全内反射荧光法研究卟啉、蛋白质的界面吸附和相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全内反射荧光法(TIRF)具有高度的界面特异性,可以有效排除大量本体溶液的干扰,获取界面信号,是一种良好的界面分析技术;生命物质在界面的性质研究在基础科学研究、生物学以及工业中都具有重要的意义,已经引起了广泛的关注。卟啉是一类具有重要生物意义的化合物,在新陈代谢中起着不可缺少的作用;蛋白质是生物体的重要组成成分,参与所有的生命活动。卟啉和蛋白质在溶液和界面的性质以及两者的相互作用一直是人们广泛关注的课题。本论文利用TIRF并结合同步荧光技术研究了卟啉、蛋白质在固/液以及液/液界面的荧光光谱、吸附特性以及两者相互作用。论文共分五章:
     第一章为绪论,评述了TIRF在生命物质界面分析中的研究进展,本章共分六部分。第一部分介绍了TIRF的原理、发展及其特点;第二部分对生命物质的界面研究作了简单评述,介绍界面研究的意义和常用的界面研究方法;第三部分重点介绍TIRF研究生命物质在固/液界面性质的主要研究内容和研究进展;第四部分是TIRF应用于液/液界面的研究现状;第五部分介绍TIRF与同步扫描技术的联用;最后一部分是在上述调研的基础上提出了本论文的构思。
     第二章研究了在十六烷基三甲基溴化铵(CTAB)存在条件下,TPPS在水溶液、亲水玻璃/水界面以及二氯二甲基硅烷修饰的疏水玻璃/水界面的荧光光谱和吸附特性,考察了影响TPPS荧光光谱和界面吸附的因素,探讨了特定条件下TPPS在界面的吸附动力学情况,对于生物相容性材料的研究有重要的参考价值。本章首先应用常规荧光、全内反射荧光并结合同步荧光技术深入探讨了TPPS在水溶液、亲水和疏水玻璃/水界面的荧光特性,并考察了TPPS在界面的吸附。TPPS有几种不同的存在型体,如双质子化、非质子化、胶束化单体、H-聚集、J-聚集以及与其它物质形成复合体等,实验结果表明,在CTAB存在条件下,无论在亲水还是在疏水玻璃/水界面,TPPS的非质子型体(TPPS~(4-))均优先吸附在界面上,且在亲水界面上,只有在pH非常低的情况下有双质子型体(H_2TPPS~(2-))存在,而在疏水的玻璃/水界面,在很宽的pH范围内,H_2TPPS~(2-)都与TPPS~(4-)共存在界面上。详细考察了不同类型表面活性剂及其浓度、TPPS浓度、pH值对本体溶液和界面荧光的影响,结果显示静电力在TPPS固/液界面吸附过程中有重要的作用。考察了TPPS在不同溶液条件下的吸附动力学,比较了TPPS亲水和疏水界面上不同的吸附特性,探讨了影响TPPS在固/液界面吸附的因素,为调控TPPS在界面的吸附和应用提供新的研究方法和理论依据。
     第三章研究了TPPS与BSA在溶液中和固/液界面上的相互作用以及BSA在玻璃/水界面的吸附特性。首先考察了TPPS对溶液中BSA内源荧光的影响,发现TPPS对BSA的内源荧光具有猝灭作用,并计算其Stern-Volmer猝灭常数以及猝灭速率常数,证明TPPS对BSA具有静态猝灭作用。研究了不同pH条件下,BSA对溶液中TPPS荧光的影响,发现两者在较低的pH范围更易于形成结合体。以TPPS作为BSA的荧光探针,提出了一种TIRF测定溶液中BSA含量的新方法,BSA浓度在1.47×10~(-8)~1.18×10~(-7)M范围与界面结合体同步荧光强度成正比,线性拟合方程为I=-3.21+14.53C_(BSA)(10~(-8)M),并应用于实际血清样的分析,与临床数据结果吻合较好。本章重点利用TIRF考察了各种因素对蛋白质在玻璃/水界面的吸附的影响,考察了不同溶液条件下BSA在固/液界面的吸附动力学,获得不同条件下BSA的吸附动力学参数,结果表明BSA的吸附动力学符合Elovich方程和双常数方程,计算了不同条件下BSA在亲水玻璃/水界面的饱和吸附量和吸附平衡常数,结果表明,BSA在玻璃/水界面的吸附过程符合Langmuir吸附模型,BSA以单分子层吸附于玻璃/水界面。初步探讨了BSA在二氯二甲基硅烷修饰的疏水玻璃/水界面的吸附特性,并与亲水玻璃/水界面的性质进行比较。
     第四章研究了不同pH和浓度条件下BSA与TPPS在液/液界面的结合情况,并探讨了BSA在界面的吸附情况。结果表明,在液/液界面两者主要以1:1比例相结合;比较界面与甲苯中的荧光光谱,可以推测,油/水界面的极性更接近有机相。建立了现场检测油/水双相体系分配的荧光技术,考察了BSA与TPPS在水、界面以及油相中的分配和型体特征。通过绘制全内反射同步荧光强度与溶液总浓度的关系曲线,获得BSA的临界胶束浓度为1.0×10~(-4) M;提供了计算界面吸附参数的新方法,获得了BSA-TPPS在甲苯/水界面的饱和吸附量和吸附平衡常数。
     第五章是本论文的结语与展望。总结了本论文研究工作的创新性,并对研究工作的进一步发展进行了展望。
Total internal reflection fluorescence (TIRF) spectroscopy is a highly selective and sensitive way to study the interfacial region. The interfacial behavior of biomaterial is important in fundamental research, basic industry and biological sciences. This dissertation uses TIRF and its combination with synchronous fluorescence technique to study the behavior of protein and porphyrin at solid/liquid interface and liquid/liquid interface. The paper consists of five chapters.
     In chapter one, the research progress and application of TIRF in biomaterial study are reviewed. This chapter consists of introduction of TIRF, study of biomaterial interfacial behavior, behavior of biomaterial at solid/liquid interface and liquid/liquid interface by TIRF, the combination of TIRF and synchronous scanning technique, and the research objective for this dissertation.
     In chapter two, TIRF was used to investigate the adsorption behavior of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) at the glass/water interface in the presence of a cationic surfactant (cetyltrimethylammonium bromide, CTAB) far below the critical micelle concentration. We proposed the adsorption model of TPPS, which was different from the adsorption of TPPS in the presence of micelles of CTAB at glass/water interface. TPPS and CTAB did not form stabile complex in diluent system at the interface. The interfacial species of TPPS were analyzed by comparing the spectra of TPPS at the glass/water interface and in the aqueous phase. The influences of the TPPS concentration, the CTAB concentration, and the pH values on the interfacial fluorescence spectra and intensities were studied. It demonstrated that electrostatic interaction and hydrophobicity had important effect on the adsorption of TPPS in the presence of CTAB. The different effects of TPPS concentration on the adsorption behaviour of TPPS at different pH were observed for the first time. It was found that the adsorption isotherms of TPPS at glass/water interface could fit Freundlich equation at pH 7.1. At hydrophobic glass/water interface, diprotonated TPPS and unprotonated TPPS both exist at the interface in the wide pH range. It indicated the behavior of TPPS at different interface is different. This study provided theoretical base for interfacial adsorption of TPPS.
     In chapter three, the interaction of TPPS and BSA in solution and at the glass/water interface was studied by fluorescence spectroscopy. It was found that TPPS quenched the BSA intrinsic fluorescence. The Stern-Volmer quenching constant and quenching rate constant were calculated and it indicated TPPS had static quenching for BSA fluorescence. TPPS was used as a BSA fluorescence probe and a TIRF method for determining the concentration of BSA in solution was proposed. The method had been applied to real blood serum with satisfying results. Several factors on the effect of BSA adsorption onto solid/liquid interface were researched by TIRF. The adsorption equilibrium constant and the maximum amount of adsorption were calculated by Langmuir adsorption isothermal model. The adsorption kinetics of BSA in different solution conditions was studied and the adsorption kinetics parameters were gained by several adsorption kinetics models. The adsorption of BSA at hydrophobic glass/water interface modified with dichlorindimethylsilane was further studied. This chapter provides a new way for the studying of adsorption kinetics at solid/liquid interface.
     In chapter four, the combination of BSA and TPPS with different pH concentration, and its adsorption behaviour on liquid/liquid was studied. Under the experimental condition, the components on the interface were dominated by their combination with proportion of 1:1. Compared with the spectra of TPPS resolved in toluene, it was concluded that the polarity of oil/water interface is closer to organic phase than water, and BSA provided unpolar microenvironment for TPPS under certain condition. According to the curve relation between the interfacial fluorescence intensity and the total concentration, the critical micelle concentration (cmc) of BSA was obtained with a value of 1.0×10~(-4) M. The adsorption equilibrium constant and the maximum amount of adsorption were also gained by proposed method.
     In chapter five, the innovation of the paper was concluded and the prospect of this research was given.
引文
[1]陈国珍,黄贤智,许金钩,等.荧老分析法(第二版)[M].北京:科学出版社,1990.(p28).
    [2]Galban J.,Andreu Y.,Sierra J.E,et al.Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes:a review[J].Luminescence,2001,16(2),199-210.
    [3]Retty H.R.Fluorescence microscopy:Established and emerging methods,experimental strategies,and applications in immunology[J].Microscopy Res.Tech.,2007,70(8),687-709..
    [4]潘祖亭,刘义庆,刘小玲.药物荧光分析法研究进展[J].武汉大学学报(理学版),2000,46(6),674-680.
    [5]Fletcher K.A.,Fakayode S.O.,Lowry M.,et al.Molecular fluorescence,phosphorescence,and chemiluminescence spectrometry[J].Anal Chem.,2006,78(12),4047-4068.
    [6]Powe A.M.,Fletcher K.A.,Stluce N.N.,et al.Molecular fluorescence,phosphorescence,and chemiluminescence spectrometry[J].Anal.Chem.,2004,76(16),4614-4634.
    [7]李耀群,姚闽娜.空间分辨荧光分析技术[J].分析化学,2004,32,1421-1425.
    [8]Wilson T.,Masters B.R.Real-time scanning slit confocal microscopy of the in-vivo human cornea[J].Appl.Opt.,1994,33,695-701.
    [9]Diaspro A.,Chirico G.,Federici E,et al.Two-photon microscopy and spectroscopy based on a compact confocal scanning head[J].J.Biomed.Optics,2001,6,300-310.
    [10]Kawata Y.,Xu C.,Denk W.Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip[J].J.Appl.Phys.,1999,85,1294-1301.
    [11]王楚,汤俊雄.光学[M],北京:北京大学出版社,2001.(p37).
    [12]赵建林.高等光学[M],北京:国防工业出版社,2002.(p42).
    [13]Rumbles G.,Brown A.J.,Phillips D.Time-resolved evanescent wave-induced fluorescence spectroscopy.1.Deviations in the fluorescence lifetime of tetrasulfonated aluminum phthalocyanine at a fused-silica methanol interface[J].J.Chem.Soc.Faraday Trans.,1991,87,825-830.
    [14]Harrick N.J.Study of physics and chemistry of surfaces from frustrated total internal reflections [J].Phys.Rev.Lett.,1960,4,224-226.
    [15]Harrick N.J.Internal reflection spectroscopy[M].New York,Interscience,1967.
    [16]Harrick N.J.,Loeb G.I.Multiple internal reflection fluorescence spectroscopy[J].Anal Chem.,1973,45,687-691.
    [17]Hirschfeld T.Total reflection spectroscopy[J].Canad.Spectrosc.,1965,10,128.
    [18]Hirschfeld T.Optical microscopic observation of single small molecules[J].Appl.Opt.,1976,15,2965-2966.
    [19]Reichert W.M.Evanescent detection of adsorbed films- assessment of optical considerations for absorbance and fluorescence spectroscopy at the crystal solution and polymer-solution interfaces[J].Critical Reviews in Biocompatibility,1989,5,173-205.
    [20]Hlady V.,Reinecke D.R.,Andrade J.D.Fluorescence of adsorbed protein layers.1.Quantitation of total internal-reflection fluorescence[J].J.Colloid lnterface Sci.,1986,111(2),555-569.
    [21]Cheng Y.L.,Darst S.A.,Robertson C.R.Bovine serum-albumin and desorption rates on solid-surfaces with varying surface-properties[J].J.Colloid Interface Sci.,1987,118(1),212-223.
    [22]Fukumura H.,Hayashi K.Time-resolved fluorescence anisotropy of labeled plasma-proteins adsorbed on polymer surfaces[J].J.Colloid Interface Sci.,1990,135(2),435-442.
    [23]Toriumi M.,Masuhara H.Time-resolved total internal-reflection fluorescence spectroscopy-principles,instruments,and applications[J].Spectrochimica Acta Rev.,1991,14(5),353-377.
    [24]Bessho K.,Uchida T.,Yamauchi A.,et al.Microenvironments of 8-anilino-l-naphthalenesulfonate at the heptane-water interface:Time-resolved total internal reflection fluorescence spectroscopy[J].Chem.Phys.Lett.,1997,264(3-4),381-386.
    [25]Filippov L.K.Kinetic-diffusive-convective adsorption in TIRF flow cells[J].J.Colloid Interface Sci.,1995,174(1),32-39.
    [26]Filippova N.L.Adsorption kinetics of polyelectrolytes on planar surfaces under flow conditions [J].J.Colloid Interface Sci.,1999,211(2),336-354.
    [27]Filippova N.L.Dynamic surface tension and adsorption/desorption kinetics for polymer mixtures on planar surfaces - Ⅱ.Under flow conditions[J].J.Colloid Interface Sci.,1999,216(1),86-95.
    [28]Fisher L.R.Total Internal Reflection Fluorescence Spectroscopy of biomaterials,in:Surface Analytical Technique for Probing Biomaterials Processes[M].(Davies J.Ed.).CRC Press Inc.,1996,Chapter 2.
    [29]Steyer J.A.,Almers W.A real-time view of life within 100 nm of the plasma membrane [J].Nature Reviews Molecular Cell Biology,2001,2(4),268-275.
    [30]Mashanov G.I.,Tacon D.,Knight A.E.,et al.Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy[J].Methods,2003,29(2),142-152.
    [31]Kim D.,Lee H.G.,Jung H.,Kang S.H.Single-protein molecular interaction on the polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM[J].Bull.Korean Chem.Soc.,2007,28,783-790.
    [32]Wazawa T.,Ueda M.Total internal reflection fluorescence microscopy in single molecule nanobioscience[J].Microscopy Tech.,2005,95,77-106.
    [33]Czeslik C.,Royer C.,Hazlett T.,et al.Reorientational dynamics of enzymes adsorbed on quartz:A temperature-dependent time-resolved TIRF anisotropy study[J].Biophys.J.,2003,84(4),2533-2541.
    [34]Wakelin S.,Bagshaw C.R.A prism combination for near isotropic fluorescence excitation by total internal reflection[J].Journal of Microscopy-OXFORD,2003,209,143-148.
    [35]Hlady V.,Andrade J.D.A TIRF titration study of 1-anilinonaphthalene-8-sulfonate binding to silica-adsorbed bovine serum-albumin[J].Colloid and Surfaces,1989,42(1-2),85-96.
    [36]Yao M.N.,Li Y.Q.Adsorption behavior of a water-soluble porphyrin at the glass-water interface as studied by synchronous total internal reflection fluorescence spectroscopy[J],Chin.Chem.Lett.,2004,15(1),109-111.
    [37]Rebar V.A.,Santore M.M.History-dependent isotherms and TIRF calibrations for homopolymer adsorption[J].Macromolecules,1996,29(19),6262-6272.
    [38]Kuster,W.Z.Information on bilirubine and haemine[J].Z.Physiol.Chem.,1912,82,463-476.
    [39]Falk J.E.Porphyrin and Metalloporphyrin[M].Australia:Division of Plant Industry,Commonwealth Scientific and Industrial Research Organization,Canberra,A.C.T.1978.(pl)
    [40]刘育,尤长城,张衡益.超分子化学[M].南开大学出版社.2001.
    [41]Evstigneeva R.P.Advances and perspectives of porphyrin synthesis[J].Pure and Applied Chemistry,1981,53(2),1129-1140.
    [42]Collman J.P.,Gagne R.R.,Halbert T.R.,et al.Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin.Model for oxymyoglobin[J].J.Am.Chem.Soc.,1973,95,7868-7870.
    [43]Almog J.,Baldwin J.E.,Dyer R.L.,et al.Condensation of tetraaldehydes with pyrrole.Direct synthesis of capped porphyrins[J].J.Am.Chem.Soc.,1975,97,226-227.
    [44]Volkov A.G,Deamer,K.W.Liquid-Liquid Interfaces Theory and Methods[M],CRC Press:Boca Raton,FL,1996 and references therein.
    [45]Nelson A.Influence of iiologically active compounds on the monomolecular gramicidin channel function in phospholipid monolayers[J].Langmuir,1996,12,2058-2067.
    [46]Sastre A.M.,Szymanowski J.Discussion of the physicochemical effects of modifiers on the extraction properties of hydroxyoximes.A review[J].Solv.Extr.Ion Exch.,2004,22,737-759.
    [47]Ohashi,A.,Tsukahara,S.,Watarai,H.Acid-catalyzed interfacial complexation in the extraction kinetics of palladium(Ⅱ) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol[J].Anal Chim.Acta.,1998,364,53-62.
    [48]Fujiwara M.,Tsukahara S.,Watarai H.Time-resolved total internal reflection fluorometry of ternary europium(Ⅲ) complexes formed at the Liquid/Liquid interface[J].Phys.Chem.Chem.Phy.,1999,1,2949-2951.
    [49]Liljeroth P.,Quinn B.M.Resolving electron-transfer kinetics at the nanocrystal/solution interface[J].J.Am.Chem.Soc.,2006,128,4922-4923.
    [50]Kim J.H.,Roy S.,Kellis J.T.,Poulose A.J.,Gast A.P.,Robertson C.R.Protease adsorption and reaction on an immobilized substrate surface[J].Langmuir,2002,18,6312-6318.
    [51]Mendonca J.K.A.,do Nascimento P.C.,Bohrer D.Polyethylene powder microcolumn for protein separation prior to HPLC plasma analysis.Application to the determination of copper and zinc[J].J.Sepration Sci.,2003,26,829-834.
    [52]Takagi O.,Kuramoto N.,Ozawa M.,et al.Adsorption/desorption of acidic and basic proteins on needle-like hydroxyapatite filter prepared by slip casting[J].Ceramics International,2004,30,139-143.
    [53]Liu X.,Tan W.A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons[J].Anal Chem.,1999,71,5054-5059.
    [54]Malmsten M.Ellipsometry and TIRF studies of adsorption processes in parenteral drug delivery[J].Interface Sci.,1997,5,159-167.
    [55]Philippot J.R.,Schuber F.Liposomes as Toos in Basic Research and Industry[M].CRC Press,Inc.:Micchigan 1994.
    [56]Kim J.,Somorjai G.A.,Molecular packing of lysozyme,fibrinogen,and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy[J].J.Amen Chem.Soc.,2003,125,3150-3158.
    [57]Buijs J.,Hlady V.Adsorption Kinetics,Conformation,and Mobility of the Growth Hormone and Lysozyme on Solid Surfaces,Studied with TIRF[J].J.Colloid Interface Sci.,1997,190,171-181.
    [58]Malmsten M.,Muller D.,Lassen B.Sequential Adsorption of Human Serum Albumin(HSA),Immunoglobulin G(IgG),and Fibrinogen(Fgn) at HMDSO Plasma Polymer Surfaces[J].J.Colloid Interface Sci.,1997,193,88-95.
    [59]Santore M.M.,Wertz C.F.Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method[J].Langmuir,2005,21,10172-10178.
    [60]Zhen G.L.,Eggli V.,Voros J.,et al.Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips:A study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing[J].Langmuir,2004,20,10464-10473.
    [61]Armstrong J.,Salacinski H.J.,Mu Q.S.,et al.Interfacial adsorption of fibrinogen and its inhibition by RGD peptide:a combined physical study[J].J.Physics-Condemsed Matter,2004,16,s2483-s2491.
    [62]Pfeiffer N.,Mandrusov E.,Vroman L.,et al.Effects of secondary flow caused by a curved channel on plasma protein adsorption to artificial surfaces[J].Biotech.Progress,1998,4(2),338-342.
    [63]Hansson K.M.,Tosatti S.,Isaksson J.,et al.Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces [J].Biomaterials,2005,26(8),861-872.
    [64]Arwin H.,Spectroscopic ellipsometry and biology:recent developments and challenges[J].Thin Solid Films,1998,313,764-774.
    [65]Arwin H.Spectroscopic ellipsometry for characterization and monitoring of organic layers[J].Phys.Status Solidi A:Applied Research,2001,188,1331-1338.
    [66]Lok B.K.Ph.D.Dissertation,1982,Stanford University.
    [67]Van Enckevort H.J.,Dass D.V.,Langdon A.G.The adsorption of bovine serum albumin at the stainless-steel/aqueous solution interface[J].J.Colloid Interface Sci.,1984,98,138-143.
    [68]Horrocks B.R.,Pitt W.G.,Cooper S.L.Protein adsorption on polymeric iomaterial 1.Adsorption isotherms[J].J.Colloid Interface Sci.,1988,124,28-43.
    [69]Young B.R.,Pitt W.G.,Cooper S.L.Protein adsorption on ploymeric iometerial[J].J.Colloid Interface Sci.,1988,125,246-260.
    [70]Liu F.Y.,Zhou M.Y.,Zhang F.~(125)I-labelling of human serum albumin and fibrinogen and a study of protein adsorption properties on the surface of titanium oxide film[J].Applied Radiation and Isotopes,1998,49(1-2),67-72.
    [71]Beissinger R.L.,Leonard E.F.Sorption kinetics of binary protein solutions:general approach to multicomponent systems[J].J.Colloid Interface Sci.,1982,85,512-533.
    [72]Bellissimo J.A.,Cooper S.L.Fourier transform infrared spectroscopic studies of plasma protein adsorption under well defined flow conditions[J].Trans.Am.Soc.Artif.Itern.Organs.,1984,30,359-363.
    [73]McClellan S.J.,Franses E.I.Adsorption of bovine serum albumin at solid/aqueous interfaces [J].Colloids and surfaces A-physicochemical and engineering aspects,2005,260(1-3),265-275.
    [74]Iucci G.,Polzonetti G.,Infante G.,Rossi L.XPS and FT-IR spectroscopy study of albumin adsorption on the surface of a pi-conjugated polymer film[J].Surface and Interface Analysis,2004,36(8),724-728.
    [75]Ong J.L.,Chittur K.K.,Lucas L.C.Disscution/reprecipitation and protein adsorption studies of calcium-phosphate coatings by FT-IR ATR techniques[J].J.Biomed.Mater.Research,1994,28(11),1337-1346.
    [76]Cantor C.R.,Schimmel P.R.Biophysical Chemistry.Part Ⅱ:Techniques for the Study of Biological Strutures and Function,WH Freeman and Company,San francisco,1980.
    [77]Soderquist M.E.,Walton A.G.Structural changes in proteins adsorbed on polymer surfaces[J].J.Colloid lnterface Sci.,1980,75,386-397.
    [78]Lundqvist M.,Sethson I.,Jonsson B.H.Protein adsorption onto silica nanoparticles:Conformational changes depend on the particles' curvature and the protein stability[J].Langmuir,2004,20(24),10639-10647.
    [79]Peng Z.G.,Hidajat K.,Uddin M.S.Conformational change of adsorbed and desorbed bovine serum albumin on nano-sized magnetic particles[J].Colloids and Surfaces B-Biointerfaces,2004,33(1),15-21.
    [80]de Jongh H.H.J.,Meinders M.B.J.Proteins at air-water interfaces studied using external reflection circular dichroism[J].Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2002,58(14),3197-3204.
    [81]Hansen J.,Ely K.,Horsley D.,et al.The adsorption of lysozymes-A model system [J].Makromolekulare Chemie-Macromolecular Symposia,1988,17,135-154.
    [82]Green R.J.,Frazier R.A.,Shakesheff K.M.,Davies M.C.,Roberts C.J.,Tendler S.J.B.Surface plasmon resonance analysis of dynamic biological interaction with biomaterials[J]. Biomaterials,2000,21,1823-1835.
    [83]Mrksich M.,Sigal G.B.,Whitesides G.M.Surface-plasmon resonance permits in-situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold[J].Langmuir,1995,11,4383-4385.
    [84]Raffaini G.,Ganazzoli E Simulation study of the interaction of some albumin subdomain with a flat graphite surface[J].Langmuir,2003,19,3403-3412.
    [85]Ravichandran S.,Madura J.D.,Talbot J.A brownian dynamics study of the initial stages of hen egg-white lysozyme adsorption at a solid interface[J].J.Phys.Chem.B,2001,105(17),3610-3613
    [86]Li Y.Q.,Xu J.J.,Wang R.T.,Yu L.J.,Li Z.A spectrometric setup for synchronous total internal reflection fluorescence measurement at the solid/liquid interface[J].Chin.Chem.Lett.,2002,13(6),571-572.
    [87]Czeslik C.,Jackler G.,Royer C.Driving forces for the adsorption of enzymes at the water/silica interface studied by total internal reflection fluorescence spectroscopy and optical reflectometry [J].Spectroscopy:An International J.,2002,16,139-145.
    [88]Berg C.H.,Muller D.,Amebrant T.,Malmsten M.Ellipsometry and TIRF studies of enzymatic degradation of interfacial proteinaceous layers[J].Langmui,r 2001,17,1641-1652.
    [89]Vonbrevern O.,Hlady V.,Jennissen H.P.,et al.Detection of conformationally altered phosphorylase-B adsorbed to silica surfaces by total internal-reflection fluorescence(TIRF)[J].Biol.Chem.Hoppe-Seyler,1991,372(9),639-640.
    [90]Golander C.G.,Lin Y.S.,Hlady V.,et al.Wetting and plasma-protein adsprption atudies using surfaces with a hydrophobicity gradient[J].Colloid and surfaces,1990,49(3-4),289-302.
    [91]Klinth J.E.,Larsson R.,Andersson P.O.,Ekdahl K.N.A novel application of multi-wavelength TIRF spectroscopy for real time monitoring of antithrombin interaction with immobilized heparin[J].Biosensors Bioelectronics,2006,21,1973-1980.
    [92]Wertz C.F.,Santore M.M.Adsorption and Reorientation Kinetics of Lysozyme on Hydrophobic Surfaces[J].Langmuir 2002,18,1190-1199.
    [93]Darst S.A.,Robertson C.R.,Berzofsky J.A.Myoglobin adsorption onto cross-linked polymethylsiloxane[J].J.Colloid Interface Sci.,1986,111,466-474.
    [94]Tremsina Y.S.,Sevastianov V.I.,Petrash S.,Dando W.,Foster M.D.Competitive adsorption of human serum albumin and gamma-globulin from a binary protein mixture onto hexadecyltrichlorosilane coated glass[J].J.Biomaterials Sci.-Polymer Edition,1998,9(2),151-161.
    [95]Vroman L.,Adams A.L.Findings with recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interface[J].Surf.Sci.,1969,16,438
    [96]Malmsten M.,Lassen B.Competitive adsorption at hydrophobic surfaces from binary protein systems[J].J.Colloid Interface Sci.,1994,166,490
    [97]Lassen B.,Malmsten M.Competitive protein adsorption studied with TIRF and ellipsometry[J].J.ColloidlnterfaceSci.,1996,179,470-477.
    [98]Lassen B.,Malmsten,M.Competitive Protein Adsorption at Plasma Polymer Surfaces[J].J.Colloid Interface Sci.,1997,186,9-16.
    [99]Ramsden J.J.,Prenosil J.E.Effect of ionic-strength on protein adsorption-kinetics[J].J.Phys.Chem.,1994,98(20),5376-5381.
    [100]Shibata C.T.,Lenhoff A.M.TIRF of salt and surface effects on protein adsorption.1.equilibrium[J].J.Colloidlnterface Sci.,1992,148(2),469-484.
    [101]Shibata C.T.,Lenhoff A.M.TIRF of salt surface effects on protein adsorption[J].J.Colloid Interface Sci.,1992,148,485-507.
    [102]Mollmann S.H.,Elofsson U.,Bukrinsky J.T.Displacement of adsorbed insulin by Tween 80 monitored using total internal reflection fluorescence and ellipsometry[J].Pharmaceutical Res.,2005,22,1931-1941.
    [103]Sonesson A.W.,Blom H.,Hassler K.Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy(TIR-FCS)[J].J.Colloid Interface Sci.,2008,317,449-457.
    [104]Thompson N.L.,Burghardt T.P.Total internal-reflection fluorescence-measurement of spatial and orientational distributions of fluorophores near planar dielectric interfaces[J].Biophys.Chem.,1986,25,91-97.
    [105] Thompson N.L., McConnell H.M., Burghardt T.P. Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination [J]. Biophys. J., 1984,46,739-747.
    [106] Manneville J.B., Etienne-Manneville S., Skehel P. Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells [J].J. Cell Sci, 2003,116,3927-3938.
    [107] Riven I., Iwanir S., Reuveny E. GIRK channel activation involves a local rearrangement of a preformed G protein channel complex [J]. Neuron, 2006,51,561-573.
    [108] Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous-solution [J]. Nature, 1995, 374 (6), 555-559.
    [109] Kang S.H., Shortreed M.R., Yeung E.S. Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces [J]. Anal. Chem., 2001, 73, 1091-1099.
    [110] Mehta A.D., Rief M., Spudich J.A., Smith D.A., Simmons R.M. Single-molecule biomechanics with optical methods [J]. Science, 1999,283, 1689-1695.
    [111] Taguchi H., Ueno T, Tadakuma H., Yoshida M., Funatsu T. Single-molecule observation of protein-protein interactions in the chaperonin system [J]. Nature Biotechnology, 2001, 19, 861-865.
    [112] Burmeister J.S., Olivier L.A., Reichert W.M., Truskey G.A. Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials [J]. Biomaterials, 1998,19, 307-325.
    [113] Kroger K., Jung A., Reder S., Gauglitz G. Versatile biosensor surface based on peptide nucleic acid with label free and total internal reflection fluorescence detection for quantification of endocrine disruptors [J]. Anal. Chim. Acta, 2002,469(1), 37-48.
    [114] Gandini S.C.M., Yushmanov V.E., Borissevitch I.E., Tabak M. Interaction of the tetra(4-sulfonatophenyl)porphyrin with ionic surfactants: aggregation and location in micelles [J]. Langmuir, 1999,15,6233-6243.
    [115]吴星,张晓红,朱权,郑刚.Meso-四(4-磺基苯基)卟啉(TPPS)在水及胶束体系中的二聚行为研究[J].高等学校化学学报,1998,1,15-19.
    [116]黄承志,李原芳,黄新华,刘绍璞.阳离子表面活性剂存在下卟啉聚集的光谱研究[J].物理化学学报,1998,14(8),731-736.
    [117]Castriciano M.A.,Romeo A.,Villari V.,Micali N.,Scolaro L.M.Structural rearrangements in 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin J-aggregates under strongly acidic conditions [J].J.Phys.Chem.B.2003;107,8765-8771.
    [118]Tsukahara S.,Watarai H.Kinetics for acid-dissociation of tetraphenylporphinetetrasulfonate in the ground state measured by laser photolysis relaxation method[J].Phys.Chem.Chem.Phys.,2002,4,1592-1597.
    [119]Gajraj A.,Ofoli R.Y.Quantitative technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface[J].Langmiur,2000,16,4279-4285.
    [120]Falk J.E.In porphyrins and metalloporphyrins.Smith K.M.Eds.Elsevier:New York,1975,Section B.
    [121]Bonnett R.Photosensitizers of the porphyrin and phthalocyanined series for photodynamic therapy[J].Chem.Soc.Rev.,1995,24,19-33.
    [122]Borissevitch I.E.,Tominaga T.T.,Imasato H.,Tabak M.Fluorescence and optical absorption study of interaction of two water soluble porphyrins with bovine serum albumin.The role of albumin and porphyrin aggregation[J].J.Luminescence,1996,69,65-76.
    [123]Kadish K.M.,Maiya G.B.,Araullo-McAdams C.Spectroscopic characterization of meso-tetrakis(1-methylpyridinium-4-yl)porphyrins,[(TMpyP)H_2]~(4+) and[(TMpyP)M]~(4+),in aqueous micellar media,where M = VO~(2+),Cu(Ⅱ),and Zn(Ⅱ)[J].J.Phys.Chem.,1991,95,427-431.
    [124]Mazumdar S.,Medhi O.K.,Mitra S.Six-coordinated high-spin models for ferric hemoproteins:NMR and ESR study of the diaquo(protoporphyrinato Ⅸ) iron(Ⅲ) cation and aquohydroxo(protoporphyrinato Ⅸ)iron(Ⅲ) intercalated in aqueous detergent micelles[J].Inorg.Chem.,1988,27,2541-2543.
    [125]Simplicio J.Hemin monomers in micellar sodium lauryl sulfate,spectral and equilibrium study with cyanide[J].Biochemistry,1972,11,2525-2529.
    [126]Saitoh Y.,Watarai H.Total internal reflection fluorometric study of the ion-association adsorption of ionic derivatives of porphyrin at liquid-liquid interface[J].Bull.Chem.Soc.Jpn.,1997,70,351-358.
    [127]Jensen H.,Kakkassery J.J.,Nagatani H.,Fermin D.J.,Girault H.H.Photoinduced electron transfer at liquid/liquid interfaces.Part IV.Orientation and reactivity of zinc tetra(4-carboxyphenyl) porphyrin self-assembled at the water/1,2-Dichloroethane junction[J].J.Am.Chem.Soc.,2000,122,10943-10948.
    [128]黎朝,唐尧基,陈莹,陈静怡,李海燕,李耀群.全内反射荧光光谱法研究水溶性卟啉在正己烷/水界面的吸附行为[J].分析化学,2005,33(11),1543-1536.
    [129]Fujiwara N.,Tsukahara S.,Watarai H.In situ fluorescence imaging and time-resolved total internal reflection fluorometry of palladium(Ⅱ)-tetrapyridylporphine complex assembled at the toluene-water interface[J].Langmuir,2001,17,5337-5342
    [130]Kobayashi J.,Hinoue T.,Watarai H.Study of adsorption of water-soluble porphyrin at glass-solution interface in the presence of cationic surfactant admicelles by means of total internal reflection spectroscopy[J].Bull.Chem.Soc.Jpn.,1998,71,1847-1855.
    [131]Okumura R.,Hinoue T.,Watarai H.Ion-association adsorption of water-soluble porphyrin at a liquid-liquid interface and an external electric field effect on the adsorption[J].Anal Sci.1996,12,393-397.
    [132]Ishizaka,S.;Nakatani,K.;Habuchi,S.;Kitamura,N.Total internal reflection fluorescence dynamic anisotropy of sulforhodamine I01 at a liquid/liquid interface:Rotational reorientation times and interfacial structures[J].Anal Chem.,1999,71,419-426.
    [133]Morrison L.E.,Weber G.Biological membrane modeling with a liquid liquid interface -probing mobility and environment with total intemal-reflection excited fluorescence[J].Biophysical J.,1987,52,367-379.
    [134]Murad M.M.Fluorescence analysis of acridine orange adsorbate at the water/n-heptane interface,bulk and interface[J].J.Fluorescence,1999,9,257-26353.
    [135]Bessho,K.,Uchida,T.,Yamauchi,A.,Shioga,T.,Teramae,N.Microenvironments of 8-anilino-l-Naphthalenesulfonate at the heptane-water interface:Time-resolved total internal reflection fluorescence spectroscopy[J].Chem.Phys.Lett.,1997,264,381-386.
    [136]Ishizaka S.,Nakatani K.,Habuchi S.,Kitamura N.Excitation energy transfer from sulforhodamine 101 to acid blue 1 at a liquid/liquid interface:experimental approach to estimate interfacial roughness[J].Anal Chem.,1999,71,3382-3389.
    [137]Ishizaka S.,Kim H.B.,Kitamura N.Time-resolved total internal reflection fluorometry study on polarity at a liquid/liquid interface[J].Anal Chem.,2001,73,2421-2428.
    [138]Tupy M.J.,Blanch W.H.,Radke J.C.Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces[J].Ind.Eng.Chem.Res.,1998,37,3159-3168.
    [139]Dryfe R.A.W.,Ding Z.,Wellington R.G,Brevet P.F.,Kuzenetzov A.M.,Girault H.H.Time-resolved laser-induced fluorescence study of photoinduced electron transfer at the water/1,2-dichloroethane interface[J].J.Phys.Chem.A,1997,101,2519-2524.
    [140]Hashimoto E,Tsukahara S.,Watarai H.Lateral diffusion dynamics for single molecules of fluorescent cyanine dye at the free and surfactant-modified dodecane-water interface[J]Langrnuir,2003,19,4197-4204.
    [141]Feng P.,Huang C.Z.,Li Y.F.Determination of berberine by measuring the enhanced total internal reflected fluorescence at water/tetrachloromethane interface in the presence of sodium dodecyl benzene sulfonate[J].Anal.Bioanl.Chem.,2003,376,868-872.
    [142]Feng P.,Li Y.F.,Huang C.Z.Determination of chlortetracycline in body fluids with the complex cation of chlortetracycline-europium(Ⅲ)-trioctylphosphine oxide by total internal reflected fluorescence at a water/tetrachloromethane interface[J].Anal Chim.Acta,2001,442,89-95.
    [143]Gajraj A.,Ofoli R.Y.Effect of extrinsic fluorescent labels on diffusion and adsorption kinetics of proteins at the liquid-liquid interface[J].Langmuir,2000,16,8085-8094.
    [144]Vaidya S.S,Ofoli R.Y.Adsorption and interaction of fibronectin and human serum albumin at the liquid-liquid interface[J].Langmiur,2005,21,5852-5858.
    [145]Lloyd J.B.F.Synchronized excitation of fluorescence emission spectra[J].Nature(London),1971,231,64-65.
    [1]Lapes M.,Petera J.,Jirsa M.Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin(TPPS4)[J].J.Photochem.Photobiol.B:Bilo.,1996,36,205-207.
    [2]Bonnett R.Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J].Chem.Soc.Rev.,1995,24,19-33.
    [3]黄承志,李原芳,黄新华,刘绍璞.阳离子表面活性剂存在下卟啉聚集的光谱研究[J].纺理化学学报,1998,14(8),731-736.
    [4]吴星,张晓红,朱权,郑刚.meso-四(4-磺基苯基)卟啉(TPPS)在水及胶束体系中的二聚行为研究[J].高等学校化学学报,1998,19(1),15-19.
    [5]Gandini S.C.M.,Yushmanov V.E.,Borissevitch I.E.,Tabak M.Interaction of the tetra(4-sulfonatophenyl)porphyrin with ionic surfactants:aggregation and location in micelles [J].Langmuir,1999,15,6233-6243.
    [6]Andrade S.M.,Costa S.M.B.Aggregation kinetics of meso-tetrakis(4-sulfonatophenyl)porphine in the presence of proteins:Temperature and ionic strength effects[J].J..Fluorescence,2002,12,77-82.
    [7]Elemans J.A.A.W.,Lensen M.C.,Gerritsen J.W.,van Kempen H.,Speller S.,Nolte R.J.M.,Rowan A.E.Scanning probe studies of porphyfin assemblies and their supramolecular manipulation at a solid-liquid interface[J].Advanced Materials,2003,15,2070.
    [8]Malmsten M.,Ed.Biopolymers at interfaces,Surfactant Science Series[M].marcel Dekker,New York,1998,Vol.75.
    [9]Harada Y.,Girolami G.S.,Nuzzo R.G.Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers[J].Langmuir,2004,20,10878-10888.
    [10]Poksinski M.,Arwin H.Protein monolayers monitored by intemal reflection ellipsometry[J].Thin Solid Films,2004,455,716-721.
    [11]Cross G.H.,Reeves A.A.,Brand S.,Popplewell J.F.,Peel L.L.,Swann M.J.,Freeman N.J.A new quantitative optical biosensor for protein characterization[J].Biosensors & Bioelectronics,2003,19,383-390.
    [12]Sapsford K.E.,Ligler F.S.Real-time analysis of protein adsorption to a variety of thin films[J].Biosensors & Bioelectronics,2004,19,1045-1055.
    [13]Bos M.A.,Werkhoven T.M.,Kleijn J.M.Adsorption behavior and orientation of tetrakis(methylpyridiniumyl)porphyrin on silica[J].Langmiur,1996,12,3980-3985.
    [14]Shimosaka T.,Sugii T.,Hobo T.,Ross J.B.A.,Uchiyama K.Monitoring of dye adsorption phenomena at a silica glass/water interface with total internal reflection coupled with a thermal lens effect[J].Anal.Chem.,2000,72,3532-3538.
    [15]Zimin D.,Craig V.S.J.,Kunz W.Adsorption and desorption of polymer/surfactant mixtures at solid-liquid interfaces:Substitution experiments[J].Langmuir,2004,20,8114-8123.
    [16]Tiberg F.,Ederth T.Interfacial properties of nonionic surfactants and decane-surfactant microemulsions at the silica-water interface.An ellipsometry and surface force study[J].J.phys.Chem.,2000,104,9689-9695.
    [17]Li H.Y.,Tripp C.P.Interaction of sodium polyacrylate adsorbed on TiO_2 with cationic and anionic surfactants[J].Langmuir,2004,20,10526-10533.
    [18]Roy S.,Kim J.H.,Kellis J.T.,Poulose A.J.,Robertson C.R.,Gast A.P.Surface plasmon resonance/surface plasmon enhanced fluorescence:An optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface[J].Langmuir,2002,18,6319-6323.
    [19]Rojas O.J.,Claesson P.M.,Muller D.,Neuman R.D.The effect of salt concentration on adsorption of low-charge-density polyelectrolytes and interactions between polyelectrolyte-coated surfaces[J].J.Colloid Interface Sci.,1998,205,77-88.
    [20]Terui N.,Nakatani K.,Kitamura N.Kinetic analysis of electrochemically induced ion transfer across a single microdroplet vertical bar water interface[J].J.Electroanal.Chem.,2000,494(1),41-46.
    [21]Kakiuchi T.,Nakanishi N.,Senda M.The electrocapillary curves of the phosphatidylcholine monolayer at the polarized oil-water interface.1.measurement of interfacial-tension using a computer-aided pendant-drop method[J].Bull.Chem.Soc.Jpn.,1988,61,1845-1851.
    [22]Kobayashi J.,Hinoue T.,Watarai H.Study of adsorption of water-soluble porphyrin at glass-solution interface in the presence of cationic surfactant admicelles by means of total internal reflection spectroscopy[J].Bull.Chem.Soc.Jpn.,1998,71,1847-1855.
    [23]Okumura R.,Hinoue T.,Watarai H.Ion-association adsorption of water-soluble porphyrin at a liquid-liquid interface and an external electric field effect on the adsorption[J].Anal Sci.,1996,121,393-397.
    [24]Yao M.N.,Li Y.Q.Adsorption behavior of a water-soluble porphyrin at the glass-water interface as studied by synchronous total internal reflection fluorescence spectroscopy[J].Chin.Chem.Lett.,2004,15(1),109-111.
    [25]Murillo P.J.A.,Alafirn M.A.,Fernández L.P.Simultaneous determination of atenolol,propranolol,dipyfidamole and amiloride by means of non-linear variable-angle synchronous fluorescence spectrometry[J].Anal Chim.Acta,1998,370,9-18.
    [26]García L.,Blázquez S.,San AndrOs M.P.,Vera S.Determination of thiamine,riboflavin and pyridoxine in pharmaceuticals by synchronous fluorescence spectrometry in organized media [J].Anal Chim.Acta,2001,434,193-199.
    [27]Wang L.Y.,Zhou Y.Y.,Wang L.,Zhu C.Q.,Li Y.X.,Gao E Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe[J].Anal.Chim.Acta,2002,466(1),87-92.
    [28]Li Y.Q.,Huang X.Z.Rapid resolution of five polynuclear aromatic compounds in a mixture by derivative non-linear variable angle synchronous fluorescence spectrometry[J].Fresenius J.Anal Chem.,1997,357,1072-1075.
    [29]Sui W.,Wu C.,Li Y.Q.Rapid simultaneous determination of four anthracene derivatives using a single non-linear variable-angle synchronous fluorescence spectroscopy[J].Fresenius J.Anal Chem.,2000,368,669-675.
    [30]Li Y.Q.,Xu J.J.,Wang R.T.,Yu L.J.,Li Z.A spectrometric setup for synchronous total internal reflection fluorescence measurement at the solid/liquid interface[J].Chin.Chem.Lett.,2002,13,571-572.
    [31]Fisher L.R.Total Internal Reflection Fluorescence Spectroscopy of biomaterials,in:Surface Analytical Technique for Probing Biomaterials Processes[M].Davies J.,Ed.CRC Press Inc.,1996,Chapter 1.
    [32]Buijs J.,Hlady V.Adsorption kinetics,conformation,and mobility of the growth hormone and lysozyme on solid surfaces,studied with TIRF[J].J.Colloid Interface Sci.,1997,190,171-181.
    [33]Xu Z.,Marchant R.E.Adsorption of plasma proteins on polyethylene oxide-modified lipid bilayers studied by total internal reflection fluorescence[J].Biomaterials,2000,21,1075-1083.
    [34]Fleischer E.B.,Palmer J.M.,Srivastava T.S.,Chatterjee A.Thermodyamic and kinetic properties of an iron-porphyrin system[J].J.Am.Chem.Sot.,1971,93,3162-3167.
    [35]Tabata M.,Tanaka M.A new method for the determination of the stability constant of metalloporphyrins-use of the catalytic effect of mercury(Ⅱ) on metalloporphyrin formation[J].J.Chem.Soc.Chem.Commun.,1985,1,42-43.
    [36]Yao M.N.,Li Y.Q.Analysis of meso-tetrakis(4-sulfonatophenyl)porphyrin in aqueous solution by constant-wavelength synchronous fluorescence spectroscopy[J].Chemical Journal on Internet,2003,5(8),65.
    [37]Maiti N.C.,Mazumdar S.,Periasamy N.J- and H-aggregates ofporphyrin-surfactant complexes:Time-resolved fluorescence and other spectroscopic studies[J].J.Phys.Chem.B,1998,102,1528-1538.
    [38]Papkovskii D.B.,Savitskii A.P.,Ponomarev G.V.Fluorescence of porphyrins in aqueous solutions of surfactants[J].Zhurnal Prekladnol Specktrokopii,1988,51,786-790.
    [39]张韫宏,郭琳,李前树,王永强.单链四苯酚基卟啉在CTAB胶束微环境中的去质子化现象[J].高等学校化学学报,1997,18,1703-1705.
    [40]Yao H.,Kitagawa E,Kitamura N.Photoisomerization of DODCI at solid,liquid interfaces studied by steady-state and time-resolved total-internal-reflection fluorescence spectroscopy [J].Langmuir,2000,16,3454-3461.
    [41]冀会辉,李清山.RhB/SiO2凝胶的吸收与发射光谱[J].光电子·激光,2002,13(9),969-971.
    [42]唐振兴,石陆娥,钱俊青.壳聚糖凝胶吸附蛋白质机理研究[J].精细化工,2004,21,833-836.
    [43]Rarf M.A.,Bukallah S.B.,Hamour F.A.,Nasir A.S.Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior[J].Chem.Eng.J.,2008,137,238-243.
    [1]Andrade J.D.,Ed.Surface and Interfacial Aspects of Biomedical Polymers[M],Vol.1 and Vol.2,Plenum Press,New York,1985.
    [2]Brash J.L.Mechanism of Adsorption of Protein to Solid Surfaces,in Biocompatible Polymers [M],Szycher M.,Ed.Technomic,Lancaster,1983,35.
    [3]Kim J.H.,Roy S.,Kellis J.T.,Poulose A.J.,Gast A.P.,Robertson C.R.Protease adsorption and reaction on an immobilized substrate surface[J].Langmuir,2002,18,6312-6318.
    [4]Shibata C.T.,Lenhoff A.M.TIRF of salt surface effects on protein adsorption.1.Equilibrium[J].J.Colloid lnterface Sci.,1992,148,469-484.
    [5]Shibata C.T.,Lenhoff A.M.TIRF of salt surface effects on protein adsorption[J].J.Colloid Interface Sci.,1992,148,485-507.
    [6]Liu X.,Tan W.A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons[J].Anal.Chem.,1999,71,5054-5059.
    [7]Malmsten M.Ellipsometry and TIRF studies of adsorption processes in parenteral drug delivery[J].Interface Sci.,1997,5,159-167.
    [8]Horbett T.A.Biological activity of adsorbed proteins[J].Surfactant Science Series,2003,110,393-413.
    [9]Ratner B.D.,Hoffman A.S.,Schoen F.J.,Lemons J.E.,Eds.Biomaterials Science:An Introduction to Materials in Medicine[M].San Diego:Academic Press;1996.
    [10]Cha W.,Reissinger R.L.Macromolecular mass transport to a surface:effects of shear rate,pH,and ionic strength[J].J.Colloid Interface Sci.,1996,177,666-674.
    [11]Kim D.,Cha W.,Reissinger R.L.Mass-transport of macromolecules in solutions to interfaces [J].J.Colloid Interface Sci.,1993,159,1-8.
    [12]Filippov L.K.,Filippova N.L.Overshoots of adsorption kinetics[J].J.Colloid Interface Sci.,1996,178,571-580.
    [13]Cha W.,Reissinger R.L.Augmented mass transport of macromolecules in sheared suspensions to surfaces B.bovine serum albumin[J].J.Colloid Interface Sci.,1996,178,1-9.
    [14]Pabst T.M.,Antos D.,Carta G.,Ramasubramanyan N.,Hunter A.K.Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups[J].J.Chromatog.A,2008,1181,83-94.
    [15]Lim Y.I.,Jφrgensen S.B.,Kim I.H.,Computer-aided model analysis for ionic strength-dependent effective charge of protein in ion-exchange chromatography[J].Biochem.Eng.J.,2005,25,125-140.
    [16]Andersson H.,Wijngaart W.,Nilsson P.,Enoksson P.,Stemme G.A valve-less diffuser micropump for microfluidic analytical systems[J].Sensors and Actuators B:Chem.,2001,72,259-265.
    [17]Wainright A.,Williams S.J.,Ciambrone G.,Xue Q.,Wei J.,Harris D.Sample pre-concentration by isotachophoresis in microfluidic devices[J].J.Chromatog.A,2002,979,69-80.
    [18]Tsapikouni T.S.,Missirlis Y.F.pH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM[J].Colloids and Surfaces B:Biointerfaces,2007,57,89-96.
    [19]Laplante S.,Turgeon S.L.,Paquin P.Effect ofpH,ionic strength,and composition on emulsion stabilising properties of chitosan in a model system containing whey protein isolate[J],Food Hydrocolloids,2005,19,721-729.
    [20]Tanford C.Physical Chemistry ofMacromolecules[M].John Wiley & Sons Inc.,1961,111.
    [21]杨频.生物无机化学志论[M].西安交通出版社,1991.
    [22]陈国珍,黄贤智,许金钩,郑朱梓,王尊本.荧光分析法(第二版)[M].科学出版社,1990.
    [23]易平贵,刘俊峰,商志才,俞庆森.荧光光谱法研究E甲基蓝与蛋白质的结合反应[J].光谱学与光谱分析,2001,21,826-828.
    [24]Lakowicz J.R.,Weber G.Quenching of fluorescence by oxygen,Probe for structural fluctuations in macromolecules[J].B iochem istry,1973,12,4161-4170.
    [25]W R.Ware.Oxygen quenching of fluorescence in solution:an experimental study of the diffusion process[J].J.Phys.Chem.,1962,66,455-458.
    [26]Borissevitch I.E.,Tominaga T.T.,Imasato H.,Tabak M.Fluorescence and optical absorption study of the interaction of two water soluble porphyrins with bovine serum albumin.The role of albumin and porphyrin aggregation[J].J.Luminescence,1996,69,65-76.
    [27]Andrade A.M.,Costa S.M.Spectroscopic studies on the interaction of a water soluble porphyfin and two drug cartier proteins[J].Biophys.J.,2002,82,1607-1619.
    [28]Valanciunaite J.,Bagdonas S.,Streckyte G.,Rotomskis R.Spectroscopic study of TPPS_4nanostructures in the presence of bovine serum albumin[J].Photochem.Photobio.Sci.,2006,5,381-388.
    [29]周盈,胡飞雄,孙彦.pH值和离子强度对空间质量作用模型参数的影响[J].化工学报2004,55,237-241.
    [30]Okumura R.,Hinoue T.,Watarai H.Ion-association adsorption of water-soluble porphyrin at a liquid-liquid interface and an external electric field effect on the adsorption[J].Anal Sci.1996,12,393-397.
    [31]Schmidt C.F.,Zimmermann R.M.,Gaub H.E.Multilayer adsorption of lysozyme on hydrophobic substrate[J].Biophys.J.,1990,57,577-588.
    [32]吴桦,范涌,隋森芳.疏水表面对牛血清蛋白二级结构的诱导[J].生物化学与生物物理学报,1993,25,610-615.
    [33]Schouten S.,Stroeve P.,Longo M.L.DNA adsorption and cationic bilayer deposition on self-assembled monolayers[J].Langmuir,1999,15,8133-8139.
    [34]Cooper M.A.,Try A.C.,Carroll J.,Ellar D.J.,Williams D.H.Surface plasmon resonance analysis at a supported lipid monolayer[J].Biochim.Biophy.Acta-Biomembranes,1998,1373,101-111.
    [35]Lahiri J.,Isaacs L.,Tien J.,Whitesides G.M.A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate:A surface plasmon resonance study[J].Anal.Chem.,1999,71,777-790.
    [36]Bowen W.R.,Hughes D.T.Properties of microfiltration membranes.Part 2.Adsorption of bovine serum albumin at aluminum oxide membranes[J],J.Membr.Sci.,1990,51,189-200.
    [37]Fukuzaki S.,Urano H.,Nagata K.Adsorption of bovine serum albumin onto metal oxide surfaces[J].J.Fermentation Bioeng.,1996,81(2),163-167.
    [38]吴桦,隋森芳.原位椭圆偏振术研究牛血清蛋白在固/液界面的吸附[J].生物物理学报,1992,8,245-251.
    [39]黎新明,张建合,崔英德,廖列文,贾振宇,尹国强,郭鹏.牛血清蛋白在含硅水凝胶上的等温吸附[J].信阳师范学院学报(自然科学版),2007,20,174-178.
    [1]Fujiwara M.,Tsukahara S.,Watarai H.Time-resolved total internal reflection fluorometry of ternary europium(Ⅲ) complexes formed at the Liquid/Liquid interface[J].Phys.Chem.Chem.Phy.,1999,1,2949-2951.
    [2]Nelson A.Influence of biologically active compounds on the monomolecular gramicidin channel function in phospholipid monolayers[J].Langmuir,1996,12,2058-2067.
    [3]Sastre A.M.,Szymanowski J.Discussion of the physicochemical effects of modifiers on the extraction properties of hydroxyoximes.A review[J].Solv.Extr.Ion Exch.,2004,22,737-759.
    [4]Ohashi A.,Tsukahara S.,Watarai H.Acid-catalyzed interfacial complexation in the extraction kinetics of palladium(Ⅱ) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol[J].Anal Chim.Acta,1998,364,53-62.
    [5]Vaidya S.S.,Ofoli R.Y Adsorption and interaction of fibronectin and human serum albumin at the liquid-liquid interface[J].Langrnuir,2005,21,5852-5858.
    [6]Yan L.L.,Zhang Y.,Cui G.C.,Li J.B.pH value and ionic strength effects on the adsorption kinetics of protein/phospholipid at the chloroform/water interface[J].Colloids and Surfaces A-Physcochem.Eng.,2000,175,61-66.
    [7]Gajraj A.,Ofoli R.Y.Quantitative technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface[J].Langmuir,2000,16,4279-4285.
    [8]Fujiwara N.,Tsukahara S.,Watarai H.In situ fluorescence imaging and time-resolved total internal reflection fluorometry of palladium(Ⅱ)-tetrapyridylporphine complex assembled at the toluene-water interface[J].Langrnuir,2001,17,5337-5342.
    [9]Fang N.,Zhang H.,Li J.W.,Li H.W.,Yeung E.S.Mobility-based wall adsorption isotherms for comparing capillary electrophoresis with single-molecule observations[J].Anal.Chem.,2007,79,6047-6054.
    [10]Burghardt T.P.,Charlesworth J.E.,Halstead M.E,Tarara J.E.,Ajtai K.In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy[J].Biophys.J.,2006,90,4662-4671.
    [11]Ishizaka S.,Nakatani K.,Habuchi S.,Kitamura N.Excitation energy transfer from sulforhodamine 101 to Acid Blue 1 at a liquid/liquid interface:Experimental approach to estimate interfacial roughness[J].Anal.Chem.,1999,71,3382-3389.
    [12]Okumura R.,Hinoue T.,Watarai H.Ion-association adsorption of water-soluble porphyrin at a liquid-liquid interface and an external electric field effect on the adsorption[J].Anal.Sci.,1996,12,393-397.
    [13]Tupy M.J.,Blanch H.W.,Radke C.J.Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces[J].Ind.Eng.Chem.Res.,1998,37,3159-3168.
    [14]Li N.,Tong S.Y.Spectrophotometric study of the interaction of tetraphenylporphyrin tetrasulfonate(TPPS4) with proteins[J].Talanta,1994,41,1657-1662.
    [15]Zhang H.M.,Zhu Z.W.,Li N.Q.Electrochemical studies of the interaction of tetraphenylporphyrin tetrasulfonate(TPPS) with albumin[J].Fresenius J.Anal Chem.,1999,363,408-412.
    [16]黄承志,李原芳,黄新华,刘绍璞.阳离子表面活性剂存在下卟啉聚集的光谱研究[J].物理化学学报,1998,14,731-736.
    [17]陈国珍,黄贤智,许金钩,郑正梓,王尊本.荧光分析法(第二版)[M].北京:科学出版社,1990.
    [18]周盈,胡飞雄,孙彦.pH值和离子强度对空间质量作用模型参数的影响[J].化工学报2004,55,237-241.
    [19]Murad M.M.Fluorescence analysis of acridine orange adsorbate at the water/n-heptane interface,bulk and interface[J].J.Fluorescence,1999,9,257-263.
    [20]Li Y.Q.,Sasaki S.,Inoue T.,Ogawa T.Hydrophobicity of Water at the Surface as Studied by Laser-Induced Fluorescence Microscopy[J].Laser Chem.1998,17,175-184.
    [21]陈国珍,黄贤智,许金钩,郑正梓,王尊本.紫外.可见分光光度法[M].原子能出版社1980.
    [22]Kubat P.,Lang K.,Anzenbacher P.Modulation of porphyrin binding to serum albumin by pH [J].Biochim.Biophys.Acta,2004,1670,40-48.