Cu-Cr-Zr和Cu-(30~50%)Cr材料塑性变形及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对Cu-Cr-Zr合金和固相不互溶高Cr含量的Cu-(30~50%)Cr材料的热挤压工艺及轧制工艺对组织和性能影响进行了实验研究。研究挤压工艺、退火工艺和时效工艺对Cu-Cr-Zr合金组织性能的影响;研究挤压轧制工艺、退火工艺和时效工艺对高Cr含量的Cu-(30~50%)Cr材料组织性能的影响。
     对Cu-Cr-Zr合金采用不同温度下的热挤压后,发现650℃下进行热挤压的合金硬度和电导率都达到了最高,850℃热处理1.5h后硬度和电导率都有很大降低,经450℃时效处理3.5h后硬度和电导率都提高很多,其中最佳工艺为800℃热挤压后在450℃下时效处理3.5h,800℃温度下挤压后材料的晶粒的得到细化,Cr相析出量较少,致使材料性能提高,经时效处理后富Cr相进一步大量析出,致使材料的硬度和电导率再次提高。
     高Cr含量的Cu-Cr材料一般采用粉末冶金的方法制备,采用熔铸工艺制备的Cu-(30~50%)Cr材料Cr相尺寸比粉末冶金方法的更粗大。由于Cu-Cr固相基本不互溶,Cu-Cr相界面结合很弱,故该材料塑性很差,塑性变形极易开裂,为此研究高Cr含量的Cu-Cr材料的热挤压和热轧制变形对组织性能的影响,不仅具有学术价值,而且具有重大的现实生产意义。
     对Cr含量为30%、40%、50%的Cu-Cr材料进行热挤压和热轧制,发现材料加热到850℃进行挤压后,材料的硬度和电导率都有较大提高,退火处理后硬度降低电导率基本不变,时效处理后材料硬度和电导率基本没有改变。Cr含量越高的材料硬度越高但电导率越低。轧制后的材料硬度和电导率都有所降低并且沿轧制方向电导率降低更多。经热挤压的铜铬材料,Cr相沿挤压方向被拉长,变形量较大,铜基体晶粒也得到细化,材料的硬度提高,虽然Cr相与铜基体接触面增加,但铜基体变得更加连续,导电性能得到提高;热轧后材料中的Cr相变化不大,铜基体的晶粒长大致使硬度稍有降低,Cr相与铜基体接触面的增加致使电导率略微降低。而退火处理导致硬度的降低是因为铜基体晶粒长大所致,时效强化对此类材料影响甚微。
The extruding and rolling processes of the Cu-Cr-Zr alloys and the high Cr content Cu-(30~50wt.%) Cr alloy were investigated. Research on the effect of extruding, annealing and aging treatment on microstructures and mechanical properties of the Cu-Cr-Zr alloys and the influence of extruding, rolling, annealing and aging on microstructures and mechanical properties of the high Cr content Cu-(30~50wt.%) Cr alloy have been studied.
     The results show that the hardness and electrical conductivity of Cu-Cr-Zr alloys were highly dependent on the extruding parameters. The maximum hardness and electrical conductivity was obtained at an extrusion temperature of 650℃, both hardness and electrical conductivity of the extruded alloys had a remarkable decrease when annealed at 850℃for 1.5h. However, that has a great increase when aged at 450℃for 3.5h. It is also observed that the good combination of hardness and the electrical conductivity could be achieved at an extrusion temperature of 800℃and subsequent annealing temperature of 450℃for 3.5h. Because grains of the as-extruded samples were significantly refined after hot extruded at 800℃, and slight Cr phase precipitation can be observed, which resulted in the enhancement of properties. Further precipitation of fine Cr-rich phase particles in the subsequent aging process reinforced both properties.
     It is generally accepted that the high Cr content of Cu-Cr materials are generally prepared by powder metallurgy. Size of Cr phase particles of Cu-(30~50 wt.%) Cr prepared by casting is much coarser than that prepared by powder metallurgy. Because the Cu matrix and Cr phase are immiscible, the Cu-Cr phase bonding is weak. Thus, the plasticity of the material is poor, which lead it easily cracked in plastic deformation. The study aims to investigate the effect of hot extruding and rolling on microstructures and mechanical properties of these materials. The academic value and important practical production sense are obvious. Hot rolling and extruding were performed on Cu-Cr materials with the Cr content of 30%, 40$ and 50%. The result shows that the hardness and electrical conductivity improved significantly after extruded at 850℃, but the change of the properties was not obvious after aging. After annealing, decrease in micro-hardness presented but the electrical conductivity was constant. The higher Cr content leads higher hardness but lower electrical conductivity. The hardness and electrical conductivity of Cu-(30~50 wt.%) Cr material was reduced after rolling, especially along the rolling direction. The Cr phase was elongated along the extrusion direction. As a result of large extrusion ratio, the grain size of Copper matrix has been refined, the hardness increased. Although the contacting area between Cr phase and copper increased, the copper matrix became more continuous, promoting the improvement of electrical conductivity. The change of Cr phase in the material is not obvious after hot rolling, the copper grain growth resulted in slightly lowered hardness. Increasing of the area of Cr phase and copper contacting resulted in slightly lowered electrical conductivity. The annealing treatment resulted in decreased hardness because of the grain growth in Cu matrix. The effect of age-hardening on properties of such materials is minimal.
引文
1曹东白.铁道电气化技术的发展与展望.中国铁路. 1998, (4):5-9
    2陈文革.集成电路用金属铜基引线框架和电子封装材料研究进展.材料导报. 2002, 16 (7):28-31
    3 P. Hysmans. An initiation into copper master alloys. Metall.2000, 54(4):184-185
    4 S. K. Kang, S. Purushothaman. Development of conducting adhesive materials for microelectronic applications. Electronic Mater.1999, 28(11):1314-1318
    5张生龙,尹志民.高强高导铜合金设计思路及其应用.材料导报. 2003, 17(11):26-29
    6张雷,颜芳,孟亮.高强高导CuAg合金的研究现状与展望材料导报. 2003, 17(5):15-17
    7李银华,刘平,田保红.集成电路用铜基引线框架材料的发展与展望材料导报. 2007, 21(7):24-26
    8许艳飞,湛永钟,孙赞.原位铜基复合材料的研究进展.稀有金属.2007, 31(z1):72-75
    9曾汉民.高技术新材料要览.中国科学技术出版社, 1993:47-55
    10刘永亮,李耀群.铜及铜合金挤压生产技术.冶金工业出版社, 2007:102-130
    11刘平.高性能铜合金及其加工技术.冶金工业出版社,2005:89-104
    12山根寿己.高强度高传到性鋼合金の基礎 .伸鋼技術研究会誌 , 1990,29:13-17
    13岩坂光富,中岛和隆,大山繁等.合金设计法による高强度鋼基合金の開発.伸鋼技術研究会誌,1985,24:126-132
    14二塚成.コネクタ一·り一ドフレ一ム用銅素材の现状と将来.伸鋼技術研究会誌,1993, 32:1-7
    15佐佐木元,阿部元,西山进一等.半導体り一ドフレ一ム用銅合金C151.伸鋼技術研究会誌,1987,25:112-118
    16王季梅.真空开关技术与应用.机械工业出版社,2008:67-85
    17周武平,吕大铭. Cu-Cr、Cu-Cr-Fe触头材料运行特性.高压电器,1995, 31(2):35-41
    18李晓燕王顺兴田保红. Cu-Cr触头材料的制备方法及进展.材料研究与应用.2007, 1(4):265-269
    19 H. Schellekens, W. Shang. Vacuum interrupter design based on arc magnetic field interaction for horseshoe electrode. IEEE Trans. On Plasma Science. 1993,21(5):469-473
    20 Lu Baiping. Research development of high-strength and high-conductivity copper alloys. Materials Review, 2007, (S3):125-129
    21丰振军,杜忠泽,王庆娟.高强高导Cu.Cr.Zr系合金的研究进展.热加工工艺. 2008, 37 (8):86-89
    22虞觉奇.二元合金状态图集.上海科学技术出版社,1987:53
    23杨欢.自蔓延法制备Cu-Cr合金的基础研究.东北大学硕士学位论文,2003:6-9
    24 S. G. Jia, M. S. Zheng. Aging properties studies in a Cu–Cr Alloy. Materials Science and Engineering A. 2006, 419:8-11
    25 N. Gao, T. Tinaen, Y. Ji, L. Laakso. Control of microstructures and properties of a phosphorus-containing Cu-0.6 Wt. % Cr alloy through precipitation treatment. JMEPEG. 2000, 9(6):623-629
    26 X.Sauvage, P.Jessner, F.Vurpillot, R.Pippan. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation. Scripta Materialia 2008, 58:1125-1128.
    27胡汉起.金属凝固原理.北京工业出版社. 1991:168-174
    28彭立明,温宏权等.自生复合Cu-0.8Cr合金定向凝固过程研究.材料工程. 1999, (9):7-9
    29温宏权,毛协民等.铜电车线材料的研究进展.材料导报. 1999, 12(1):25-28
    30 G. Motoyasu, H. Soda. Analysis of Ohno continuous casting process using one-dimensional steady state heat transfer model. International Journal of Cast Metals Research, 2009, 22(10):438-447
    31 Y. Jin, K. Adachi. Aging characteristics of Cu-Cr in-situ composite. J. Mater. Sci. 1998, 33(5):1333-1341
    32 M. A. Morris, D. G. Morris. Microstructures and Mechanical Properties of Rapidly Solidified Cu-Cr Alloys. Acta Metall. 2006, 35(10):2511-2522
    33 B. V. Sarada, C. L. Pavithra, M. Ramakrishna. Highly (111) textured copper foils with high hardness and high electrical conductivity by pulse reverse electrodeposition. Electrochem. 2010, 13(6):40-42
    34 E. Batawi, D. G. Morris, M. A. Morris. Effect of small alloying additions on behaviour of rapidly solidified Cu-Cr alloys. Materials Science and Technology. 2000, 6(9):892-899.
    35刘平,康布熙.快速凝固Cu-Cr合金时效析出的共格强化效应.金属学报,1999,35(6):561-564
    36刘平,曹兴国.快速凝固Cu-Cr-Zr-Mg合金时效析出与再结晶的交互作用及其对性能的影响.功能材料,2000,31(2);167-169
    37俞虹,陈国瑜.铬锆铜电极合金产生细裂纹问题的研究.铜加工. 1999, 12(2):17-26
    38 P. Liu, B. X. Kang. Aging Precipitation and recrystallization of rapidly solidified Cu-Cr alloys. Materials Science and Engineering A. 1999, 265:262-267
    39小林正南,岩村卓郎,泉田益弘.高强度高传導性り一ドフレ一ム用铜合金OMCL-1.伸鋼技術研究会誌. 1988,27:45-50
    40 N. Y. Tang. Fatigue-creep-environmental interaction: a kinetic approach. Materials Science and Engineering A. 2001, 241:55-61
    41 J. Szablewski, B. Kuznicka. Electrical properties of ra- pidly solidified Cu-Cr alloys. Mater Sci Techn. 1991, 7(5):407
    42刘平,康布熙,曹兴国.快速凝固Cu-Cr合金时效析出的共格强化效应.金属学报. 1999,35(6):561
    43 He Wenxiong, Hu Lianxi, Wang Erde. Effect of extrusion on microstructure and properties of a submicron crystalline Cu–5 wt. %Cr alloy. Journal of Materials Processing Technology. 2008, 208: 205-210
    44 H. G. Suzuki, T. Takeeuchi, K. Mihara. Proceedings of the TMS Fall Meeting .1998:35-97
    45 D. G. Kubisch. T. H. Courtney. Fabricability and microstructural development in cold worked metal matrix composites .Metall Trans A.1996, 17 (7):11-65
    46 J. S. Song, J. H. Ahn, H. S. Kim. Comparison of microstructure and strength in wire-drawn and rolled Cu-9 Fe-1.2 Ag filamentary microcomposite. Journal of Materials Science, 2004(13): 5881-5884
    47 R. W. Cahn.复合材料的结构与性能.吴人洁等译.北京:科学技术出版, 1999:116
    48 P. D. Funkenbusch, T. H. Courtney. On the strength of heavily cold worked in situ composites. Acta Metall.1985, 33(5):9-13
    49 W. A. Spitzig, A. R. Pelton, F. C. Laabs. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites .Acta Metall.1987, 339(10):24-27
    50 P. D. Funkenbusch, T. H. Courtney. Scr Metall. On the role of interphase barrier and substructural strengthening in deformation processed compositematerials .1989, 23(10):17-19
    51 R. K. Evereet, R. J. Arsenault. Metal matrix composites: mechanisms and properties. Academic Press, 1999:101-104
    52 J. D. Verhoeven, E. D. Gibson, T. W. Ellis. Key Eng Mater.1995, 483:104-107
    53刘兴军.首届留日中国学者引世纪材料科学技术研讨会论文集.冶金工业出版社, 2000:109
    54高林华,李炎,刘平.形变铜基原位复合材料的研究现状和发展趋势北京科技大学学报. 2007, 36(16):69-72
    55 W. A. Spitzig, H. L. Downing, F. C. Laabs. Strength and electrical conductivity of a deformation-processed Cu-5 Pct Nb composite. Metallurgical and Materials Transactions A. 1993, (24):7-11
    56 T. W. Ellis, I. E. Anderson. Downing H L. Deformation-processed wire prepared from gas-atomized Cu-Nb alloy powders. Metall Trans A. 1993, 24 (1):21-25
    57 R. K. Everett, R. J. Arsenault. Metal matrix composites: processing and interfaces. Academic Press.1991:155