350Km/h电力机车接触线的组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应我国经济发展,电气化列车不断向高速化发展。这必然要求增大接触线的悬挂张力,提高其载流能力及稳定性,来改善机车受流质量。在要求接触线材料有良好导电性的同时,还要有高的强度和抗软化温度。目前,普遍采用的CuAg合金接触线可以满足中低速列车运行需求,但是要满足350km/h及更高的列车运行速度,就必须开发新型的接触线。基于此背景,本文对CuSn合金的成形工艺进行了系统研究。研究的主体框架着重围绕合金化设计、电解抛光、组织性能、电子背散射衍射分析(EBSD)展开。
     为给后续的工厂批量生产提供合理的成分依据,通过氩气保护气氛下的铜坩埚真空非自耗电弧炉对材料的合金化进行研究。对不同含Sn量的CuSn合金试样进行力学性能及显微组织形貌的对比分析,最终确定CuSn合金接触线的较佳的含Sn量为0.3%。考虑到在实际上引连铸过程中的元素损耗,配比时成分范围控制在0.3%~0.55%之间。
     机械抛光制备金相试样,其表面易产生变形层。故本文以电解抛光原理为依据,以阳极极化曲线为参考,对高速电气化铁路用CuSn合金接触线的电解抛光工艺参数进行了研究。同时,通过对以往电解抛光装置的改进最终确定了CuSn合金接触线电解抛光的最佳工艺参数。研究结果表明:在室温条件下,采用1.5~1.9V的抛光电压,10~15分钟的抛光时间,可以获得CuSn合金接触线的优良金相照片。
     本文对高速电气化铁道用CuSn合金接触线的成形工艺进行了系统研究。采用不同工艺对上引连铸法生产的CuSn合金接触线坯杆进行了冷、热成形加工试验,并比较、分析了成品线的性能差异。研究结果表明:CuSn合金接触线的最佳成形工艺为上引连铸→连续挤压→连续轧制→连续拉拔;其抗拉强度为538MPa,延伸率为12%,电阻率为0.02360Ω.mm~2/m,反复弯曲次数为9次,扭转圈数为11圈。综合性能均已达到或超过TB/T 2809—2005标准的要求,满足高速电气化铁道的使用要求。
     通过对合金进行电子背散射衍射(EBSD)分析,结果表明:变形过程中晶粒取向、织构转变及晶界分布存在以下规律:
     挤压态CuSn合金经30%拉拔冷变形后只出现了<100>丝织构,而当变形量增加至60%时,晶粒取向逐渐偏聚于[111]方向,继续增加变形量至75%后,则出现了稳定的<100>和<111>丝织构。由于剪切应力的作用织构组分由<100>向<111>转变,并且出现了较弱的<112>织构。而随退火温度升高最终也是形成稳定的<100>和<111>丝织构。
     随着拉拔变形量的增加,取向差小于8°的小角度晶界数量逐渐上升,其峰值为2.95°,变形量增加至75%后,由于微观组织的演化机制而使59°~61°的大角度晶界数量却明显下降。其间,CSL晶界主要集中在Σ3、Σ9、Σ27、Σ29这四个位置。且Σ3的百分含量由79.56%提高至81%并最终上升至83%。随着退火温度的升高小角度晶界数量也不断上升,且取向分布中出现了较强的孪晶关系Σ3及二次孪晶Σ9和三次孪晶Σ27关系,其三者的总和最终高达90.35%。低ΣCSL晶界含量的增加,使晶界结合力强、晶界能降低,可以减少和避免微裂纹源的产生,且对微裂纹的扩展起到阻碍作用。
In order to meet China's economic development, high-speed electric trains are growing. In order to improve the quality of locomotives by the stream, we must improve the hanging tension carrying current capacity and stability of contact wire. This requires contact wire material not only has good conductivity, but also has a high strength and high resistance to softening temperature. At present, CuAg alloy contact wire is widely used to meet the needs of low-speed train operation. However, to meet the 350km / h and higher train speed, we must develop a new type of contact wire. Based on this background, the forming process of CuSn alloy was studied in detail in this paper. The main study framework will mainly focus on alloy design, electrolytic polishing, organizational performance, and EBSD.
     Alloying of materials was studied in the article, in order to meet the needs of mass production in factories. The best amount of CuSn alloys containing Sn has been determined to be 0.3%, by analyzing mechanical properties and microstructure morphology of alloys with different Sn-containing. Because of the actual loss of elements in the smelting process, so control the composition range of 0.3% ~ 0.55%.
     Mechanical polishing tends to easily cause deformation of the surface layer of the specimen.The electro-polishing parameters of high-speed electric railroad CuSn alloy contact wire were studied in this paper. This paper is based on the principle of electro-polishing and anodic polarization curves as a reference. The optimum electro-polishing parameters of CuSn alloy contact wire were finally defined by improving of electro-polishing apparatus. The results show that: at room temperature conditions, we can get an excellent CuSn alloy contact wire metallographic by 1.5 ~ 1.9V polishing voltage and 10 ~ 15 minutes polishing time.
     The forming technology of high-speed electrified railway CuSn alloy contact wire was studied in this paper. The hot and cold forming test of CuSn alloy contact wire rod blanks were studied by different forming technology. And the performance differences of product lines were compared in this paper. The results show that: The optimum forming technology is upward continuous casting→continuous extrusion→continuous rolling→continuous drawing. The tensile strength reaches to 538MPa, elongation is 12%, electrical resistivity is 0.02360Ω.mm~2/m, alternating bending is 9,torsion test is 11 circle. Combination property have reached or exceeded the TB / T 2809-2005 standard. And it can meet the application requirements of high-speed electrified railway.
     The electron backscatter diffraction (EBSD) analysis of alloys was studied in this paper. The results showed that: the law of deformation grain orientation, texture changes and the distribution of grain boundary are as follows.
     The extruding CuSn alloy only has <100> silk texture with 30% cold drawing deformation. When the deformation increased to 60%, the grain orientation gradually segregated in [111] direction. Continued to increase to 75% in deformation, the stability of <100> and <111> silk structures can be found. Because of shearing stress the texture component changed from <100> to <111>.And a little <112> texture can be found. The stability of <100> and <111> silk structures also can be found in alloy with different annealing temperature.
     There were more and more LAGBs(<8°), with the increase in the amount of drawing deformation.The peak is 2.95°. When the deformation increased to 75%, because of the microstructure evolution mechanismthe, the number of HAGBs(59°~61°) was decreased significantly. CSL grain boundarys mainly focus onΣ3,Σ9,Σ27,Σ29 these four locations. The content ofΣ3 from 79.56% up to 81% and eventually rose to 83%. As the annealing temperature lifting, the number of small-angle grain boundaries increase rapidly. Orientation distribution appeared very strongΣ3(compound twin),Σ9(Secondary compound twin) andΣ27(cubic compound twin). The sum of them was up to 90.35% at last. LowΣCSL grain boundary had strong binding force and low interface energy. They can reduce and avoid the source of micro-cracks generation and impede the expansion of micro-cracks.
引文
[1]王深强等.高强度高导铜合金的研究现状与展望[J].材料工程, 1995(7): 3.
    [2]王绍维.铜和铜合金在电子工业中的新趋向[J].铜加工, 1992(3):6.
    [3]王隆寿.宝钢铬锆铜结晶器铜板的研制[J].冶金设备, 1999,12(6):34.
    [4]朱治愿,孙爱俊,池永强,王闯.热机械处理对CuCrZrBeRE合金组织和性能的影响[J].金属热处理, 2004, 24 (12 ): 117.
    [5]温宏权等.高速列车用新型铜合金接触线[J].材料导报, 1998, 1(12): 25.
    [6]尹志民,高培庆,汪明朴,李世泽等.中国发明专利(99101884)[P]. 1999.
    [7]王笑天.金属材料学[M].北京:航天工业出版社, 1987. 80~85.
    [8]赵祖德,姚良均,郭鸿运等.铜及铜合金材料手册[M].北京:科学出版社, 1993: 105~109.
    [9]方正春.耐热和导电铜合金发展现状[J].材料开发与应用, 1997, 12(4): 27~30.
    [10]王碧文.铜及铜合金研究方向的论述[J].铜加工, 1996, 8(3): 4~5.
    [11]肖世玲. Cu-Ag-Zr合金组织与性能[D],中南大学硕士论文, 2003: 11~15.
    [12]李文兵.高强高导铜合金的生产工艺及性能研究[D].四川大学硕士论文, 2007: 13~14.
    [13]宋学孟.金属物理性能分析[M].北京:机械工业出版社, 1981: 20~25.
    [14]陈树川.材料物理性能[M].上海:上海交通大学出版社, 1999, 40~65.
    [15]刘祥.铸造合金力学及物理性能[M].北京:机械工业出版社, 1982: 40~60.
    [16]田莳.材料物理性能[M].北京:北京航空航天大学出版社, 2001: 35~45.
    [17] L.H.Van vlack. Materials science for engineers. Addision-Wesley, 1970.
    [18] Pelton A R, Laabs F C, Spitzing W A and Cheng C C. Microstructural analysis of in-situ Cu-Nb composite wires[J]. Ultramicroscopy, 1987, 22: 251~265.
    [19] Hong S I and Hill M A. Microstructural stsbility and mechanical reponse of Cu-Ag microcomposite wires[J]. Acta Metall. Mater. 1998, 46: 4111~4122.
    [20] Spitzig W.A. and Biner S. B. Comparison of strengthening in wire-drawn or rolled Cu-20%Nb with a dislocation accumulation model[J]. J. Mater. Sci. 1993b, 28(17): 4623~4629.
    [21] Thilly L., Veron M., Ludwig O., Lecouturier F., Peyrade J.P. and Askenazy S. High-strength materisls: in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites[J]. Philos Mag. 2002, A82: 925~942.
    [22] Sun S. Strures and Residual Stresses of Cr Fibers in Cu-15Cr Composites[J]. Metal. Mater. Trans. 2001, A32: 1225~1232.
    [23] Verhoeven J.D., Downing H.L., Chumbley L.S. and Gibson E.D. The resistivity and microstructure of hesvily drawn Cu-Nb alloys[J]. J. Appl. Phys. 1989, 65: 1293~1301.
    [24]张联盟.材料学,北京:高等教育出版社. 2005: 105109.
    [25] Miyake J. Ghosh G. and Fine M.E. Dedign of high-strength, high-conductivity alloys. MRS Bullentin. 1996, 6: 13~18.
    [26] Ken R. Anderson and Joanna R. Groza. Microstructural Size Effects in High-StrengthHigh-Conductivity Cu-Cr-Nb Alloys. Metallurgical and Materials Transactions A. 2001, 32A(5): 1211-1224.
    [27]向文永,陈小祝,匡同春等.集成电路用引线框架材料的研究现状与趋势[J].材料导报. 2006, 20(3):122-125.
    [28]Larberg I, Backmark U. Effect of solidification volicty on composite[J].Materials Science and Engineering, 1986, 83: 115-121.
    [29]帅歌旺,张萌.高强度、高导电铜合金及铜基符合材料研究进展[J].特种铸造有色合金, 2005年第25卷第9期, 534-538.
    [30]雷静果.新型高强高导Cu-Ag-Cr合金的组织性能及时效动力学研究[D].西安理工大学博士论文. 2007: 8~9.
    [31]慰和弘木.等.铜包钢电车线的开发[J].电线电缆. 1993, 3:137.
    [32]刘勇.接触线用稀土微合金化高强高导Cu-Cr-Zr合金时效析出特性研究[D],西安理工大学博士论文, 2003: 3~8.
    [33]刘辉.连铸连轧法取代传统上引法生产高速电气化铁路用铜银合金接触线的研究[D],西安理工大学博士, 2003: 3~5.
    [34]黄崇棋.轮轨高速电气化铁路接触网用接触线的研究[J].中国铁道科学, 2001, 1: 1.
    [35]赵永清.日本高速铁路接触网简介[J].电气化铁道, 1998, 1: 32.
    [36]青木纯久等.析出强化铜合金在接触导线上的应用[J].国外机车车辆与工艺, 2000, 7:9.
    [37]吴成三.铜镁合金的高强接触线[J].铁道工程学报, 1996, 52(4): 99.
    [38] Lim MS, Song J S, Hong S I. Microstruetural and meehanieal stability of Cu-6wt%Ag alloy[J]. Mater Sci, 2000, (35): 4557.
    [39] Raabe D, Miyake K, Takahara. Proeessing mierostrueture and properties of ternary high-strength Cu-Cr-Ag insitu composites[J]. Mater Sci Eng A, 2000, 291: 186.
    [40] SakaiY, InoueK, Maeda H. New high-strength, high-conduetivity Cu-Ag alloy sheets[J]. Aeta Metal Mater, 1995, 43(4):15~17.
    [41]刘来宁.电力牵引用接触线的沿革及部分特性探讨[J].电线电缆, 1997 (1): 2~9.
    [42]孙大沂.新型铜合金接触线的开发[J].电线电缆译丛, 1997 (3): 6~10.
    [43]张强.中、高速电气化铁路接触线的选择[J].铁道机车车辆, 1997 (4): 21~22.
    [44]李学俊.影响银铜合金接触线性能的各种因素的探讨[J].电线电缆, 2002 (1):21~23.
    [45]张强.高速用铜镁合金接触线的研究[J].铁道机车车辆, 1999 (6): 15~17.
    [46]刘来宁.电力牵引用接触线的沿革及部分特性探讨[J].电线电缆, 1997 (1): 2~9.
    [47]王会清,张书久.铝包钢丝的生产及使用前景[J].金属制品, 1999, 25 (1): 5~8.
    [48] Fox A, Fuchs E, et al,·Fatigue of steel wire and copper-clad steel conductor used for telephone drop wire [J]·Wire Journal International, 1983 (4): 62~70.
    [49]运新兵,宋宝韫,刘元文,高飞.电气化铁路用铜包钢接触线制造技术[J].有色金属, 2002, 54 (3): 1~3.
    [50]张强.高速用铜镁合金接触线的研究[J].铁道机车机辆, 1999, (6): 15.
    [51]刘辉,胡忠卫,樊刚等.铜银合金接触线(CTHA)的性能研究[J].云南冶金, 2004, 33(3): 34.
    [52] J·B CORREIA·Strengthening in raoidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloy [J]. Acta Metallurgica, 1997, 45(1): 177~190.
    [53]张强,宋卫星.我国铜及铜合金接触线与承力索的研究和创新[J].现代城市轨道交通, 2004, 2:18.
    [54]吴予才.高速电气化铁路接触网线用铜锡合金线坯生产实践[J].稀有金属, 2006, 30(S1): 168.
    [55]孙业英. Optical Microscopic AnalysisⅡ(光学显微分析)[M].北京:清华大学出版社, 2003: 48~53.
    [56]韩德伟,张建新.金相试样制备与显示技术[M].长沙:中南大学出版社, 2005: 62~63.
    [57]方景礼.金属材料抛光技术[M].北京:国防工业出版社, 2005, 6~7.
    [58] GB/T4909.5—1985.裸电线试验方法弯曲试验反复弯曲[S].
    [59] GB/T4909.4—1985.裸电线试验方法扭转试验[S].
    [60] Dingley D J, Baba-Kishi K Z, Randle V. Atlas of back scattering kikuchi diffraction patterns[M]. Bristol: Institute of Physics Publishing, 1995: 45~52.
    [61] Adam J S, Mukul K, Brent L A. Electron backscatter diffraction in materials science[M]. New York: Kluwer Academic/Plenum Publishers, 2001: 56~60.
    [62] Dingley D J. A comparison of diffraction techniques for SEM[J]. Scanning Electron Micro Scopy, 1981,Ⅳ: 273~286.
    [63] Randle V. Application of electron backscatter diffraction to grain boundary characterization[J]. International Materials Reviews , 2004, 49: 1~11.
    [64] Leszek Klimek, Bozena Pietrztk. Electron backscatter deffraction as a useful method for alloys microstructure characterization[J]. Journal of Alloy and Compounds, 2004, 382: 17~23.
    [65] Angus J Wilkinson. A new method for determining small Misorientation form electron back scatter diffraction patterns [J]. Scripta Mater, 2001, 44: 2379 23~85.
    [66] Humphreys F J. Review grain and subgrain charactersation by electron backscatter diffra-ction[J]. Journal of Science, 2001,36:3833-3854.
    [67] Venables J A, Harland C J. Electron back-scattering patterns-a new technique for obtaining crystallographic information in the scanning electron microscope[J].Philosphical Magazine, 1973, 27(5): 1193-1200.
    [68] Wrighr S I. Review of automated orientation imaging microscopy (OIM)[J].Journal of Computer Assisted Microscopy, 1993, 5 (3): 207-221.
    [69] Mott N. F. , Phil. Mag[N], 1952, 43, 1151.
    [70] Friedel J., Phil. Mag[N], 1955, 46, 1169.
    [71] Chen H. S. Gilman J. J. and Head A. K., J. Appl. Phys[N], 1964, 35, 2502.
    [72]李学俊.影响银铜合金接触线性能的各种因素的探讨[J].电线电缆, 2002, (1): 21.
    [73]杨卫贤.银铜接触线的性能试验及比较[J].电线电缆, 1999, (2): 32.
    [74] Adachi K, Takeuchi T. Plastic deformation of Cu-Cr composite cold rolling [J]. Journal of the Japan Institute of Metals, 1997, 61(5): 391.
    [75]小比田正.高速列车对应架线材料设备的现状(日)[J].铁道与电气技术, 1997, 8(4): 32.
    [76]吴朋越,谢水生,黄国杰.高速列车用铜合金接触线用材料及其加工工艺[J].稀有金属.2006, 30(2): 207.
    [77]吴成三.铜镁合金的高强接触线[J].铁道工程学报, 1996, 52(4): 98~99.
    [78]牛玉英,宋宝韫,刘元文.银铜合金接触线新工艺的研究[J].中国铁道科学, 2005, 26(3): 99.
    [79]魏莉莉.对上引连铸技术的分析与改进[J].特种铸造及有色合金, 2000, (5): 44.
    [80]吴予才.高速电气化铁路接触网导线[J].稀有金属, 2004, 28(1): 289.
    [81]黄崇祺.中国电力牵引用接触线(电车线)的发展[J].中国铁道科学, 2003, 24(5): 61.
    [82]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社, 2001: 1.
    [83]宋宝韫,樊志新,陈吉光等.铜、铝连续挤压技术特点及工业应用[J].稀有金属, 2004, 28(1): 257.
    [84]吴朋越,谢水生,鄢明,程磊,黄国杰.铜扁线连续挤压过程温度场的数值模拟[J].锻压技术. 2007, 32(3): 30~32.
    [85]张震宇,杨纯宜.铜加工中的连续挤压技术应用[J].世界有色金属. 2008(2): 17~18.
    [86]谢春生,周天乐. CuNiBeCrZr合金的组织和性能[J].金属热处理, 2003, 28(2): 21.
    [87]赵玮兵,彭清艳,赵永芹,谢文江,梁淑华,范志康. CuW及CuWCr触头材料的电解抛光[J].电工材料. 2006, (2): 25.
    [88]钟毅.连续挤压技术及其应用[M].北京:冶金工业出版社, 2004, 28~29.
    [89] Watanabe T'Tsurekawa S. Acta Mater[J], 1999, 47(15): 4171.
    [90]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 2005, 6~18.
    [91]哈宽富.金属力学性质的微观理论[M].北京:科学出版社, 1989, 281~292.
    [92]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社. 2002: 268~272.
    [93]宋维锡.金属学[M].北京:冶金工业出版社. 1989: 107~108.
    [94]束德林.工程材料力学性能[M].北京:机械工业出版社, 2003, 24~36.
    [95]昝斌.热型连铸技术制备CuSn合金线材及其组织与生能分析[D],兰州理工大学硕士论文, 2007: 36~41.
    [96] Adams B L,Dingley D J,Kunze K,et al. Orientation imaging microscopy:new possibilities for microstructural investigations using automated BKD analysis[J]. Materials Science Forum, 1994, 157-162: 31-42.
    [97] Gerber P et al. Materials Scince Forum[J]. 2004, 467~470:135.
    [98] Hughes D A et al. Scripta Materialia[J], 2003, 48: 147.
    [99] Hughes D A, Hansen N. Acta Mater[J], 1997, 45(9): 387.
    [100] 2]Randle V. The Role of the Conincidence Site Lattice in GrainBoundary Engineering[M]. Cambridge: Cambridge University Press, 1996: 2.
    [101] Cao WQ,Godfrey A,Liu W. EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing[J].Materials Science and Engineering A,2003, 360: 420-425.
    [102] K. Sitarama. Raju, M. Ghanashyam Krisima, K.A. Paamanabian, K. Muraleedharan, N.P. Gurao, G. Wide. Grain size and grain boundary character distribution in ultra-fine grained(ECAP) nickel[J]. Materials Science and Engineering A 491, 2008: 1~7.
    [103]夏爽,周邦新,陈文党.形变及热处理对690合金晶界特征分布的影响[J].稀有金属材料与工程, 2008, 37(6): 1000~1002.
    [104] S. J. Liang, Z. Y. Liu, E.D. Wang. Microstructure and mechanical properties of Mg-Al-Zn alloy sheet fabricated by cold extrusion[J]. Materials Letters. 2008, 62: 4009~4011.
    [105] Lehockey E M, Palumbo G, Lin P. Grain boundary structure effects on cold wok embrittlement of microalloyed steels[J]. Scripta Materiallia, 1998, 39(3): 353~358.
    [106] Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline system by grain boundary engineering[J]. Acta Mater, 1999, 47(15): 4171~4185.
    [107]杨平.电子背散射衍射技术及应用[M].北京:冶金工业出版社. 2007: 67~70.
    [108] ZHOU B, GAOM, CHOUY T. Effectofboron on grain boundary characterdistribution in Ni3Al [J].ScriptaMaterialia, 1997, 37 (3):341-346.
    [109] RandleV. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energymaterials [J].ActaMaterialia,1999, 47: 4187-4196.
    [110] SchuhCA, KumarM, KingW E. Analysis ofgrain boundary networks and their evolution during grain boundaryEngineering [J].ActaMaterialia,2003, 51:687-700.
    [111] Watanabe T. An approach to grain boundary design of strong and ductile polycrystals[J]. ResMech,1984, 11:47-84.
    [112] Watanabe T. Importance of grain boundary character distribution (GBCD) to recrystallization, grain growth and texture[J]. ScriptaMetallurgica etMaterialia(USA). 1992, 27: 1497-1502.
    [113] StyczynskiA, Hartig Ch, Bohlen J, et a.l Cold rolling textures in AZ31 wroughtmagnesium alloy [J].ScriptaMaterials, 2004, 50: 943-9471.
    [114] Gertsman V Y, Henager C H. Interface Sci[J], 2003, l1: 403.
    [115] Kopezky C V, Andreeva A V, Sukhomlin G D. Acta Metall Mater[J], 1991, 39: 1603.
    [116] ZHOU B, GAOM, CHOUY T. Effectofboron on grain boundary characterdistribution inNi3Al [J].ScriptaMaterialia, 1997, 37 (3): 341-346.