the Less Common Metals.1990,157: 25-35.
    [60] Conrad H.Grain size dependedce of the plastic deformation kinetics in Cu [J]. Materials Science and Engineering, A, 2003, 341:216-228.
    [61] Kalu P.N, Brandao, Ortizz F.On the texture evolution in swaged Cu-based wires [J]. Scripta Materialia, 1998, 38(12):1755-1761.
    [62] Gazder A.A.,Torre F.D.,Gu C .F. Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion[J].Materials Science and Engineering,A,2006, 415:126-139.
    [63] Kozlov V.M., Bicelli L.P.Texture formation of electrodeposited FCC metals [J].Material Chemistry and Physics, 2002, 77:289-293.
    [64] Sinclair C.W.,Embury J.D., Weatherly G.C.,et al.Diffraction based characterization of a directionally solidified Cu-Cr eutectic alloy[J].Journal of Crystal Growth,2005,276:321-331.
    [65] Engler O.Deformation and texture of copper-manganese alloy [J].Acta mater, 2000, 48:4827-4840.
    [66] Mirpuri K.,Wendrock H., Menzel S.,et al.Texture evolution in copper film at high remperature studied in suit by electron back-scatter diffraction[J].Thin Solid Films,2006,469:703-717.
    [67] Wright R N. Texture development in copper wire [J].Wire Journal International, 1997, 4:71-73.
    [68]王润.金属材料物理性能[M].北京,冶金工业出版社,1991:36-52.
    [69]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨,哈尔滨工业大学出版社,1998:157-162.