基于主被动微波遥感联合的土壤水分监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分作为农田生态系统的重要组成部分,是农作物生长发育的基本条件,也是土壤内部化学、生物和物理过程中不可缺少的介质,影响着土壤的肥力。在农业科学研究中,土壤水分是研究农作物水分胁迫、进行旱情监测和农作物估产等的一个重要指标。因此,土壤水分监测在水循环规律研究、水资源合理利用、农田灌溉以及旱情灾害预报等领域具有重要的意义。使用遥感方法监测土壤水分具有宏观、高时效和经济性等特点,与传统的可见光和红外遥感相比较,微波遥感在估算土壤水分方面拥有非常明显的优势。主动和被动微波遥感存在优势互补的特点,二者的联合应用,特别是土壤表面有农作物覆盖的条件下,将有利于充分发挥各自的优势,简化土壤水分监测的过程和提高土壤水分估算的质量。
     多数情况下被动微波遥感被用来进行土壤水分绝对值的反演,而主动微波遥感常被用来进行土壤水分变化相对值的估算,这也是由它们各自的特点所决定的。无论是主动还是被动微波遥感,在估算土壤水分时都需要考虑地表粗糙度和植被覆盖的影响,并设法将这些影响加以消除。本研究在SMEX02土壤水分试验中的PALS系统观测及地面数据支持下,研究在农作物覆盖地区的主被动微波遥感联合监测土壤水分的方法。分别对基于PALS辐射计数据的被动微波遥感土壤水分反演方法和基于PALS雷达数据的主动微波遥感土壤水分变化探测法作了研究分析,在此基础上提出了基于PALS系统的主被动微波遥感联合监测土壤水分方法,并对所提出的联合监测方法在研究区进行了应用验证。本研究的主要成果包括以下几个方面:
     (1)利用AIEM模型针对SMEX02试验中的PALS辐射计的参数设置,通过模拟的地表辐射状况数据库,分析了在PALS辐射计的传感器参数设置及其试验区的土壤质地参数条件下,参数化的Qp半经验模型及运用该模型的土壤水分反演方法的适用性。通过结合“ωτ”模型来描述植被覆盖的影响,将在AMSR-E的C波段数据的基础上建立的参数化的Qp半经验模型及相应的土壤水分反演方法成功的应用到PALS辐射计的L波段数据上。
     (2)用AIEM模型按照PALS雷达的参数设置模拟了L波段(1.26GHz)时不同粗糙度条件下后向散射系数与土壤表面菲涅耳反射率的关系,发现不同粗糙度下后向散射系数与菲涅耳反射率之间都可以用一条过原点的直线来拟合,并且土壤水分变化(比值)与相应的菲涅耳反射率变化之间存在良好的线性关系。由此通过菲涅耳反射率在后向散射系数变化和土壤水分变化之间建立联系,将在全极化机载雷达(AirSAR)的L波段(1.2GHz)数据上发展而来的土壤水分变化探测方法也成功的应用于PALS雷达的L波段数据。
     (3)在研究和分析被动微波遥感土壤水分反演方法和主动微波遥感土壤水分变化探测法的基础上,提出了基于主被动微波遥感联合的土壤水分监测方法。通过对主被动微波遥感的联合应用,充分发挥了它们各自的优势,不需要大量获取植被含水量和地表温度等辅助数据就可以实现对农作物覆盖地区土壤水分的估算以及动态变化监测。基于主被动微波遥感联合的土壤水分监测方法不但简化了土壤水分监测的过程,而且在土壤水分估算精度上也有了一定的提高,为主被动微波遥感的联合应用提供了新的思路。
As an important component of the farmland ecosystem, soil moisture is one of the essential requirements of crop growth. It also plays a unique role in the chemical, biological and physical processes within soil that influences the soil fertility. In agricultural science, soil moisture is a vital index of crop water stress, drought supervision and yield estimation researches. Therefore, soil moisture monitoring has significant value for the water cycle law research, water resource utilization, field irrigation and drought forecast, etc. Monitoring soil moisture by remote sensing can be considered as macroscopically, efficiently and economically. Compared with optical and infrared remote sensing, microwave method has obvious superiorities in soil moisture estimation. Active and passive microwave remote sensing are advantage complementary. It implies that the combined application of them would contribute to the maximization of their strengths and therefore simplify the process of soil moisture monitoring and improve the accuracy of soil moisture estimation, especially in the vegetation covered area.
     In most cases passive microwave remote sensing is used to retrieve soil moisture content while active microwave remote sensing is used to estimate soil moisture variation, which is decided by their characteristics. The effect of surface roughness and vegetation cover must be considered and managed to eliminate in soil moisture estimation no matter to the active or passive remote sensing. This dissertation devotes to the combined application of active and passive remote sensing in soil moisture monitoring for the vegetation covered area with the support of SMEX02PALS data. On the research and analysis of the soil moisture content retrieve method using PALS radiometer data and the soil moisture variation estimate method using PALS radar data, soil moisture monitoring method using the combined application of active and passive remote sensing is proposed. At last, the new method is applied and verified by using the SMEX02PALS and in situ experimental data. The results and innovations are mainly in the following aspects:
     (1) On the settings of PALS radiometer and conditions of SMEX02test region, a simulated radiation database is built by using the AIEM model. The applicability of the parameterized surface model Qp model and the soil moisture retrieve method developed on in the soil texture conditions of SMEX02test region and parameter settings of PALS radiometer it is tested by analyzing the database. With the " ω-τ " model to describe the effect of vegetation, the Qp model and the soil moisture retrieve method developed from the C-band data of AMSR-E are successfully applied to the L-band data of PALS radiometer.
     (2) The relationship between L-band (1.26GHz) backscattering coefficients and Fresnel reflectivities on the soil surface in different roughness conditions is simulated by using the AIEM model on the settings of PALS radar. The results show that the relationship can be fitted by a zero axial straight line, and a linear relationship also exists between the soil moisture variation (specific value) and the corresponding Fresnel reflectivity variation. The contact between backscattering coefficients variation and soil moisture variation is established through the Fresnel reflectivity. Therefore, the soil moisture variation estimate method developed from the L-band (1.2GHz) data of AirSAR is also successfully applied to the L-band data of PALS radar.
     (3) On the foundation of researching and analyzing of the soil moisture content retrieve and variation estimate method using passive and active microwave remote sensing respectively, the soil moisture monitoring method using the combined application of active and passive remote sensing is proposed. The strengths are maximized by the combination of them. Estimation of soil moisture and variation monitoring in the vegetation covered area can be done without massive ancillary data. The combined method propose in this dissertation not only simplifies the process of soil moisture monitoring but also improves it's accuracy, which provides a new idea for the combination of active and passive remote sensing.
引文
1.鲍艳松,刘良云等.综合利用光学、微波遥感数据反演土壤湿度研究.北京师范大学学报:自然科学版,2007,43(3):228-233.
    2.陈劲松,林珲等.微波遥感农业应用研究——水稻生长监测.北京:科学出版社,2010.
    3.陈权,李震等.环境小卫星S波段SAR监测土壤水分变化应用分析.国土资源遥感,2005,64(2):12-15.
    4.陈权,李震等.机载雷达和辐射计数据反演植被覆盖区土壤水分的初步研究.水科学进展,2007,18(5):754-761.
    5.陈权,李震等.用ERS风散射计数据估算土壤水分方法的研究.遥感学报,2007,11(6):803-810.
    6.杜今阳.多极化雷达反演植被覆盖地表土壤水分研究.[博士学位论文].北京:中国科学院遥感应用研究所,2006.
    7.付秀丽,王绍刚.被动微波植被辐射模拟研究综述.科技导报:综述文章,2009,27(12):98-101.
    8.戈建军,王超等.土壤湿度微波遥感中的植被散射模型进展.遥感技术与应用,2002,17(4):209-214.
    9.郭英,沈彦俊等.主被动微波遥感在农区土壤水分监测中的应用初探.中国生态农业学报,2011,19(5):1162-1167.
    10.李森.基于IEM的多波段、多极化SAR土壤水分反演算法研究.[博士学位论文].北京:中国农业科学院农业资源与农业区划研究所,2007.
    11.李震,郭东华等.综合主动和被动微波数据监测土壤水分变化.遥感学报,2002,6(6):481-484.
    12.刘万侠,王娟等.植被覆盖地表主动微波遥感反演土壤水分算法研究.热带地理,2007,27(5):411-415.
    13.刘伟.植被覆盖地表极化雷达土壤水分反演与应用研究.[博士学位论文].北京:中国科学院遥感应用研究所,2005.
    14.刘伟,施建成.应用极化雷达估算农作物覆盖地区土壤水分相对变化.水科学进展,2005,16(4):596-601.
    15.刘伟,施建成等.基于机载极化雷达技术的农作物覆盖区土壤水分估算.干旱区地理,2005,28(6):856-861.
    16.毛克彪.基于热红外和微波数据的地表温度和土壤水分反演算法研究.北京:中国农业科学技术出版社,2007.
    17.毛克彪,覃志豪等.被动微波土壤水分反演模型研究.测绘与空间地理信息,2005,28(5):12-14.
    18.毛克彪,唐华俊等.被动微波遥感土壤水分反演研究综述.遥感技术与应用,2007,22(3):466-469.
    19.乔林平,张继贤等.基于星载被动微波遥感的地表土壤湿度反演.辽宁工程技术大学学报,2006,25(3):342-344.
    20.舒宁.微波遥感原理.武汉:武汉大学出版社,2003.
    21.隋立春.主动式雷达遥感.北京:测绘出版社,2009.
    22.田国良.土壤水分的遥感监测方法.环境遥感,1991,6(2):89-98.
    23.魏小兰,李震等.S波段雷达数据反演土壤水分的模拟分析和验证.地球信息科学,2008,10(1):97-101.
    24.武胜利.基于TRMM的主被动微波遥感结合反演土壤水分算法研究.[博士学位论文].北京:中国科学院遥感应用研究所,2006.
    25.武胜利,施建成.TRMM/PR在青藏高原土壤水分变化研究中的应用.兰州大学学报:自然科学版,2007,43(2):11-14.
    26.闫峰,覃志豪等.农业旱灾监测中土壤水分遥感反演研究进展.自然灾害学报,2006,15(6):114-121.
    27.杨虎.植被覆盖地表土壤水分变化雷达探测模型和应用研究.[博士学位论文].北京:中国科学院遥感应用研究所,2003.
    28.杨立娟,武胜利等.利用主被动微波遥感结合反演土壤水分的理论模型分析.国土资源遥感,2011,89(2):53-58.
    29.余凡,赵英时.基于主被动遥感数据融合的土壤水分信息提取.农业工程学报,2011,27(6):187-192.
    30.张钟军,孙国清等.植被层对被动微波遥感土壤水分反演影响的研究.遥感学报,2004,8(3):207-213.
    31.赵少华.河北平原东部土壤湿度的遥感监测研究.[博士学位论文].北京:北京师范大学,2008.
    32.赵少华,秦其明等.微波遥感技术监测土壤湿度的研究.微波学报,2010,26(2):90-96.
    33.赵天杰,张立新等.利用主被动微波数据联合反演土壤水分.地球科学进展,2009,24(7):769-775.
    34.赵逸舟,马耀明等.利用TRMM/TMI资料反演青藏高原中部土壤湿度.高原气象,2007,26(5):952-957.
    35.钟若飞,郭华东等.被动微波遥感反演土壤水分进展研究.遥感技术与应用,2005,20(1):49-57.
    36. Ahmed N. U. Estimating soil moisture from6.6GHz dual polarization, and/or satellite derived vegetation index. International Journal of Remote Sensing,1995,16:687-708.
    37. Attema E. P. W., Ulaby F. T. Vegetation modeled as Water Cloud. Radio Science,1978,13(2):357-364.
    38. Autret M., Bernard R., et al. Theoretical study of the sensitivity of the microwave backscattering coefficient to the soil surface parameters. International Journal of Remote Sensing,1989,10(1):171-179.
    39. Chen K. S., Wu T. D., et al. Emissions of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing,2003,49(1):90-101.
    40. Chen K. S., Yen S. K., et al. A simple model for retrieving bare soil moisture from radar-scattering coefficients. Remote Sensing of Environment,1995,54(2):121-126.
    41. Dobson M. C., Ulaby F. T. Active microwave soil moisture research. IEEE Transactions on Geoscience and Remote Sensing,1996,24(1):23-26.
    42. Dobson M. C., Ulaby F. T. Microwave backscatter dependence on surface roughness, soil moisture and soil texture:Part Ⅱ-soil tension. IEEE Transactions on Geoscience and Remote Sensing,1981,19(1):51-61.
    43. Dobson M. C., Ulaby F. T., et al. Microwave Dielectric Behavior of Wet Soil Part II:Dielectric Mixing Models. IEEE Transactions on Geoscience and Remote Sensing,1985,23(1):35-46.
    44. Dubois P. C., Zyl J. V., et al. Measuring Soil Moisture with Imaging Radars. IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):915-926.
    45. Dubois P. C., Zyl J. V., et al. Corrections to "Measuring Soil Moisture with Imaging Radars". IEEE Transactions on Geoscience and Remote Sensing,1995,33(6):1340.
    46. Engman E. T., Chauhan N. Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment,1995,51(1):189-198.
    47. Freeman A., Durden S. L. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing,1998,36:963-973.
    48. Fung A. K. Microwave Scattering and Emission Models and their Applications. Boston:Artech House,1994.
    49. Fung A. K., Chen K. S. An update on the IEM surface backscattering model. IEEE Transactions on Geoscience and Remote Sensing,2004,11(2):75-77.
    50. Fung A. K., Li Z., et al. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):356-369.
    51. Jackson T. J., Cosh M. H.2003. SMEX02Vegetation Water Content, Iowa Regional and Walnut Creek Watershed. Boulder, CO:National Snow and Ice Data Center. Digital media.
    52. Jackson, T. J., Cosh M. H, et al.2004. SMEX02land surface information: geolocation, surface roughness, and photographs. Boulder, CO:National Snow and Ice Data Center. Digital media.
    53. Jackon T. J., Schmugge T. J. Vegetation Effects on the Microwave Emission of Soils. Remote Sensing of Environment,1991,36:203-212.
    54. Lee K. H., Anagnostou E. N. A combined passive/active microwave remote sensing approach for surface variable retrieval using Tropical Rainfall Measuring Mission observations. Reomte Sening of Environment,2004,92:112-125.
    55. Li Q., Shi J. C., et al. A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model. IEEE Transactions on Geoscience and Remote Sensing,2002,40(4):271-280.
    56. Liou Y. A., Tzeng Y. C., et al. A neural-network approach to radiometric sensing of land surface parameters. IEEE Transactions on Geoscience and Remote Sensing,1999,37(6):2718-2724.
    57. McDonald K. C., Dobson M. C., et al. Using MIMICS to model L-band multiangle and multitemporal backscatter from a Walnut orchard. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):477-491.
    58. Miller, D. G.2006. SMEXO2land surface information: soils database. Boulder, CO:National Snow and Ice Data Center. Digital media.
    59. Mo T., Choudhury B. J., et al. A model for microwave emission from vegetation covered fields. Journal of Geophysical Research,1982,87:11229-11237.
    60. Mo T., Schmugge T. J., et al. Calculations of radar backscattering coefficient of vegetation covered soils. Remote Sensing of Environment,1984,15:119-133.
    61. Moran M. S., Peters-Lidard C. D. P., et al. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian Jouranl of Remote Sensing,2004,30(5):805-826.
    62. Narayan U., Lakshmi V., et al. High resolution change estimation of soil moisture using L-band radiometer and radar observations made during the SMEX02experiments. IEEE Transactions on Geoscience and Remote Sensing,2006,44:1545-1554.
    63. Narayan U., Lakshmi V., et al. Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in2002(SMEX02). Remote Sensing of Environment,2004,92:483-496.
    64. Njoku, E. G.,2003. SMEX02Passive and Active L and S band System (PALS) Data. Boulder, CO: National Snow and Ice Data Center. Digital media.
    65. Njoku E. G., Chan S. K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sensing o Environment,2006,100:190-199.
    66. Njoku E. G., Li L. Retrieval of land surface parameters using passive microwave measurements at6-18GHz. IEEE Transactions on Geosciences and Remote Sensing,1999,37(1):79-93.
    67. Njoku E. G., Wilson W. J., et al. Observations of soil moisture using a passive and active low-frequency microwave airbone sensor during SGP99. IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2659-2673.
    68. Njoku E. G., Wilson W. J., et al. A Large-Antenna Microwave Radiometer-Scatterometer Concept for Ocean Salinity and Soil Moisture Sensing. IEEE Transactions on Geoscience and Remote Sensing,2000,38:2645-2655.
    69. Oh Y., Sarabandi K. M., et al. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):370-381.
    70. Oh Y., Sarabandi K. M., et al. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing,2002,40(6):1348-1355.
    71. Peplinski N. R., Ulaby F. T., et al. Dielectric Properties of Soils in the0.3-1.3GHz Range. IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):803-807.
    72. Peplinski N. R., Ulaby F. T., et al. Corrections to "Dielectric Properties of Soils in the0.3-1.3GHz Range". IEEE Transactions on Geoscience and Remote Sensing,1995,33(6):1340.
    73. Prevot L., Champion I., et al. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) Scatterometer. Remote Sensing Of Environment,1993,46(3):331-339.
    74. Sabburg J. M. Evaluation of an Australian ERS-1SAR scene pertaining to soil moisture measurement. Proc Int Geosciences and Remote Sensing Symp,1994,3:1424-1426.
    75. Schmugge T. J. Remote Sensing of Surface Soil Moisture. Journal of Applied Meteorology,1978,17(10):1549-1557.
    76. Schmugge T. J., Gloersen P., et al. Remote Sensing of soil moisture with microwave Radiometers. Journal of Geophysical Research,1974,79(2):317-323.
    77. Seo D., Lakhankar T., et al. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval:A Case Study for SMAP Mission. Remote Sensing,2010,2(5):1273-1286.
    78. Shi J. C., Chen K. S., et al. A parameterized surface reflectivity model and estimation of bare surface soil moisture with L-band radiometer. IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2674-2686.
    79. Shi J. C., Jiang L. M., et al. A Parameterized Multifrequency-Polarization Surface Emission Model. IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2831-2841.
    80. Shi J. C., Jiang L. M., et al. Physically Based Estimation of Bare-Surface Soil Moisture With the Passive Radiometers. IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3145-3153.
    81. Shi J. C., Lee J. S., et al. Evaluate usage of decomposition techniques in estimation of soil moisture with vegetated surface by multi-temporal measurements. Geoscience and Remote Sensing Symposium,2000. Proceedings. IGARSS2000. IEEE2000International,2000,3:1098-1100.
    82. Shi J. C., Wang J. Estimation of Bare Surface Soil Moisture and Surface Roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1254-1266.
    83. Teng W. L., Wang J. R., et al. Relationship between Satellite Microwave Radiometric Data, Antecedent Precipitation Index, and Regional Soil Moisture. International Journal of Remote Sensing,1993,14:2483-2500.
    84. Toure A., B Thomson K. P., et al. Applying the MIMICS backscattering model in an agricultural context. Canadian Journal of Remote Sensing,1991,17(4):339-347.
    85. Ulaby F. T., Batlivala P. P., et al. Microwave back scatter dependence on surface roughness, Soil Moisture, and Soil Texture, Part I:Bare soil. IEEE Transactions on Geoscience and Remote Sensing,1978,16(4):286-295.
    86. Ulaby F. T., Moore R. K., et al. Microwave Remote Sensing: Fundamentals and Radiometry, vol.1. Norwood: Artech House,1981.
    87. Ulaby F. T., Moore R. K., et al. Microwave Remote Sensing:Radar Remote Sensing and Surface Scattering and Emission Theory, vol.2. Norwood:Artech House,1982.
    88. Ulaby F. T., Moore R. K., et al. Microwave Remote Sensing: From Theory to Applications, vol.3. Norwood: Artech House,1986.
    89. Ulaby F. T., Sarabandi K. M., et al. Michigan Microwave Canopy Scattering model. International Journal Of Remote Sensing,1990,11(7):1223-1253.
    90. Wang J. R., Choudhury B. J. Remote sensing of soil moisture content over bare fields at1.4GHz frequency. Journal of Geophysical Research,1981,86:5277-5282.
    91. Wegmuller U., Matzler C., et al. Microwave signature of bare soil. Advances in Space Research,1989,9(1):307-316.
    92. Wigneron J. P., Calvet J. C., et al. Retrieving Nearsurface Soil Moisture from Microwace Radiometric Observations:Current Status and Future Plans. Remote Sensing Of Environment,2003,85:489-506.
    93. Wigneron J. P., Laguerre L., et al. A simple parameterization of the L-band microwave emission from rough agricultural soil. IEEE Transactions on Geoscience and Remote Sensing,2001,39(5):1697-1707.
    94. Wu T. D., Chen K. S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):743-753.
    95. Wu T. D., Chen K. S., et al. A transition model for the reflection cofficient in surface scattering. IEEE Transactions on Geoscience and Remote Sensing,2001,39:2040-2050.
    96. Zribi M., Pailleapos J., et al. Modelisation of roughness and microwave scattering of bare soil surfaces based on fractal Brownian geometry. Geoscience and Remote Sensing Symposium Proceedings;IGARSS,1998,3:1213-1215.