深水水文自动采样方法与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对江河水库悬移质进行监测,一般需要采集水样进行分析。近几十年来,研究人员设计了多种水文采样采水器,但普遍存在着劳动强度大、水下通信距离短、水深测量不精准等缺陷。随着三峡大坝的蓄水,对水深接近200米的水域进行水文采样成为一个无法回避的问题。为提高水深测量精度,降低劳动强度,解决三峡大坝蓄水后对深水水域进行水文采样的实际问题,本文设计了一种基于动态水深测量技术、水声通信技术、液压绞车控制技术的深水水文采样自动控制系统。
     依据国家标准及水文采样的工作流程,确定了水文采样系统的控制方案。控制系统包括水下控制器和水上控制器;水下控制器以单片机为核心,通过压力传感器动态测量水深;水上控制器以PLC为下位机,对液压绞车进行控制,以PC机为上位机,实现采水流程控制及人机操作界面;整个系统以PC机为主控制器。
     设定压力测深的具体指标和总体需求,分析了压力测深的误差来源。对压力传感器进行温度补偿实验,能在有效的范围内进行温度补偿。设计了基于系统模型的Kalman滤波器,能有效滤除外部的噪声干扰。建立了波浪的模型,通过理论和仿真分析了波浪对测深的影响。运用伯努利方程构建了水流对压强的影响模型,并通过仿真进行了分析和验证。设计了水下控制器硬件平台和软件。
     根据水文采样系统工作的特定环境,分析了系统对水声通信模块的要求以及模块工作环境噪声来源,对多源噪声背景下水声通信算法做了研究,提出了利用阈值替代叠加法和相干自适应器结合的方式对接收的水声信号进行滤波,通过仿真验证了此方法对多元多源噪声抑制的效果。在此基础之上,设计了水声通信模块的硬件与软件,并将算法嵌入到控制系统中,大大降低了水声通信的误码率。
     设计了液压绞车控制PLC接线图和PLC程序;建立了液压绞车数学模型,研究设计了液压绞车速度控制器和采水铅鱼水深定位控制器并进行了仿真分析,结果表明两种控制器均满足性能指标要求;设计了主控制器软件流程和人机操作界面。
     进行了实验室试验和现场水文采样试验,试验结果表明该系统水深测量精度、水声通信效果、动态响应速度等指标均满足设计要求。
     在以上研究的基础上,本课题取得如下成果:
     (1)提出了一种新的深水水文采样全自动、全闭环控制方案。
     (2)设计了水下控制器硬件和软件,实现了动态水深测量;针对特定水域压力测深误差来源,提出了相应的抗干扰措施,使动态水深测量相对误差提高到2%以内。
     (3)设计了水声通信模块硬件和软件,实现水上控制器和水下控制器的无线通信;提出了水声通信抗多元多源干扰方法,使水下距离接近200m时,通信成功率达到约60%。
     (4)设计了水上控制器软件,实现采水过程全自动控制,将单垂线六点法采样时间降低到450秒左右,大大提高了水文采样的工作效率。
     本课题设计的深水水文采样自动控制系统水深测量精度高、水下通信有效距离长,自动化程度高,能够在动态测量水深的基础上,实现水文采样的全闭环控制以及单垂线六点法水文采样的全自动流程控制,对于深水水域的水文采样具有重大的实际意义和广阔的应用前景。
Analysis on sampling water is required for monitoring suspended load of the rivers and reservoirs. In recent decades, the researchers designed a variety of hydrological sampling water samplers, which have prevalence defects as follows:labor-intensive, short underwater communication distance, and imprecise depth measurement. With the impoundment of the Three Gorges Dam, to carry out hydrological sampling in more than200meters deep waters become an unavoidable problem. In order to improve the accuracy of water depth measurement, to reduce labor intensity, to solve the problems of Three Gorges Dam on deep water of hydrological sampling, this dissertation designs a automatic control system for deepwater hydrographic sampling that based on dynamic depth measurement technology, underwater acoustic communication technology, and hydraulic winch control technology.
     Based on national standards and hydrological sampling workflow, the control program of hydrological sampling system is identified. The control system includes underwater controller and surface controller. The underwater controller takes single-chip as the core and measure the water depth by the pressure sensor. Surface controller takes PLC as lower machine which realizes hydraulic winch control and takes PC as host computer which realizes water harvesting process control and man-machine interface. The entire system based on PC as main controller.
     The concrete index of pressure depth and aggregate demand is set, and the error sources of pressure sounding are analyzed. The temperature compensation experiment has been completed for pressure sensor, which can realize the temperature compensation within effective compensation range. The Kalman filter based on system model is designed to filter out outside noise. Wave model is established and the effect that the wave brings on sounding is analyzed through theory and simulation.
     The model that the water flow affects on the pressure is constructed by using the Bernoulli equation. And the analysis and verification is achieved through the simulation. Pressure sounding hardware platform and software are designed.
     According to the specific working environment of hydraulic sampling system, the requirements of the underwater acoustic communication module and the noise source of module working environment are analyzed. Water acoustic communication algorithm for multi-source noise background is studied. A threshold alternative combination of superposition method and coherent adaptive filtering of underwater acoustic signals received. This method is verified by simulation of multi-source noise suppression effect, and on this basis, the design of the hardware and software of the underwater acoustic communication module, and the algorithm embedded into the control system, greatly reducing the underwater acoustic communication error bit rate.
     Hydraulic winch control PLC wiring diagram and PLC program is designed, and the math model is established. Hydraulic winch speed controller and water sampler lead fish water depth positioning controller is studied and analyzed. The results show that both controllers can meet the performance requirements. The master controller software flow and human-machine interface are designed.
     Laboratory test and field hydrological sampling test are both accomplished, and the test results show that the depth measurement accuracy, the effect of underwater acoustic communication, dynamic response speed may meet the design requirement.
     On the basis of the above research, the dissertation achieved the following results:
     (1) A new deep-water hydraulic sampling automatic closed loop control scheme is proposed in this paper.
     (2) Hardware and software of underwater controller are designed to achieve a dynamic bathymetric survey; in regard to a specific water pressure sounding error, anti-jamming measures are put forward to raise dynamic water depth measurement relative error to2%or less;
     (3) Hardware and software of underwater acoustic communication module are designed to achieve wireless communications between surface controller and underwater controller; Method of anti-interference of multiple multi-source is proposed to make communication success rate at about60%when the underwater distance close to200m.
     (4) Software of surface controller is designed to realize automatic control of water harvesting process and to decline single vertical line six-point method sampling time to about450, which greatly improves the hydrological sampling efficiency.
     The automatic control system of deep-water hydrology sampling in this dissertation has high depth measurement accuracy, long effective underwater communication distance, high automation level. Based on dynamic measurement of water depth, this system can realize the whole closed-loop control of hydrological sampling and automatic process control of single vertical line six-point method hydrological sampling. This achievement has great significance and broad application prospects in hydrological sampling for deep water.
引文
1. 周赤建.河流悬移质泥沙运动模拟方法研究[D].内蒙古农业大学,2004.5.
    2.水利电力部科学技术情报室.国外水库泥沙问题[M].1974.
    3. 陕西省水科所.我省部分中小型水库淤积调查初步分析[M].1974.
    4. 陕西省水科所.陕西省百万立米以上水库淤积调查报告[R].1974.
    5. 山西省水利局办公室科技组.从镇子梁水库的改建试谈我省水库的设计和应用[M].山西水利科技.1975.
    6.青铜峡水库站,青铜峡水电厂.青铜峡水库蓄清排浑的作用及冲淤初步分析[M].1974.
    7.程龙渊.三门峡库区水文泥沙实验研究[M].郑州,黄河水利出版社,1999.
    8.金兴平,周建红,许全喜.长江三峡工程水文泥沙原型观测[J].人民长江,2006,37(7):6-8.
    9.代文良,张娜,蒲菽洪.三峡库区156 m蓄水水文泥沙变化分析[J].人民长江,2009,40(9):7-9.
    10.代文良,张娜.三峡水库175m试验性蓄水过程水文泥沙分析[J].人民长江,2011,42(3):9-12.
    11.魏进春,袁德忠.三峡水文泥沙监测资料数据库系统研制开发[J].人民长江,2003,34(12):6-8.
    12.何文社,戴会超,曹叔尤,袁杰.三峡水库水文泥沙信息分析管理系统设计[J].水力发电学报,2005,24(6):95-99.
    13.于建清.一种无缆自动返回式采水器的设计与研究[D].中国科学院研究生院,2008.6.
    14. Cristina,N.. Focus on sample handling. Anal Bioanal Chem,2007, (388):1001-1002.
    15.中华人民共和国水利部,建设部.河流悬移质泥沙测验规范.GB 50159-92.
    16.司惠民.基于PLC的船载水样自动采集分配控制系统设计(硕士学位论文).国家海洋技术中心,2011.6.
    17.张尚权.AYX2-1型调压式悬移质泥沙采样器(300Kg)器体水力学研究与结构设计(工程硕士学位论文).重庆大学,2007.11.
    18.张尚权,吴卫,卢春生,郑发科.AYX2-1型调压式悬移质采样器的设计与开发[J].人民长江,2008,39(8):90-92.
    19.罗小延,施秀蓉.长江AYX2-1型悬移质采样器在水文测验中的应用效果浅析[J].科技信息,2007,31:60-61.
    20.李培培.基于ARM的缆道水文测控系统的研究与实现(硕士学位论文).华东交通大学,2008.10.
    21.刘勇.基于ARM的水文泥沙图像数据采集系统的研究(硕士学位论文).华东交通大学,2008.10.
    22.陈会.压力式水深测量仪的研制(硕士学位论文).中国海洋大学,2007.06.
    23.冯军.丈量地球第四极——人类海洋深度测量回顾史[J].生命世界,2005.189(7).
    24.杨帆.数字液位变送器的研究与开发(硕士学位论文).武汉大学,2005.6.
    25.中华人民共和国水利部部标准.水文仪器术语.
    26.姚付昌,封延昌.智能测深仪的设计与开发[J].解放军测绘学院学报,1999,16(4):248-252
    27.贾更华,袁洪州.荷兰SILAS走航式适航水深测量系统在太湖底泥测量中的应用与实践.太湖网高级论坛.
    28.张新书.水深仪器综述[J].河北省水文水资源信息网,2006.10.30
    29.陈力平.超声波测深法水深数字化技术探讨[J].水利水电快报,2001,22(13).
    30.昌彦君,朱光喜,彭复员,朱耀庭.记在激光海洋测深技术综述[J].海洋科学,2002.5.
    31.蔡惠智,刘云涛,蔡慧,邓红超,王永丰.第八讲水声通信及其研究进展[J].物理,2006,35(12):1038-1042.
    32. Erdal Cayirci, Hakan Tezcan, Yasar Dogan, Vedat Coskun. Wireless sensor networks for underwater surveillance systems[J].Ad Hoc Networks,2006, (4):431-446.
    33. Roy S, Duman TM, McDonald V, Proakis J G.. High rate communication for underwater acoustic channels using multiple transmitters and spacetime coding: receiver structures and experimental results[J]. IEEE Journal of Oceanic Engineering, 2007,32,32 (3):663-688.
    34. Chitre M, Shahabudeen S, Stojanovic M. Underwater acoustic communications and networking:recent advances and future challenges[J]. Marine Technology Society Journal,2008,42,42 (1):103-116.
    35. Stojanovic M, Freitag L. Multichannel detection for wideband underwater acoustic CDMA communications [J]. IEEE Journal of Oceanic Engineering,2006,31,31 (3):685-695.
    36. Ruzzelli A.G, O'Hare G.M.P, Jurdak R. MERLIN:cross-layer integration of MAC and routing for low duty-cycle sensor networks[J]. Ad Hoc Networks,2008,6,6 (8):1238-1257.
    37. Car G A, Adams A E. ACMENet:An underwater acoustic sensor network for real-ti me environmental monitoring in coastal areas [C]. Proc of Radar, Sonar, and Navigation. Piscataway, NJ:IEEE,2006,:365-380.
    38.高明全.水声换能器压力补偿与拖体设计方法研究[D].哈尔滨工程大学,2010.
    39.卢晓亭,张林.水声传播建模研究现状综述[J].海洋技术,2010,29(4):48-53.
    40.何成兵,黄建国,张涛,阎振华.单载波频域均衡高速水声通信仿真研究[J].系统仿真学报,2007,19(23)
    41.韦周芳,黄建国.基于MFSK的多载波水声通信系统及实验研究[J].无线通信技术,2006,2.
    42.程恩,袁飞.水声通信技术研究进展[J].厦门大学学报(自然科学版),2011,50(2)
    43.吴芳菲,黄建国,何成兵.远程高速水声通信及实验研究[J].计算机测量与控制,2010,18(8)
    44.宋岩.OFDM水声通信中载波间干扰抑制技术研究(硕士学位论文).哈尔滨工程大学,2011.3.
    45.王燕飞,龙夫.介形虫:海洋的测深仪.海洋生态.2006.
    46.陈会.压力式水深测量仪的研制(硕士学位论文).中国海洋大学,2007.
    47.邹志利.水波理论及其应用[M].科学出版社,2005.
    48. Mark.H.Houstona, Jerome M.Paros. High Aeeuracy Pressure Instrumentation for Underwater APPlieations[J].Underwater Teclmolog April 1998,17:307-311.
    49.刘雁春.我国海洋测绘技术的新进展[J].测绘通报,2007.3:1-7.
    50.冯士榨.海洋科学导论[M].高等教育出版,1999.
    51.陈力平.超声波测深法水深数字化技术探讨.水利水电快报,22(13).2001.10
    52.李晔,刘建成.带翼水下机器人运动控制的动力学建模[J].机器人,2005,27(2):128-131.
    53.赵卫东,宋金明.海洋化学传感器研制的动态评述[J].海洋与湖沼,2000,31(4):453-459.
    54. Cristina, N.,2007. Focus on sample handling [J]. Anal Bioanal Chem (388): 1001-1002.
    55. Eberhard, J. S., Michael, S., Jan, W, et al.,2005. A routine device for high resolution bottom water sampling [J]. Journal of Sea Research 54,204-210.
    56.韩光,陶建华.新型航空海水温度、盐度、深度探头运动特性的计算方法和实验验证[J].水动力学研究与进展,2001,15(4):467-471.
    57.胡志强,林扬,谷海涛.水下机器人粘性类水动力数值计算方法研究[J].机器人,2007,29(2:)145-150.
    58. Eberhard, J. S., Michael, S., Jan, W., et al.,2005. A routine device for high resolution bottom water sampling [J]. Journal of Sea Research 54,204-210.
    59. Kriss, A.E., Lebedeva, M.L., Tsiban, A.V.,1966. Comparative estimate of a Nansen and microbiological water bottle for sterile collection of water samples from depths of seas and oceans[J]. Deep Sea Research and Oceanographic Abstracts 13(2), 205-208.
    60.周丰年、田淳等.利用GPS在无验潮模式下进行江河水下地形测量[J].测绘通报,2001,28(5):28-30.
    61.徐冉.基于Kalman滤波的测深系统研究(硕士学位论文).哈尔滨工业大学,2011.
    62.汪志明.差分GPS和测深仪组合系统在水下地形测量中的应用研究(硕士学位论文).武汉大学,2003.
    63.李玉成、滕斌.波浪对海上建筑物的作用[M],海洋出版社,2002.
    64.周光炯、严宗毅等.流体力学[M].高等教育出版社,2000.
    65.邹志利.水波理论及其应用[M].科学出版社,2005.
    66.宫云梅.智能压力传感器数据的补偿技术处理及无线传输(硕士学位论文).河北工业大学,2006.
    67.陈曦.扩散硅压力传感器及其温度补偿[J].自动化仪表,1997,18(2),36-39.
    68.段振新.硅压力传感器的温度补偿方法[J].黑龙江电子技术,1991,1(3):12-16.
    69.谢燕敏.便携式数字压力校验仪的研制(硕士学位论文).沈阳工业大学,2003.
    70.方彦军,孙建.智能仪器技术及其应用[M].化学工业出版社,2003.
    71.樊昌信,张甫诩,徐炳祥,吴成柯.通信原理(第五版).国防工业出版社,2001
    72.张欲.浅海信道水声数字通信系统的性能分析,西北工业大学2000(4):612-615
    73.高路等.高速水声通信系统仿真研究[J].声学学报,2003,vol(28):33-39
    74. Hoffinan D.W.LORA.a model for predicting the performance of long range active sonar system[J], AD36539, Dee.1976
    75. J.A.Catipovic.Performance limitations in underwater acoustic telemetry [J], IEEE J.Oceanic Eng., vol.15, pp.205-216, July 1990
    76. M.Stojaovie.Recent Advances in High- Speed Underwater Acoustic Communications[J], IEEE Journal of Oceanic,1996,21(2):125-136P
    77.刘颖,王树勋,梁应敞.多通道干扰下的多径时延估计[J].电子学报,2001,Vol.29
    78. Milica Stojanovic.Recent Advances in High-Speed Underwater Acoustic Communication[J].IEEE J.Oceanic Eng.Vol21,No2.1996:125-136P
    79. John G Webster, Ed, John Wiley&Sons.MStojanovie, Underwater Acoustic Communication[J].entry in Encyclopedia of Electrical and Electronics Engineering, 1999:688-698P
    80.欧阳长月.数字通信--传输原理及应用[M].北京航空航天大学出版社,1990.
    81.褚东升.带乘性噪声系统的最优估计理论与应用[D].哈尔滨工业大学,1993.
    82.褚东升,张征.带乘性噪声的一类非线性系统的滤波算法[J].中国海洋大学学报(自然科学版),2006,36(4):569-572
    83.陈希信,蒋建国,徐新盛.一种水下远程目标探测的新方法[J].声学学报,2004,29(1):40-42
    84.褚东升,张玲.通道特性相关时带乘性噪声系统最优滤波[J].青岛海洋大学学报,2002,32(6):987-992
    85. Sharif B., Neasham J. Hinton O.R., Adams A.E.A computationally efficient DoPPler Compensation system for underwater acoustic communications [J]. IEEE Journal of Oceanic Engineering.2000,25(1):52-60
    86.孙洁,晋光文,白登海.大地电磁测深资料的噪声干扰[J].物探与化探,2000,24(2):119-127.
    87. WANG H L, DONG H B, HE L H, et al. Design and simulation of LQR controller with the linear inverted pendulum [C]. International Conference on Electrical and Control Engineering, ICECE,2010:699-702.
    88. WANG X L. Improved adaptive filter with application to relative navigation [J]. GPS Solutions,2011,15 (2):121-128.
    89.谭超,董浩斌,葛自强.OVERHAUSER磁力仪激发接收系统设计[J].仪器仪表学报,2010,31(8):1867-1872.
    90.邓森,景博,周伟.一种快速收敛的多级独立分量分析算法[J].仪器仪表学报,2011,32(11):2430-2436.
    91.赵丽,陈小惠,潘树国.GPS频域并行码捕获改进算法[J].电子测量与仪器学报,2011,25(11):985-990.
    92.黄建龙,刘明哲,王华.液压综合试验台及其监控系统的研究[J].液压与气动,2007.10
    93.朱鹏程,鄢华林.一种恒线速度控制的液压绞车系统设计[J].液压与气动,2008.5.
    94.程为彬,寇莹,程建年,肖飞.液压绞车恒速度控制的实现[J].测井技术,2005,29(1)
    95.赵亮.液压提升机电液比例伺服系统研究[D].中国矿业大学,2011.5.
    96.王春行.液压伺服控制系统[M].北京:机械工业出版社,1981.
    97.彭佑多,余兵,高光辉,刘繁茂.电液集成式液压提升机的电液速度伺服控制系统的分析与综合[J].中国机械工程,2007(22),2682-2686.
    98.王海波.水下拖曳升沉补偿液压系统及其控制研究[D].浙江大学,2009.7.
    99.曾志林,徐国华,赵寅,徐兵.水下大负载高精度液压绞车滑模控制研究[J].液压与气动,2012(7),18-20.
    100.杨乐平,李海涛,杨磊.LabvIEw程序设计与应用[M].北京:电子工业大学出版社,2004.
    101.钟绍俊,许素安,赵子恺.可编程控制器与LabVIEW的通讯实现[J].微计算机信息,2003(3)
    102.刘峰.基于自由口协议的LabVIEW与PLC通讯设计[J].现代制造技术与装备,2012(5)
    103.戴鹏飞,王胜开,王格芳等.测试工程与LabvIEw应用[M].北京:电子工业出版社,2006
    104.National Instruments Corporation. The Measurement and Automation Cal Lalog. 2008.
    105.杨洋,隋成华,童建平.LabVIEW虚拟仪器串行通信的研究[J].仪器仪表学报,2009(10)