陶瓷纳米颗粒增强Ni-P复合镀层的微观组织与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用直流电弧等离子体法,在氢气与氮气混合气氛中蒸发块体Ti金属,制备TiN单晶纳米颗粒,利用X射线衍射仪(XRD)和透射电子显微镜镜(TEM)对纳米颗粒进行成分及结构进行表征并分析颗粒的热稳定性。直流电弧等离子体法制备的TiN纳米颗粒具有立方晶体结构,在774 K时,TiN纳米颗粒达到氧化峰值。
     利用电刷镀方法制备出TiN纳米颗粒镶嵌Ni-P/TiN纳米复合镀层。通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合镀层进行物相结构、表面形貌、微观组织分析,并对纳米复合镀层显微硬度和耐磨性能进行测试。Ni-P/TiN纳米复合镀层显微硬度高达Ni-P镀层的近3倍,耐磨性也有显著提高。
     制备α-Al2O3纳米颗粒镶嵌Ni-P/Al2O3纳米复合镀层。对比普通Ni-P镀层,对Ni-P/Al2O3纳米复合镀层进行200℃,400℃和600℃真空热处理1 h,得到晶化纳米复合镀层。通过Ni-P/Al2O3纳米复合镀层物相结构、表面形貌、微观组织分析,及其力学性能测试,研究热处理温度对纳米复合镀层组织结构和性能的影响。400℃热处理后的Ni-P/Al2O3纳米复合镀层已经完成晶化,综合力学性能也最优。
TiN monocrystal nanoparticles had been prepared by a DC arc discharge method in a mixture atmosphere of hydrogen and nitrogen. The crystal structure and microstructures were studied by means of XRD and TEM. The oxidability of nanoparticles was studied by TGA-DTA. It was indicated that the TiN nanoparticles were monocrystal. At 774 K, TiN nanoparticles were oxidated.
     TiN nanoparticles embedded Ni-P/TiN nano-composite coating were prepared by electro-brush plating. The morphology and microstructures were studied by means of XRD and SEM. The micro-hardness and tribological properties of the nano-composite coatings were also investigated. Ni-P/TiN nano-composite coating had about 3 times higher micro-hardness than Ni-P coating and its wear resistance was also improved.
     α-Al2O3 nanoparticles embedded Ni-P/Al2O3 nano-composite coating were also prepared and tested by the same method. Compared with Ni-P coating, Ni-P/Al2O3 nano-composite coating was annealed at 200℃,400℃, and 600℃in vacuum for 1 h. The effect of the temperature was studied. The composite coating has been crystallized at 400℃. Ni-P/Al2O3 nano-composite coating annealed at 400℃had the best mechanical properties.
引文
[1]Metzger W. Electro-depositon of dispersion layers[J]. Galvanotechnik,1970, 61(1):998.
    [2]Hubbel F N. Chemically deposited composites-A new generation of eletroless coating[J]. Transactions of the Institute of Metal Finishing,1978,56:65.
    [3]Ebdon P R.'Niflor'-Anew generation approach to self-lubricating surfaces [J]. Materials and Design,1985,6(1):33-36.
    [4]Gould A J, Borden P J, Harris S J. Phosphorus distribution in electroless nickel deposits[J]. Surface Technology,1981,12(1):93-102.
    [5]闫洪.现代化学镀镍和复合镀新技术[M],北京:国防工业出版社,2001:445-467.
    [6]李声泽.纳米电沉积技术最新发展简介[J].中国电镀材料信息,2002,2(1):55.
    [7]MandichNV. Co deposition of nano-diamond and chromium [J]. Metal Finishing,2001, 99(6):117.
    [8]欧忠文.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2000,(2):5-8.
    [9]章磊,宣天鹏,黄芹华.铈对化学镀Co-Ni-P合金工艺的影响[J].电镀与精饰,2002,24 (1): 1-4.
    [10]杨礼林,宣天鹏,琚正挺等.化学镀Ni-Fe-B-La合金工艺的研究[J].电镀与环保,2006,26(4):19-22.
    [11]Zhao Q, liu Y, Muller-Steinhagen H, et al. Graded Ni-P-PTFE coatings and their potential application[J]. Surface and Coating Technology,2002,155(1-2): 279-284.
    [12]陈天玉.复合镀镍和特种镀镍[M].北京:化学工业出版社,2009: 14-17.
    [13]Xu B S, Wang H D, Dong S Y, et al. Fretting wear-resistance of Ni-base electro-brush plating coating reinforced by nano-alumina grains [J]. Materials Letters,2006,60(5):710-713.
    [14]陈步荣,梁平,丁毅,等.电刷镀非晶态镍-磷合金镀层工艺的研究[J].电镀与精饰,2003,25(4):6-9.
    [15]冯旭东,崔琳珠.Ni-W合金镀层形貌及组织特征研究[J].金属世界,2009,3:54-56.
    [16]夏丹,杨苹.镍-金刚石复合刷镀的工艺研究[J].材料保护,2005,38(11):67-68.
    [17]Du L Z, Xu B S, Dong S Y, et al. Preparation, microstructure and tribological properties of nano-AlO3/Ni brush plated composite coatings [J]. Surface and Coatings Technology,2005,192(2-3):311-316.
    [18]Tu W Y, Xu B S, Dong S Y, et al. Electrocatalytic action of nano-SiO2 with electrodeposited nickel matrix [J]. Materials Letters,2006,60(9-10): 1247-1250.
    [19]Jiang B, Xu B S, Dong S Y, et al. Contact fatigue behavior of nano-ZrO2/Ni coating prepared by electro-brush plating [J]. Surface and Coatings Technology,2007, 202(3):447-452.
    [20]刘圆圆,于锦,刘晓亮,等.(Ni-P)-Co/WC纳米颗粒复合电刷镀层的组织性能分析[J].电镀与精饰,2007,29(2):8-11.
    [21]罗建东,阮锋.(Ni-P)-SiC复合电刷镀[J].电镀与精饰,2007,29(1):19-21.
    [22]董世运,徐滨士,胡振峰,等.纳米颗粒复合电刷镀镀层的微/纳观结构特征[J].中国表面工程,2009,22(2):65-68.
    [23]Murali K R, Ziaudeen M, Jayaprakash N. Structural and electrical properties of brush plated ZnTe films [J]. Solid-State Electronics,2006,50(11-12): 1692-1695.
    [24]徐江,卓城之,蒋书运.纳米颗粒对Ni基复合镀渗层耐冲蚀性能的影响[J].物理化学学报,2009,25(10):1958-1966.
    [25]夏法锋,吴孟华,贾振元,等.超声波对纳米Ni-TiN复合镀层的影响[J].功能材料,2008,39(4):690-694.
    [26]荆学东,徐滨士,吕耀辉,等.自动化电刷镀机床的开发[J].制造技术与机床,2009,2:49-52.
    [27]李声泽.纳米电沉积技术最新发展简介[J].中国电镀材料信息,2002,2(1):55.
    [28]石力开.材料词典[M].北京:化学工业出版社,2006:496.
    [29]陈翌庆,石瑛.纳米材料科学基础[M].长沙:中南大学出版社,2009:182-190.
    [30]戴遐明,艾德生,李庆丰,等.纳米陶瓷材料及其应用[M].北京:国防工业出版社,2005: 309-312.
    [31]Ti-N phase diagram. Binary Alloy Phase Diagrams (2nd edition) [DB]. The Materials Information Society.
    [32]于仁红,蒋明学.TiN的性质、用途及其粉末制备技术[J].耐火材料,2005,39(5):386-389.
    [33]郭瑞松,蔡舒,季惠明,等.工程结构陶瓷[M].天津:天津大学出版社,2002:209.
    [34]Romankov S, Komarov S V, Vdovichenko E, et al. Fabrication of TiN coatings using mechanical milling techniques [J]. International Journal of Refractory Metals & Hard Materials,2009,27(2):492-497.
    [35]彭志坚,苗赫濯,齐龙浩,等.氮化硅陶瓷刀具表面涂覆高硬耐磨氮化钛涂层研究[J].稀有金属材料与工程,2004,33(5):507-511.
    [36]Myung S T, Kumagai M, Asaishi R, et al. Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane fuel cell [J]. Electrochemistry Communications,2008,10(3):480-484.
    [37]Raimondi M T, Pietrabissa R. The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating [J]. Biomaterials,2000,21(9):907-913.
    [38]Sakka Y, Okuyama H, Uchikoshi T, et al. Synthesis and characterization of Fe and composite Fe-TiN nanoparticles by dc arc-plasma [J]. Journal of Alloys and Compounds,2002,346(1):285-291.
    [39]Zhang F, Kaczmarek W A, Lu L, et al. Formation of titanium nitrides via wet reaction ball milling [J]. Journal of Alloys and Compounds,2000,307(1-2): 249-253.
    [40]Sun J F, Wang M Z, Zhao Y C, et al. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea [J]. Journal of Alloys and Compounds, 2009,482(1-2):29-31.
    [41]邹渊文,庄汉锐,张宝林.高压氮气中自蔓延燃烧合成氮化钛[J].无机材料学报,1993,8(4):441-444.
    [42]林立.燃烧还原化合法制备氮化钛粉末[J].材料开发与应用,2000,15(5):1-1 1.
    [43]Peelamedu R D, Fleming M, Agrawal D K, et al. Preparation of Titanium Nitride: Microwave-Induced Carbothermal Reaction of Titanium Dioxide [J]. Journal of the American Ceramic Society,2002,85(1):117-22.
    [44]王淑涛,张祖德.化学气相沉积法制备氮化钛.化学进展,2003,15(5):374-378.
    [45]贺晶,任哲铮,黄维刚.氨解H2[TiO(C2O4)2]制备纳米氮化钛粉体[J].硅酸盐学报,2009,37(1):68-71.
    [46]刘美英,由万胜,雷志斌,等.肼溶胶-凝胶法制备高比表面积纳米氮化钛粉体的研究[J].高等学校化学学报,2006,27(8):1488-1491.
    [47]Hu J Q, Lu Q Y, Tang K B, et al. Low-temperature synthesis of nanocrystalline titanium nitride via a benzene-thermal route [J]. Journal of the American Ceramic Society,2000,83(2):430-432
    [48]Kakati M, Bora B, Sarma S, et al. Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion [J]. Vacuum,2008,82(8):833-841.
    [49]曹立宏,傅磊,樊友三.直流电弧等离子体制备TiN纳米粉末的研究[J].硅酸盐学报,1997,25(1):106-109.
    [50]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001.
    [51]蒋渝,刘明,杨彦明,等.等离子弧溅射法制备纳米镍粉中的氢作用机制[J].稀有金属材料与工程,2005,34(3):475-478.
    [52]董星龙,孙维民,王维,等.一种自动控制直流电弧金属纳米粉生产设备及方法:中国,10021190.1[P].2004,02,23.
    [53]李凤生,刘宏英,刘雪东,等.微纳米粉体制备与改性设备[M].北京:国防工业出版社,2004.
    [54]林春华,葛祥荣.电刷镀技术便览[M].北京:机械工业出版社,1991:117-140.
    [55]王为民,徐慢,梅炳初.自蔓延高温合成法制备TiN陶瓷粉末[J].武汉工业大学学报,1995,17(3):16-18.
    [56]汪洪海,郑启光,陶星之.大功率CO2激光原位直接反应合成TiN/Ti复合材料的研究[J].复合材料学报,1999,16(1):111-116.
    [57]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [58]刘阳,曾令可.碳化钛陶瓷及应用[M].北京:化学工业出版社,2008:150-154.
    [59]裴光文,钟维烈,岳书彬.单晶、多晶和非晶物质的X射线衍射[M].济南:山东大学出版社,1989:446-476.
    [60]严敏杰,方昌鹏.回火温度对Ni-P/SiC复合刷镀层组织及晶化的影响[J].材料保护,2009,42(4):30-32.
    [61][日]渡边辙.陈祝平,杨光,译.纳米电镀[M].北京:化学工业出版社,2007:74-81.
    [62]Liu Y Y, Yu J, Huang H, et al. Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings [J]. Surface and coating Technology,2007, 201(17):7246-7251.
    [63]罗建东,阮锋,刘慧平.(Ni-P)-SiC复合电刷镀[J].电镀与精饰,2007,29(1):19-21.
    [64]冷楠,赵福国,黄昊,等.纳米α-Al2O3和γ-Al2O3颗粒增强镍-磷复合镀层的性能对比[J].机械工程材料,2009,33(7):56-60.
    [65]刘晓亮,刘圆圆,黄昊,等.Ni-P/SiC、Ni-P/WC纳米复合电刷镀镀层的组织与性能[J].机械工程材料,2008,32(4):54-57.