铝合金时效初期溶质原子分布演变的模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用Monte Carlo方法建立计算机模拟模型,利用MATLAB语言编制了模拟铝合金时效初期溶质原子分布的源程序。利用该模拟程序,只需输入合金成分和时效温度,即可得到时效初期溶质原子分布演变模拟图,并且可以统计出溶质原子团簇个数及其平均尺寸随Monte Carlo步数的变化。利用编制的模拟程序,模拟研究了Al-Mg-Si合金和Al-Zn-Mg合金时效初期溶质原子分布的演变及合金元素和时效温度对其时效初期溶质原子分布演变的影响。根据模拟分析结果,探讨了铝合金某些人工时效析出硬化行为的微观机制。
     对Al-Mg-Si合金时效初期溶质原子分布演变进行模拟研究的结果显示:25℃和65℃低温时效初期,溶质原子容易发生偏聚形成尺寸较大的Mg-Si团簇和Si-Si团簇、尺寸较小的Mg-Mg团簇,Mg-Si团簇和Si-Si团簇容易在空位处偏聚形成,团簇尺寸及分布不均匀;140℃和170℃时效初期,形成的大尺寸溶质原子团簇较少,团簇尺寸偏差小;200℃时效初期,溶质原子不容易发生偏聚,由2-3个原子组成的原子团簇均匀地分布于铝基体内;Al-Mg-Si合金时效初期形成的溶质原子团簇尺寸及组成与Mg:Si比具有相关性,随着Mg:Si质量比减小,时效初期形成的Mg-Si团簇尺寸减小,Mg-Si团簇中Si原子的比例增大,且形成的Si-Si团簇数量增多,尺寸增大。根据模拟分析结果,探讨了Al-Mg-Si合金淬火后的自然时效、合金组成和二次时效工艺对其人工时效硬化效果的影响。
     合金元素对Al-Mg-Si合金人工时效硬化的影响与时效初期溶质原子分布演变密切相关。在Al-1.5Mg-1.2Si(at%)合金中添加0.4at%Cu,时效初期形成的原子团簇有:尺寸较大的Mg-Si团簇和Si-Si团簇,尺寸较小的Mg-Mg团簇、Cu-Mg-Si团簇、Cu-Mg团簇和Cu-Si团簇,与不含Cu的Al-1.5Mg-1.2Si(at%)合金相比,原子团簇数量增多,团簇尺寸及分布趋于均匀;在Al-1.5Mg-1.2Si(at%)合金中添加1at%Cu,时效初期还出现了尺寸较大Cu-Mg团簇;在Al-1.5Mg-1.2Si(at%)合金中添加0.4at%Sn,时效初期形成了Mg-Si团簇、Si-Si团簇、Mg-Sn团簇、Sn-Sn团簇和少量小尺寸的Mg-Mg团簇,团簇平均尺寸减小,分布趋于均匀;少量Ag添加到Al-1.5Mg-1.2Si (at%)合金中,对时效初期溶质原子分布演变的影响不明显。利用模拟结果,分析了元素Cu和Sn的添加对Al-Mg-Si合金人工时效析出硬化行为影响的微观机制。
     对Al-2.1Zn-1.4Mg(at%)合金时效初期溶质原子分布演变进行模拟研究的结果显示:Al-2.1Zn-1.4Mg(at%)合金时效初期形成了大量的Zn-Mg团簇;微量元素Sc添加到Al-2.1Zn-1.4Mg(at%)合金抑制了时效初期Zn-Mg团簇的强烈偏聚,使Zn-Mg团簇分布均匀细小,形成大量的Sc-空位团簇;微量元素Zr对Al-Zn-Mg合金时效初期溶质原子分布演变影响较小;元素Sc和Zr复合添加到Al-Zn-Mg合金中,时效初期溶质原子分布演变与单独添加元素Sc类似。在Al-Zn-Mg合金中添加0.7%at Cu和3%atLi,对时效初期溶质原子团簇的形成及分布影响不明显。利用模拟结果,分析了元素Sc的添加对Al-Mg-Si合金人工时效析出硬化行为影响的微观机制。
The solutes distribution and evolution during the initial stage of aluminum alloys have been modeled based on Monte Carlo method and has been programed using MATLAB language. Diagrams simulating solutes distribution and evolution during the initial stage of aluminum alloys can be obtained by typing alloy compositions and aging temperature using this simulation program, as well as the number and the mean size of solutes clusters. The solutes distribution and evolution during the initial stage of Al-Mg-Si and Al-Zn-Mg alloys and the effects of some elements and aging temperature have been studied using this simulation program. The micromechanisms of age precipitation and hardening behaviours of aluminum alloys have been discussed according to the simulation results.
     The simulation results on the solutes distribution evolution during the initial aging stage of Al-Mg-Si alloys show that there are large Mg-Si clusters and Si-Si clusters, small Mg-Mg clusters forming during the initial aging stage at 25℃and 65℃,Mg-Si clusters and Si-Si clusters easily forming near vacancies, and the size and distribution of clusters are non-uniform. During the initial aging stage at 140℃and 170℃,the number of large clusters is less and the size deviation among varies clusters is smaller than at 25℃and 65℃,During the initial aging stage at 200℃, there are weak solutes clustering and only some solutes clusters with 2-3 atoms form and distribute within Al base uniformly. The size and composition of clusters forming during the initial aging stage of Al-Mg-Si alloy are related to the Mg:Si ratio. With the decreasing of Mg:Si ratio, the mean size of Mg-Si clusters decreases, the proportion of Si atoms in Mg-Si clusters and the number and size of Si-Si cluster increase. The effects of natural aging between quenching and artificial aging, alloy composition and secondary aging process on artificial aging hardening of Al-Mg-Si alloys have been discussed according to the simulation results.
     The effect of some elements on artificial age hardening behaviors of Al-Mg-Si alloys should be related to the solutes distribution and evolution during the initial aging stage. There are large Mg-Si clusters and Si-Si clusters, small Mg-Mg clusters, Cu-Mg-Si clusters, Cu-Mg clusters and Cu-Si clusters forming during the initial aging stage of Cu addition of Al-1.5Mg-1.2Si-0.4Cu (at%) alloy. Comparison with Cu-free Al-1.5Mg-1.2Si (at%) alloy, the cluster number increases, the size and distribution of clusters are more uniform.Large Cu-Mg clusters formed during the initial aging stage of Cu containg Al-1.5Mg-1.2Si-1Cu (at%) alloy. Adding 0.4at%Sn to Al-1.5Mg-1.2Si (at%) alloy, Mg-Sn clusters and Sn-Sn clusters appear except Mg-Si clusters and Si-Si clusters during the initial aging stage, and the size and the distribution of clusters are more uniform. Small additions of Ag to Al-1.5Mg-1.2Si (at%) alloy cause little effect on the solutes distribution and evolution during the initial aging stage. The micromechanism of Cu and Sn addition on age precipition and hardening behaviors of Al-Mg-Si alloys has been analyzed according to the simulation results.
     The simulation results on solutes distribution and evolution during the initial aging stage of Al-2.1Zn-1.4Mg (at%) alloy show that large Zn-Mg clusters form. Addition of Sc to this alloy should restrain Zn-Mg clustering, which causes a number of small Zn-Mg clusters and Sc-vacancy clusters forming during the initial aging stage. There is no clear influence on solutes distribution and evolution during the initial aging stage by adding Zr to this alloy. Effect of adding Sc and Zr together to Al-2.1Zn-1.4Mg (at%) alloy on solutes distribution and evolution during the initial aging stage is simlier to that of adding Sc only. Additions of 0.7at% Cu and 3.9at% Li together to Al-2.1Zn-1.4Mg (at%) alloy causes little effect on solutes distribution and evolution during the initial aging stage. The micromechanism of Sc addition on age precipition and hardening behaviors of Al-Zn-Mg alloys has been analyzed according to the simulation results.
引文
[1]马文淦.计算物理学[M].北京:科学出版社,2006:120-239
    [2]Binder K..Ordering of the Face-Centered-Cubic Lattice with Nearest-Neighbor Interaction[J].Phys. Rev. Lett,1980,V45(10):811-814
    [3]Heerman D.W., Klein W., Stanffer D.. Spinodals in a Long-Range Interaction System[J].Phys. Rev. Lett,1982,V49(2):1262-1264
    [4]张佩峰,午锁平,郑小平等.利用Monte Carlo方法对薄膜生长过程的计算机模拟[J].兰州大学学报(自然科学版),2003,39(6):29-33
    [5]宋晓燕,刘国权,何宜柱.一种改进的晶粒长大的Monte Carlo模拟研究[J].自然科学进展,1998,8(3):337-341
    [6]刘祖耀,李世晨,郑子樵等.正常晶粒长大的计算机模拟(Ⅰ)—晶粒长大动力学跃迁概率的改进[J].中国有色金属学报,2003,13(6):1357-1360
    [7]刘祖耀,李世晨,郑子樵等.正常晶粒长大的计算机模拟(Ⅱ)—晶粒长大动力学跃迁概率的改进[J].中国有色金属学报,2004,14(1):122-126
    [8]Gao J.,Thompson R.G..Real Time-Temperature Models for Monte-Carlo Simulations of Normal Growth[J].Acta Mater,1996, V44(11):4565-4570
    [9]Pouduri R., Chen L.Q..Computer Simulation of the Kinetics of Order-Disorder and Phase Separation during Precipitation of δ'(Al3Li) in Al-Li Alloys[J].Acta Mater,1997,V45(1):245-255
    [10]潘复生,张丁非.铝合金及其应用[M].北京:化学工业出版社,2006:265-346
    [11]王群骄.有色合金热处理技术[M].北京:化学工业出版社,2008:21-40
    [12]Edwards GA.,Stiller K.,Dunlop G.L.,et al. The Precipitation Sequence in Al-Mg-Si Alloys[J].Acta Mater,1998,V46(11):3893
    [13]Jena A.K.,Gupta A.K.,Chaturvedi M.C..A Differential Scanning Calorimetric Investigation of Precipitation Kinetics in the Al-1.53wt%Cu-0.79wt%Mg Alloy[J].Acta Metall,1989, V37(3): 885-891
    [14]Takeda, Ohkubo M.,Shirai F.,et al. Stability of Metastable Phases and Microstructures in the Ageing Process of Al-Mg-Si Ternary Alloy[J].Journal of Materials Science,1998,V33(9):2385-2390
    [15]Buha J., Lumley R.N., Crosky A.G.Secondary Precipitation in an Al-Mg-Si-Cu Alloy[J].Acta Materialia,2007, V55:3015-3024
    [16]Murayama M.,Hono K..Precipitate Cluster and Precipitation Processes in Al-Mg-Si Alloys[J].Acta Mater,1999,V47(5):1537-1548
    [17]Dutta I.,Allen S.M.. A Calorimetric Study of Precipitation in Commercial Aluminium Alloy 6061[J]. Journal of Materials Science Letters,1991,V10(6):323-326
    [18]Dutta I.,Allen S.M.,Hafley J.L.. Effect of Reinforcement on the Aging Response of Cast 6061 Al-Al2O3 Particulate Composites[J].Metallurgical Transactions A,1991,V22(11):2553-2563
    [19]Murayama M.,Hono K.,Saga M.,Kikuchi M.. Atom Probe Studies on the Early Stages of Precipitation in Al-Mg-Si Alloys[J].Mater. Sci. Eng. A.,1998,V250:127-132
    [20]Kenji Mstsuda, Susumu Ikeno, Yasuhiro Uetani, et al. Metastable Phases in an Al-Mg-Si Alloy Containing Copper[J].Metallurgical and Materials Transaction A,2001,V32(6):1293-1299
    [21]Emma Sjolander, Salem Seifeddine. The heat treatment of Al-Si-Cu-Mg alloys[J]. Journal of Materials Processing Technology,2010, V3,1-11
    [22]于莉莉,谢延翠,徐崇义,等.一种Al-Mg-Si铝合金固溶处理及人工时效工艺研究[J].轻合金加工技术,2009,37(6)
    [23]Tiryakioglu M.. The Effect of Solution Treatment and Artificial Aging on the Work Hardening Characteristics of a Cast Al-7%Si-0.6%Mg Alloy[J].Materials Science and Engineering A,2006, V427:154-159
    [24]蔡军辉,邵光杰.Al-Mg-Si合金时效工艺的研究[J].上海金属,2008,30(4):16-18
    [25]关绍康,姚波.预时效及预应变对Al-Mg-Si基汽车板材性能的影响[J].机械工程材料,2001, 25(12):17-19
    [26]费玥,金曼,李晶,等.固溶冷变形对6082A1-Mg-Si合金时效析出过程的影响[J].金属热处理,2006,24(5):68-71
    [27]Poole W.J., Lloyd D.J.,Embury J.D.. The Effect of Natural Ageing on the Evolution of Yiels Strength during Artificial Ageing for Al-Mg-Si-Cu Alloys[J].Materials Science and Engineering A,1997, V234-236:306-309
    [28]刘宏,宋文举,赵刚等.6000系铝合金汽车板预时效及组织性能[J].中国有色金属学报,2005,15(2):270-276
    [29]李荣德,李晨曦,李润霞等.铸造Al-Si-Cu-Mg合金的分级时效研究[A].第十届全国特种铸造及有色合金学术年会暨第四届全国铸造复合材料学术年会[C],2004
    [30]刘艳华.汽车车身用6000系铝合金板材的研究[D].沈阳:东北大学硕士学位论文,2004
    [31]Pashley D.W.,Jacobs M.H.,Vietz J.T.. The Basic Processes Affecting Two-Step Ageing in an Al-Mg-Si Alloy[J].Philosophical Magazine,1967, V16(139):51-76
    [32]Lorimer G.W.,Nicholson R.B..Further Results on the Nucleation of Precipitates in the Al-Zn-Mg System[J].Acta Met.,1966, V14:1009-1014
    [33]关绍康,姚波,王迎新.Ti和Ce对AlMgSi基合金板材成形性能的影响[J].中国有色金属学报,2002,12(4):759-763
    [34]潘青林,李绍禄,邹景霞等.微量Mn对Al-Mg-Si合金微观组织与拉伸性能的影响[J].中国有色金属学报,2002,12(5):972-976
    [35]金曼,孙保良,邵光杰.添加锆对Al-Mg-Si合金时效组织和性能的影响[J].机械工程材料,2006,30(4):60-63
    [36]董新平,刘忠侠,贺素等.化学成分及热处理对A12Mg2Si合金汽车板材力学性能的影响[J].金属热处理,2006,31(6):21-24
    [37]Gupta A.K.,Lloyd D.J.,Court S.A..Precipitation Hardening in Al-Mg-Si Alloys with and without Excess Si[J].Materials Science and Engineering A,2001,V316:11-17
    [38]Maruyama N., Uemori R.,Hashimoto N.. Effect of Silicon Addition on the Composition and Structure of Fine-Scale Precipitates in Al-Mg-Si Alloys[J].Scripta Materialia,1997,V 36(1):88-93
    [39]Zhen L.,Fei W.D.. Precipitation Behavior of Al-Mg-Si Alloys with High Silicon Content[J].Journal of Materials Science,1997,V32(7):1895-1902
    [40]Afify N.,Gaber A., Mostafa M.S.. Influence of Si Concentration on the Precipitation in Al-lat.%Mg Alloy[J].Journal of Alloys and Compounds,2008, V462:80-87
    [41]Hirth S.M., Marshall G.J.,Court S.A., et al. Effect of Si on the Aging Behavior and Formability of Aluminum Alloys Based on AA6016[J].Materials Science and Engineering A,2001,V319-321(27): 452-456
    [42]Jin Man, Li Jing, Shao Guang Jie. The Effects of Cu Addition on the Microstructure and Thermal Stability of an Al-Mg-Si Alloy[J].Journal of Alloys and Compounds,2007, V437:146-150
    [43]Muzaffer Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys [J].Journal of Alloys and Compounds,2005, V169:292-298
    [44]Chakrabarti D.J.,David E., Laughlin. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions[J].Progress in Materials Science,2004, V49:389-410
    [45]Chakrabarti D.J., David E., Laughlin. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions[J].Progress in Materials Science,2004, V49:389-410
    [46]Jin Man, Li Jing, Shao Guang Jie. The Effects of Cu Addition on the Microstructure and Thermal Stability of an Al-Mg-Si Alloy[J].Journal of Alloys and Compounds,2007,V437:146-150
    [47]Murayama M..The Effect of Cu Addition on the Precipitation Kinetics in an Al-Mg-Si Alloy with Excess Si[J].Metallurgical and Materials Transactions A,2001,V32 (2):239-246
    [48]Vaumousse D.,Cerezo A.,Warren P.J.,et al.An Atom Probe Study of Fine Scale Structure in AlMgSi(Cu) Alloys[J].Materials Science Forum,2002,V396-402:693-698
    [49]金曼,邵光杰.Cu对6082A1-Mg-Si合金时效析出相的影响[J].中国有色金属学报,2009,19(1):1-7
    [50]Kharakterova M.L..Effect of Scandium and Zirconium on Structure and Age Hardening of the Al-Mg-Si Alloys[J].Russ. Metall.,1997,(1):104-109
    [51]科学技术成果鉴定证书.高性能铝镁硅钛多元合金汽车车身板材的研究.河南省科学技术厅:2000,12,20
    [52]何立子.Al-Mg-Si系合金组织性能[D].沈阳:东北大学博士学位论文,2001
    [53]Ringer S.P.,Hono K..Microstmctural Evolution and Age Hardening in Aluminium Alloys:Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies[J].Materials Characterization,2000,V44(1-2):101-103
    [54]Hono K.,Sano N., Sakurai T.. Quantitative Atom-Probe Analysis of Some Aluminium Alloys[J]. Surface Science,1992,V266(1-3):350-357
    [55]Mukhopadhyay A.K.,Yang Q.B.,Singh S.R.. The Influence of Zirconium on the Early Stages of Aging at Enrary Al-Zn-Mg Alloy[J].Acta Mater,1994, V42(9):3083-3091
    [56]Maloney S.K.,Hono K.,Polmear I.J., et al. The Chemistry of Precipitates in an Aged Al-2.1Zn-1.7Mg at% Alloy[J].Scripta Mater,1999, V41(10):1031-1038
    [57]Stiller K.,Warren P.J., Hansen V.,et al.Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageing Treatment at 100℃ and 150℃[J].Materials Science and Engineering A,1999, V270(1):923-935
    [58]Lacom W.,Degischer H.P.,Zahra A.,et al.Calorimetric Investigation of Precipitation Processes in Aluminium Alloys[J].High Temperatures-High Pressures,1980, V12(5):549-554
    [59]沈凯,尹志民,王涛.时效处理状态下7055铝合金的微观结构演变[J].南京航空航天大学学报,2007,39(1):133-136
    [60]别士强.Al-Zn-Mg-Cu系超高强铝合金热处理工艺的研究[D].武汉:武汉理工大学硕士学位论文,2007
    [61]Smith W.F.工程合金的组织和性能[M].张泉译.北京:冶金工业出版社,1984:50-112
    [62]周静,王红华.钪对7A04合金组织与性能的影响[J].轻金属,1999,(6):75-95
    [63]何运斌,潘青林.Sc和Zr复合微合金化对Al-Zn-Mg-Cu合金组织与性能的影响[J].轻合金加工技术,2005,33(9):41-54
    [64]李海.Ag_Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究[D].长沙:中南大学博士学位论文,2005
    [65]戴晓元.合金元素与热处理工艺对Al-Zn-Mg-Cu-Zr系铝合金组织性能的影响[D].长沙:中南大学硕士学位论文,2004
    [66]侯贤华,高英俊,秦平力.微量元素对Al-Mg合金微结构及合金性能的影响[J].汕头大学学报(自然科学版),2005,20(3):36-40
    [67]曾渝.超高强.Al-Zn-Mg-Cu-Zr合金组织与性能研究[D].长沙:中南大学博士学位论文,2004
    [68]潘青林,尹志民,张传福.Sc和Zr复合微合金化在Al-Mg合金中的存在形式与作用[J].航空材料学报,2002,22(1):6-10
    [69]陈志国.微合金化铝合金的微观组织演变与性能研究[D].长沙:中南大学博士论文,2004
    [70]Lendvai J. Precipitation and Strengthening in Aluminium Alloys[J].Material Science Forum,1996, V217-222:43-56
    [71]赵中魁,白朴存,周铁涛.1.0wt%Li对Al-Zn-Mg-Cu合金时效硬化的影响[J].航空材料学报,2003,23(2):6-9
    [72]路丽英,白朴存,张秀云Al-Zn-Mg-Cu-1.5wt%Li合金的时效行为与组织特征[J].内蒙古工业大学学报(自然科学版),2006,26(1):35-38
    [73]Huang Z.W.,Loreto M.H..Influence of Lithium Additions on Precipitation and Age Hardening of 7075 Alloy[J].Materials Sciences and Technology,1993,V9:967-980
    [74]Zhou T.T.,Bai P.C.,Liu P.Y.. Preliminary Research of a Li-Containing Al-Zn-Mg-Cu Alloy[J]. Materials Science Forum,2002,V396-402(2):1229-1234
    [75]Zhou T.T.,Bai P.C.. Precipitates in a Li-Containing Al8.4Zn1.35Mg1.76Cu(wt%) Alloy[J].Materials Science Forum,2002,V396-402(2):827-833
    [76]Hirosawa S.,Sato T.,Kamio A.,et al. Classification of the Role of Microalloying Elements in Phase Decomposition of Al Based Alloys[J].Acta Materialia,2000, V48(8):1797-1806
    [77]李荣德.Al-4.0Cu合金时效初期原子分布的计算机模拟[J].沈阳工业大学学报,2008,30(4):414-418
    [78]Shoichi Hirosawa, Tatsuo Sato. Atomistic Behavior of Microalloying Elements in Phase Decomposition of Al Based Alloys[J].Materials Science Forum,2002, V396-402:649-654
    [79]李世晨,郑子樵,刘祖耀等.Al-Cu-Li-xMg合金时效初期微结构演变的Monte Carlo模拟研究[J].中国有色金属学报,2005,15(9):1376-1383
    [80]李世晨.计算机模拟Al-Cu(-Mg-Ag)合金时效初期原子分布状态的讨论[D].长沙:中南大学硕士学位论文,2000
    [81]周明.铝合金时效早期纳米结构演化的Kinetic Monte Carlo模拟研究[D].长沙:中南大学硕士学位论文,2007
    [82]陈志国,李世晨,刘祖耀等.微合金化Al-4.0Cu-0.3Mg合金时效初期微结构演变的计算机模拟[J].中国有色金属学报,2004,14(8):1274-1280
    [83]张丽娜,高英俊,易杰等.钪,硅对Al-Mg-Cu合金时效初期微结构演化的作用[J].中国稀土学报,2008,26(5):661-665
    [84]Ringer S.P.,Hono K.,Saksai T.,et al.Cluster Hardening in an Aged Al-Cu-Mg Alloy[J].Scripta Materialia,1997,V36(5):517-521
    [85]Ringer S.P.,Caraher S.K.,Pohnear I.J..Response to Comments on Cluster Hardening in an Aged Al-Cu-Mg Alloy[J].Scripta Materialia,1998,V39(11):1559-1567
    [86]陈舜麟.计算材料学[M].北京:化学工业出版社,2005:74-105
    [87]Heerman D.W..理论物理学中的计算机模拟方法[M].秦克诚译.北京:北京大学出版社,1996: 56-120
    [88]长崎诚三,平林真.二元合金状态图集[M].刘安生译.北京:冶金工业出版社,2004:150-220
    [89]王桂青.铸造A18Si0.4Mg合金时效行为研究[J].特种铸造及有色合金,2004,(2):1-3
    [91]亓效刚,刘峰,王伟民.Sn对A1-Si-Mg系合金的时效动力学分析[J].轻加工技术,2002,30(4):38-40
    [92]尹志民,黄志其,肖静.Sn微合金化无铅易切削Al-Mg-Si合金的组织与性能[J].中南大学学报(自然科学版),2007,38(1):56-59
    [93]黄志其,尹志民.时效对Sn、Bi微合金化的新型无铅易切削A1-Mg-Si合金的组织与性能影响[J].中国钼业,2007,31(1):34-37
    [94]Matsuda K.,Fukaya K.,Zou Young. Effect of Copper, Silver and Gold on Tensile behaviour in Al-Mg-Si Alloy[A].Proceedings of the 9th International Conference on Aluminium Alloys[C],2004: 424-428
    [95]Makoto Saga, Masao Kikuchi. Effect of Sn Addition on the Two-Step Aging Behavior in Al-Mg-Si Alloys for Automotive Application[A].Proceedings of the 9th International Conference on Aluminium Alloys[C],2004
    [96]Zhen L, Kang S.B..The Effect of Pre-Aging on Microstructure and Tensile Properties of Al-Mg-Si Alloys [J].Scr. Mater,1997,36:1089-1094
    [97]Murali S..Inhibition of Delayed Aging by Trace Additions in Al-7Si-0.3Mg Cast Alloy [J].Scr. Metall. Mater,1993,V29(11):1421-1427
    [98]Ghate G.P.,Murthy K.S.S.,Raman K.S..Effect of Trace Element on the Delayed Aging of Al-7%Si-0.3%Mg Alloy [J].Aluminum,1984,60(1):18-19
    [99]Zou Y.,Matsuda K.,Kawabata T, et al. Effects of Ag on Ag-Hardening Behaviour of Al-Mg-Si Alloys[A].Proceedings of the 9th International Conference on Aluminium Alloys[C],2004:539-544
    [100]Sato T., Hirose K.,Hirosawa S..Nano-cluster Controlled Precipitation in Al-Cu and Al-Mg-Si Alloys Containing Microalloying Elements[A].Proceedings of the 9th International Conference on Aluminium Alloys,2004,956-962
    [101]张坤.合金元素和热处理制度对高Zn超高强铝合金微观组织和力学性能的影响[D].长沙:中南大学硕士学位论文,2003
    [102]魏芳,白朴存,周铁涛等.Li对Al-Zn-Mg-Cu系合金时效早期原子聚集行为的影响[J].航空材料学报,2004,24(1):28-31
    [103]Tomo Ogura, Shoichi Hirosawa, Alfred Cerezo, et al. Quantitative Correlation Between Strength, Ductility and Precipitate Microstructures with PFZ in Al-Zn-Mg(-Ag,Cu) Alloys[J].Materials Science Forum,2006,V519-521(1):431-436
    [104]Senkov O.N.,Shagiev M.R.,Senkova S.V., et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J].Acta Materialia,2008,V56:3723-3778
    [105]Wei B.C.,Chen C.Q.,Huang Z.,et al. Aging Behavior of Li Containing Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A,2000, V280:161-167
    [106]Wei Fang, Li Jinshan, Hu Rui, et al.Influence of 1.0 wt% Li on Precipitates in Al-Zn-Mg-Cu Alloy[J]. Journal of Aeronautics,2008,V21:565-570