机械合金化和低温烧结制备Fe_3Al基合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe_3Al合金因其高比强度,高比模量、中高温环境中强抗腐蚀能力及热强性等特点,而被公认为是航空和高温结构材料领域内具有重要应用价值的新材料。但由于室温脆性及其加工性能差,限制了其进一步的应用。已有研究表明,(微)合金化、晶粒细化是改善材料力学性能的有效途径之一。为此本文采用机械合金化(MA)和常压氩气气氛保护烧结相结合的方法来制备Fe_3Al合金,以求达到改善的力学性能。
     本文首先利用XRD、激光粒度分析测试仪,借助正交实验手段,优化了在新型高能球磨机上制备Fe_(72)-Al_(28)合金粉末工艺。结果表明:采用球料比60:1、过程控制剂硬脂酸1wt.%,球磨机转速为225rpm时,有利于减小Fe_(72)-Al_(28)合金粉末的晶粒尺寸和粒度。利用XRD、SEM等多种测试手段,研究了Fe_(72)-Al_(28)混合粉末不同球磨时间(5h、10h、15h)产物的物相、形貌的变化。研究表明:MA终产物为纳米晶的过饱和固溶体Fe(Al),Fe_(72)-Al_(28)粉末在形貌上逐渐变成片状,粒度逐渐变小。在合金化过程中没有非晶相及Fe-Al金属间化合物的生成。利用Miedema半经验理论对上述合金成分进行了热力学分析,结果表明:对于Fe_(72)-Al_(28)这一配比,热力学上Fe_3Al金属间化合物最为稳定。MA过程中产生的晶格畸变能、晶界能及无序能是使Fe_(72)-Al_(28)形成亚稳态Fe(Al)固溶体的根本原因,同时MA过程形成的晶界、表面及缺陷大大降低了扩散活化能从而实现Al在Fe中的低温扩散。
     其次本文采用基于密度泛函理论的第一原理赝势平面波方法CASTEP程序,基于Rice-Wang热力学模型,对Fe_3Al金属间化合物中有关微量元素的晶界掺杂效应进行理论计算,探究Ti、Nb、Cr、Mn和Mo原子的晶界偏聚对Fe_3Al(B2)晶体沿晶断裂功的影响规律,为进一步选择出理想的合金元素提供理论参考。研究表明:Ti、Nb的晶界偏聚会显著弱化晶界,促进Fe_3Al的室温沿晶脆性;而Cr、Mn、Mo等元素的晶界偏聚会显著强化晶界,从而抑制室温沿晶脆性的发生,其中Cr的韧化能力最强。在选择Cr作为合金元素之后,本文研究了Fe_(70)-Al_(25)-Cr_5混合粉末的机械合金化过程,研究表明:合金元素的加入并没有改变过饱和固溶体Fe(Al,Cr)的生成。粉末形貌基本与Fe_(72)-Al_(28)演化过程相同,但终产物的粒度与前者相比明显增大,这与Cr的加入对粉末塑性的改善有关。
     最后本文初步地研究了利用机械合金化和氩气气氛保护烧结制备的Fe_3Al基合金的显微组织及其力学性能。研究结果表明,烧结块体物相上以部分有序的B2结构Fe_3Al组织为主,显微形貌呈岛状结构,这种结构是由于MA时复合粉末外层局部富Al导致。烧结试样在力学性能上比铸态形态下有明显提高,试样压缩断口呈准解理断裂,呈现出塑性特征。其致密度为95%、94%(含Cr),室温压缩屈服强度为832Mpa、962Mpa(含Cr)、压缩率29.90%、31.36%(含Cr),说明Cr元素的加入对Fe_3Al基合金的塑性有明显改善。
Fe_3Al alloys have been potentially developed for use in thermal protection systems, engines and aircraft turbines due to their good properties, such as high specific strength, high specific modulus, high corrosion resistance property and high thermal strength. However, their application is currently limited by the low ductility and poor workability at room temperature. And it has been reported that (micro-) alloying and grain refining can be better ways to improve mechanical properties. Therefore, a new technology, which consists of mechanical alloying and conventional pressure-less sintering in argon atmosphere, has been put forward to fabricate Fe_3Al alloys in order to receive ameliorated properties.
     Firstly, Using X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle analyzer, an orthogonal test was carried out to optimize the technological parameters of novel high energy ball milling on Fe_(72)-Al_(28) alloy powders. The results show that is of benefit to fining the grain size and Particle Sizes of Fe-Al alloy powders that the ratio of ball to powder is 60:1, the amount of stearic acid (PLA) is 1wt. %, and the milling speed is 225rpm.Based on optimum techniques for the high energy ball milling, the phases and morphologies of mechanical alloying powders in the different time (5h, 10h 15h) were analyzed by XRD and SEM respectively. The result shows that the nanocrystalline supersaturated solid solution Fe (Al) was formed during milling the Fe_(72)-Al_(28) powder. It was found that with increased milling time, the morphologies of powder gradually became flaky. In the whole process, no Fe-Al intermetallic compound and amorphous phase were found to come into being. According to Miedema theoretical model, for the Fe_(72)-Al_(28), the intermetallic compound was most stable. The Various kinds of defects induced by milling process leaded to the transitions of non-stabilization. At the same time the Grain boundary, surface and defection formed by MA process greatly enhances the diffusion of Al by lowing the activation energy of its diffusion in Fe lattices.
     Secondly, using CASPET program which is the first-principles pseudopotential plane-wave methods based on the density functional theory, the grain-boundary (GB) doping effects of impurity or solute atoms in Fe_3Al (B2) intermetallic compound were theoretically forecasted. The results show that the GB segregation of Ti and Nb atoms decreases the intergranular fracture energy, and enhances the IGB tendency of Fe_3Al (B2) alloys. Contrarily, the GB can be strengthened by GB segregation of Cr, Mn and Mo atoms and consequently the IGB is restricted. Thereinto the effect of Cr on the strength and toughness of Fe_3Al alloy is best. After selected Cr as alloying element, structural evolution and final products of Fe_(70)-Al_(25)-Cr_5 mixed-powders processing by mechanical alloying have been studied at the first time. The result showed that the addition of Cr didn't change the formation of Fe (Al, Cr) solid solution. The evolution of powder morphologies is similar to that in the Fe_(72)-Al_(28). But the particle size of final product increased significantly compared with that of former. This is related to the fact that the addition of Cr element improved the ductility of powder.
     Finally, the microstructure and mechanical properties of Fe_3Al-based alloys by mechanical and sintering in argon atmosphere were studied. It was shown that the structural phase of sintered sample is mainly partially ordered Fe_3Al B2 structure. An island structure of the microstructure is observed which is related to the uneven distribution characteristics of Al elements in powders during MA. The mechanical properties of sintered simple were significantly improved comparing with casting ones. Obvious quasi-cleavage fracture was observed on the base of analysis of fractographies, which shows that the sample occur definite model distortion. With the compactness of 95% and 94% (Cr), compressive yielding strength and compressive strain of 832Mpa, 962Mpa (Cr) and 29.90%, 31.36% (Cr), It shows that the plasticity of Fe_3Al-based alloy could be improved by adding Cr element.
引文
[1] 张永刚,韩雅芳.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    
    [2] 孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2002.
    
    [3] 尹衍升,张金升,李嘉等.新型半陶瓷材料-金属间化合物及其应用[J].中国陶瓷,2002,38(1):39.
    
    [4] 汤文明,唐红军,郑治祥.Fe-Al金属间化合物基复合材料的研究进展[J].中国有色金属学报,2003, 13(4):811-826.
    
    [5] MckameyCG,DeVanJH,TortorelliPE.Areview of recent development Fe_3Al-base alloys[J].Mater Res,1991,6:1779-1781.
    
    [6] 孙扬善,余新泉,薛烽.Fe_3Al金属间化合物的研究[J].材料导报,2000,14(8):66-67.
    
    [7] 李静,尹衍升,刘英才.热压烧结Fe_3Al金属间化合物的微观结构与力学性能[J].材料热处理学报, 2007,28(4):16-21.
    
    [8] 周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社,2006:180-187.
    
    [9] 尹衍升,施忠良,刘俊友.铁铝金属间化合物-合金化与成份设计[M].上海:上海交通大学出版社, 1996.
    
    [10] 陈明伟,单爱平,林栋梁.Fe_3Al基合金高温变形过程中原位再结晶现象[J].金属学报,1995,37(3): 291-295.
    
    [11] D.J. Gaydosh,S.L. Draper,R.D. Noebe. Room temperature flow and fracture of Fe-40at.%Al alloys.[J]. Mater sci Eng A, 1992:7-20.
    
    [12] 高小玫,钱祥荣.Cr对Fe_3Al的韧化作用[J].金属学报,1994,30(7):307-310.
    
    [13] 李静.Fe_3Al基复合摩擦材料的制备与研究:[博士学位论文][D].济南:山东大学,2004.
    
    [14] 马洪涛,尹衍升,李静.cu对粉末冶金Fe_3Al基复合材料性能的影响[J].材料科学与工艺,2006, 14(2):207-211.
    
    [15] 汤文明,唐红军,郑治祥.Fe-Al金属间化合物强韧化研究进展[J].合肥工业大学学报(自然科学版), 2005,28(2):129-134.
    
    [16] 薛烽,孙扬善,包益红.颗粒增强Fe_3Al基复合材料的制备与性能[J].材料研究学报,2000,14(4): 344-348.
    
    [17] 姚正军,薛烽.铝和铬的添加对Fe_3Al基合金力学性能的影响[J].东南大学学报,2000,30(5): 73-77.
    
    [18] 张忠铧,孙扬善,沈光骏.铈在Fe-28Al合金中的作用[J].中国稀土学报,1998,16(4):361-365.
    
    [19] 汪才良,朱定一,卢铃.金属间化合物Fe_3Al的研究进展[J].材料导报,2007,21(3):67-69.
    
    [20] 王兴庆,吕海波.粉末冶金法制备Fe-Al金属间化合物的研究[J].上海大学学报(自然科学版), 2000,6(6):511-515.
    
    [21] 杨朝聪.机械合金化技术及发展[J].云南冶金,2001,2(1):38-42.
    
    [22] 朱心昆,林秋实,陈铁力.机械合金化的研究及进展[J].粉末冶金技术,1999,17(4):291-296.
    
    [23] 王景唐,沈同德.机械合金化研究与进展[J].物理,1993,22(8):456-459.
    
    [24] Suryanarayana.C. Mechanical alloying and milling[J]. Prog Mater Sci, 2001,46:1-184.
    
    [25] L.Schultz. Formation of Amorphous Metals by Mechanical Alloying[J]. Materials Science and Engineering, 1988,97:15-23.
    
    [26] 杨君友,张同俊,李星国等.机械合金化研究的新进展[J].功能材料,1995,26(5):477-480.
    
    [27] 居毅,李宗权.机械合金化的原理及在磁性材料研究中的应用[J].功能材料,2002,33(1):12-14, 18.
    
    [28] 王文静,孙勇,张富文.机械合金化技术在功能材料制备上的应用[J].云南冶金,2004,33(4):35-37.
    
    [29] 张朝晖,唐睿,柳永宁.机械合金化在贮氢合金研究中的应用[J].电池,2004,34(1):62-63
    
    [30] Ricardo B,Schwarz,Carl C.Koch. Formation of Amorphous Alloys by the Mechanical Alloying of Crystalline Powders of Pure Metals and Powders of Intermetallics[J]. Applied Physics Letters, 1986, 49(3): 146-148.
    
    [31] F.Juranyi,J.B.Suck,S.Janssen. Vibration and Magnetic Properties of Supersaturated Cu_(100-x)Fe_x[J]. Applied Physics A, 2002, 74: 972-974.
    
    [32] J.Xu,U.Herr,T.Klassen. Formation of Supersaturated solid solution in the immsiscible Ni-Ag System by mechanical Alloying[J]. Journal of Applied Physics, 1996,79(8): 3935-3945.
    
    [33] P.Barua,V.Srinivas,B.S.Murty. Systhesis of Quasicrystaline Phase by Mechanical Alloying of Al_(70)Cu_(20)Fe_(10)[J]. Philosophical Magazine A, 2000, 80(5): 1207-1217.
    
    [34] S.B.Li,J.X.Xie,Z.Y.Zhao. Fabrication of Ultrafine W-Cu Powders by Mechanical Alloying [J]. Materials Science and Technology, 2004,20:1345-1350.
    
    [35] 邓春岩,李国彬,陈芳.MA法制备复合材料常用设备的比较分析[J].河北科技师范学院学报,2006, 20(6):66-70.
    
    [36] M.Sherif EI-Eskandarany. Mechanical alloying for fabrication of advanced engineering materials[M]. New York: Noyes Publications/William Andrew Publishing, 2001.
    
    [37] Lin,C.K.,P.Y.Lee. EXAFS Studies of Amorphous Fe_(50)Ta_(50) Powders During Mechanical Alloying[J]. Non-Crystalline Solids, 1998,232(234): 520-525.
    
    [38] Benjamin J.S.,Volin. The Mechanism of Mechanical Alloying[J]. Metallurgical Transactions, 1974, 5:??1929-1933.
    
    [39] Gilman P.S.,Benjamin J.S. Mechanical Alloying[J]. Ann Rev Mater Sci, 1983, 13: 279-300.
    
    [40] Davis RM,Koch CC. Mechanical alloying of brittle components:silicon and germanium[J]. Scripta Metall, 1987,21:305-310.
    
    [41] Bonetti E,Scipione G,Valdre G. A study of nanocrystalline iron and aluminium metals and Fe_3Al intermetallic by mechanical alloying[J]. Mater Sci, 1995, 30: 2220-2226.
    
    [42] Bonetti E,Scipione G,Enzo S. Anelastic properties and solid state reactivity of Fe-Al nanostructured intermetallic compounds[J]. Nanostructured materials, 1995, (6): 397-400.
    
    [43] Enzo S,Frattini R,Gupra R. X-ray powder diffraction and mossbauer study of nanocrystalline Fe-Al prepared by mechanical alloying[J]. Acta Mater, 1996,40(8): 3105-3113.
    
    [44] Oleszak D.Matyja H. Nanocrystalline Fe-based alloys obtained by mechanical alloying[J]. Nanostructured materials, 1995, (6): 425-428.
    
    [45] Mazzone G,Curdellini F. Microstructural evolution of Al-Fe powder mixtures during high-energy ball milling[J]. Mater Sci, 1998,33(10): 2519-2527.
    
    [46] 尹衍升,李嘉,谭训彦.机械合金化-加压烧结制备Fe3Al金属间化合物[J].粉末冶金技术,2004, 22(3):151-155.
    
    [47] Fair G H,Wood J V. Mechanical alloying of iron-aluminium intermetallics[J]. Powder Metallurgy, 1993, 36(2): 123-128.
    
    [48] Rabin B H,Wright R N. Systhesis of iron aluminides from elemental powders:Reaction mechanisms and densification behavior[J]. Metall Trans A, 1991,22:277-285.
    
    [49] Zhu S M,Iwasaki K. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe_3Al[J]. Mater Trans, 1999,40(12): 1461-1466.
    
    [50] 贺自强,王新林,全白云.非晶态合金的形成及研究进展(一)[J].金属功能材料,2005,12(6):27-31.
    
    [51] 贺自强,王新林,全白云.非晶态合金的形成及研究进展(二)[J].金属功能材料,2006,13(1):31-35.
    
    [52] 吕俊,陈晓闽,黄东亚.机械合金化与非晶合金材料的研究进展[J].材料导报,2006,20(9):93-97.
    
    [53] Weeber A.W.,Bakker H. Extension of the glass-forming range of nickel-zirconium by mechanical alloying[J]. Phys Rev B, 1988, 18(7): 1359-1369.
    
    [54] Zou Y,Saji S,Kusabiraki K. Fast amorphization and crystallization in Al-Fe binary system by high-energy ball milling[J]. Materials Research Bulletin, 2002, 37: 123-131.
    
    [55] Oleszak D,Shingu P H. Amorphous Fe-Al alloys obtained by mechanical alloying[J]. Mater Sci Forum, 1997,235-238:91-96.
    
    [56] D.K.Mukhopadhyay,C.Suryanrayana,F.H.Froes. Structural evolution in mechanically alloy alloyed Al-Fe powders[J]. Metall Mater Trans A, 1995,26A(8): 1939-1946.
    
    [57] Kranowski M,Witek A.Kulik T. FeAl-30%Tic nanocomposite produced by mechanical alloying and hot-pressing consolidation[J]. Intermetallics, 2002, (10): 371-376.
    
    [58] Ko S H,Park B G. Effect of MA on microstructure and synthesis path of in-situ TiC reinforced Fe-28at.%Al intermetallic composites[J]. Mater Sci Eng A, 2002,329-331: 78-83.
    
    [59] 范雄.金属X射线学[M].北京:机械工业出版社,1996:75-77.
    
    [60] B.D.Cullity. Elements of X-ray Diffraction[M]. MA: Addison-Wesley, 1978: 356.
    
    [61] 谢昭德,施雨湘,倪俊杰.机械球磨过程控制技术的研究进展[J].材料导报,2003,17(11):23-25,59.
    
    [62] 王尔德,胡连喜,李小强.高能球磨Ti/Al复合粉体的反应烧结致密行为[J].粉末冶金技术,2003, 21(5):259-263
    
    [63] 唐红军.机械合金化合成纳米晶Fe-Al金属间化合物及其复合材料的研究:[硕士学位论文][D]. 合肥:合肥工业大学,2005.
    
    [64] 杜藏.最优化计算方法[M].天津:天津大学出版社,1996.
    
    [65] 范景莲,黄伯云,汪登龙.过程控制剂对机械合金化过程与粉末特征的影响[J].粉末冶金工业, 2002,4(2):7-12.
    
    [66] Huang B L,Perez R J,Lavernia E J. Formation of supersaturated solid solutions by mechanical alloying[J]. Nanostructured materials, 1996, 7(1): 67-79.
    
    [67] A.R.Miedema. The electronegativity parameter for transition metals:heat of formation and charge transfer in alloys[J]. Journal of Less-Common Metals, 1973,32:117-136.
    
    [68] A.R.Miedema,F.R.de Boer,R.Boom. Predicting heat effect in alloys[J]. Physics B, 1981,103:67-81.
    
    [69] A.R.Miedema,R.Boom,F.R.de Boer. On the heat of formation of solid alloys[J]. Journal of the Less-Common Metals, 1975,41:283-298.
    
    [70] A.R.Miedema. On the heat of formation of solid alloys [J]. Journal of the Less-Common Metals, 1976, 46:67-83.
    
    [71] J.M.L6pez,J.A.Alonso,L.J.Gallego. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory[J]. Physical Review B, 1987,36(7): 3716-3722.
    
    [72] L.J.Gallego,J.A.Somoza,J.A.Alonso. Prediction of the glass formation range of transition metal alloys[J]. Journal of Physics F, 1988, (18): 2148-2157.
    
    [73] R.M.Davis,B.Mcdermott,C.C.Koch. Mechanical alloying of brittle materials[J]. Metallurgical Transactions A, 1988,19:2867-2874.
    
    [74] Bakker H,I.W.Modder,M.J.Kuin. Extension Miedema's semiepirical modol to estimate of the formation enthalpies of point defects in intermetallic compounds with the B2 structure[J]. Intermetallics, 1997, (5): 535-546.
    
    [75] 李振寰.元素性质数据手册[M].石家庄:河北人民出版社,1985:14,26.
    
    [76] 张同俊,杨君友,张杰.Fe-Ni系粉末机械合金化热力学[J].应用科学学报,1997,15(4):453-458.
    
    [77] Bakker. H,Zhou G F,Yang H. Mechanical driven disorder and phase transformation in alloys[J]. Progress in Mater Sci, 1995,39:159-241.
    
    [78] 胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2002:338-339.
    
    [79] 吴年强,李志章.机械合金化的机制[J].材料导报,1997,11(6):20-23
    
    [80] 傅云义,胡赓祥,杨王玥.Al_3Ti基金属间化合物高能球磨亚稳转变的热力学分析[J].金属学报, 2000,36(5):455-458.
    
    [81] 胡春和,唐电.机械合金化非平衡产物[J].中国粉体技术,2001,7(6):40-44.
    
    [82] 王崇愚.金属缺陷能量学基础及掺杂晶界电子结构[J].金属学报,1997,33(1):54-68.
    
    [83] 胡壮麟,王鲁红.电子和原子层次材料行为的计算机模拟[J].材料研究学报,1998,12(1):1-3
    
    [84] 林栋梁.高温金属间化合物研究的新进展[J].上海交通大学学报,1998,32(2):95-109.
    
    [85] 肖慎修,王崇愚.密度泛函理论的离散变分法在化学和材料物理学中的应用[M].北京:科学出版 社,1998:231-284.
    
    [86] 叶恒强.材料界面结构与特性[M].北京:科学出版社,1999:79-92.
    
    [87] 孙大明,席光康.固体的表面与界面[M].合肥:安徽教育出版社,1996:121-128.
    
    [88] 陈舜麟.计算材料科学[M].北京:化学工业出版社,2005:143-154.
    
    [89] Siegel,Donald J. Computational study of carbon segregation and diffusion within a nickel grain boundary[J]. Acta Materialia, 2005, 53(1): 87-96.
    
    [90] 尚家香,赵栋梁,王崇愚.Ti在bcc Fe晶界中的作用[J].金属学报,2001,37(8):893-896.
    
    [91] Krasko G.L.,Olson G.B. Effect of hydrogen on the electronic structure of grain boundary in iron[J]. Solid State Communication, 1991, 79:113-117.
    
    [92] Rice J.R,Wang J.S. Embrittlement of interfaces by solute segregation[J]. Mater Sci Eng A, 1989, 107: 23-40.
    
    [93] 郭巧能.晶界偏聚与材料脆断间关系的理论研究进展[J].材料导报,2002,16(3):15-16,33
    
    [94] 冯艳全,刘洪波,赵栋梁.P,N影响Fe晶界结合的第一原理研究[J].金属功能材料,2000,7(1): 31-35.
    
    [95] 齐民,朱敏,杨大智.Fe-Cu超饱和固溶体的机械合金化合成[J].材料科学进展,1993,7(1):31-34.
    
    [96] 王海兵,王斌.机械活化Fe-Al粉在SPS烧结条件下的相变特征[J].武汉大学学报(工学版),2006, 39(4):54-58.
    
    [97] 姚正军,苏宏华,向定汉.合金元素的添加对Fe_3Al基合金有序转变温度的影响[J].南京航空航天 大学学报,2002,34(3):230-234.