增强化学发光分析新体系的研究及其在免疫分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将化学发光传感技术、纳米技术相结合,探索构建了高灵敏度化学发光免疫传感器的新方法。基于化学发光、光谱学、电化学等手段对构筑的免疫传感器性能进行研究及优化。金纳米粒子作为固相载体,增加酶标抗体(或抗体)在固体表面的固定量,利用新型化学发光增强剂放大化学发光信号,提高化学发光免疫传感器的灵敏度。结果表明,所建立的检测方法灵敏度高,易制作、简便,在生物分析中将具有广阔的应用前景。
     本文主要开展了以下几个方面的工作:
     一、Luminol-H_2O_2-HRP-4-(1, 2, 4-三氮唑-1-基)苯酚增强化学发光新体系的研究及其应用
     研究了一种新型酚类衍生物4-(1,2,4-三氮唑-1-基)苯酚(TRP)对Luminol-H_2O_2-HRP化学发光体系的增强作用。结果表明TRP可以作为化学发光体系Luminol-H_2O_2-HRP的增强剂。建立了一种增强化学发光新体系Luminol-H_2O_2-HRP-TRP,并对新体系的各项影响因素进行了优化。在最佳实验条件下,对游离HRP进行了测定,测定游离HRP的线性范围为8.0×10~(-10) g/mL ~ 5.0×10~(-8) g/mL,检测限为5.0×10~(-10) g/mL。与经典增强剂对碘苯酚(PIP)相比,TRP增强的化学发光强度相对要高,发光时间更长。对Luminol-H_2O_2-HRP-TRP增强化学发光体系的机理进行了讨论。利用Luminol-H_2O_2-HRP-TRP增强化学发光体系并结合磁性微球技术对H_2O_2进行了测定。研究表明,磁性微球作为固相载体固定HRP时,本体系对H_2O_2测定的线性范围为2.0×10~(-6) mol/L ~ 1.0×10~(-3)mol/L,检测限为2.0×10~(-6) mol/L。
     二、Luminol-H_2O_2-HRP-p-[1,2,4]-三氮唑基苯酚磷酸单酯预增强化学发光新体系的研究
     利用三氯氧磷法制备了p-[1,2,4]-三氮唑基苯酚磷酸单酯(TAPM)。在碱性磷酸酯酶(ALP)催化水解下,TAPM对Luminol-H_2O_2-HRP化学发光体系具有明显的预增强作用。考察了这一预增强发光体系中,影响发光强度的各种因素。建立了Luminol-H_2O_2-HRP-TAPM-ALP发光体系测定ALP的化学发光新方法。该方法测定ALP的检出限可达1.0μg/L(S/N=3),ALP浓度在1.0μg/L ~ 100μg/L范围内与化学发光强度呈良好的线性相应关系。
     三、Luminol-H_2O_2-HRP-4-羟基-4′-碘-联苯(IPP)增强化学发光新体系的研究及其应用
     研究了一种对位具有活性取代基的酚类化合物4-羟基-4′-碘-联苯(IPP)对Luminol-H_2O_2-HRP化学发光体系的增强作用。建立了新型增强化学发光体系Luminol-H_2O_2-HRP-IPP,并对体系的各影响因素进行了优化,确定了反应的最佳条件。在最佳实验条件下,对游离HRP进行了测定,测定游离HRP的线性范围为5.0×10~(-11) g/mL ~ 4.0×10~(-8) g/mL,检测限为9.0×10~(-12) g/mL。研究表明IPP的增强效果优于经典增强剂对碘苯酚(PIP)。对Luminol-H_2O_2-HRP-IPP增强化学发光体系的机理进行了讨论。并利用Luminol-H_2O_2-HRP-IPP增强化学发光酶联免疫分析新体系,采用双抗体夹心法,结合免疫磁性微球分离和化学发光分析技术建立了血清中AFP含量的测定方法。该方法操作简单、快速,对AFP测定的线性范围为0.5 ng/mL ~ 5.0 ng/mL,检测限为0.5 ng/mL,比酶联免疫吸附测定光度法(ELSA)低。用所建立的方法对病人血清样品进行了测定,并与ELISA法进行了对照,二者相关性良好。
     四、Luminol-H_2O_2-HRP-溴酚兰增强新化学发光体系的研究及其应用
     研究了一种新型化学发光增强剂溴酚兰(BPB)对Luminol-H_2O_2-HRP化学发光反应的增强作用。建立了新型增强化学发光体系Luminol-H_2O_2-HRP-BPB,并对体系的各影响因素进行了优化,确定了反应的最佳条件。在最佳实验条件下,对游离HRP进行了测定,测定游离HRP的线性范围为5.0×10~(-11) g/mL ~ 1.0×10~(-9) g/mL,检测限为1.0×10~(-11) g/mL。对Luminol-H_2O_2-HRP-BPB增强化学发光体系的机理进行了讨论。利用Luminol-H_2O_2-HRP-BPB增强化学发光酶联免疫分析新体系,采用双抗体夹心法,结合免疫磁性微球分离和化学发光分析技术建立了血清中AFP含量的测定方法。该方法操作简单、快速,对AFP测定的线性范围为1.0 ng/mL ~ 50.0 ng/mL,检测限为0.2 ng/mL。用所建立的方法对病人血清样品进行了测定,并与ELISA法进行了对照,二者相关性良好。
     五、基于金纳米粒子作固相载体的增强化学发光免疫传感器的研制
     研究了以金纳米粒子作为酶标抗体的固相载体,利用静电吸附作用将HRP标记AFP抗体固定在其表面,结合磁性微球的高效分离技术,采用双抗体夹心法,建立了Luminol-H_2O_2-HRP-BPB测定AFP、Luminol-H_2O_2-HRP-IPP测定AFP的新型化学发光免疫传感器。二者对AFP测定的线性范围分别为0.1 ng/mL ~ 5.0 ng/mL,0.008 ng/mL ~ 0.3 ng/mL,检测限分别为0.01 ng/mL,5.0 pg/mL。以金纳米粒子作为固相载体,利用共价结合作用将发光底物鲁米诺和CEA抗体同时固定在其表面,结合磁性分离技术,采用双抗体夹心法,建立了一种新型的、简便的化学发光标记技术,研究了一种新型的Luminol-H_2O_2-HRP-IPP增强化学发光体系测定CEA的化学发光免疫传感器。对CEA测定的线性范围为0.5 ng/mL ~ 50.0 ng/mL,检测限为0.5 ng/mL。用所建立的方法对病人血清样品进行了测定,并与ELISA法进行了对照,二者相关性良好。
This paper discussed the novel and sensitive chemiluminescence immunoassay biosensors integrating with the chemiluminescence technique and nanotechnique. The CL reaction conditions and the performance of the biosensors were studied by using chemiluminescence assay, spectral analysis, and electrochemical methods. The novel and sensitive chemiluminescence immunoassay (CLIA) has been developed by employing the new chemiluminescence (CL) enhancers based on colloidal gold nanoparticles (AuNPs) modified with HRP-labeled antibody (or antibody) for further signal amplification. In summary, ease of fabrication, a low cost and high sensitivity make the proposed biosensors in this study may provide an interesting alternative tool for detection protein in clinical laboratory.
     The main jobs of this thesis can be concluded as follows:
     1. The study on the new enhanced CL system of luminol-H_2O_2-horseradish peroxidase -4-(1,2,4-triazol-1-yl)phenol and its applications
     This study described the employment of a novel p-phenol derivative 4-(1,2,4-triazol-1-yl)phenol (TRP) as a highly potent signal enhancer of the luminol-H_2O_2-HRP CL system. The CL reaction conditions were optimized and its enhancement characteristics were compared with that of p-iodophenol (PIP). Under the optimized conditions, the dynamic range of HRP by using TRP as an enhancer was 8.0×10~(-10) g/mL-5.0×10~(-8) g/mL, with the detection limit of 5.0×10~(-10) g/mL, compared with 4-iodophenol (PIP). TRP is a more potent enhancer for the luminol chemiluminescence. TRP produced a strong enhancement of the CL with the effect of prolonging the light emission. The precise mechanism of the HRP-catalyzed CL oxidation of luminol in the presence of TRP has been discussed. The developed system was then applied to the determination of H_2O_2 with immobilized HRP using magnetic beads as a solid support. The linear range for H_2O_2 was 2.0×10~(-6) mol/L-1.0×10~(-3) mol/L. The detection limit for H_2O_2 was 2.0×10~(-6) mol/L.
     2. The studies on the new proenhanced CL system of luminol-H_2O_2-HRP- p-[1,2,4]-triazole-phenol phosphate monoester
     In this work, a novel proenhancer, p-[1,2,4]-triazole-phenol phosphate monoester (TAPM) was synthesized by the PClO3 method. Under the enzymatic hydrolysis of the alkaline phosphatase (ALP), TAPM produced a strong proenhancement on the luminol-H_2O_2-HRP chemiluminescence system. The reaction conditions of luminol-H_2O_2-HRP-TAPM-ALP chemiluminescence system were optimized, and the system was applied to the determination of ALP. The chemiluminescence intensity was linear to the concentration of ALP in the range of 1.0μg/L-100μg/L, with a detection limit of 1.0μg/L (S/N=3).
     3. The study on the new enhanced CL system of luminol-H_2O_2-HRP-4-(4′-iodo)- phenyl-phenol and its applications
     In this work, a novel enhancer, 4-(4′-iodo)phenylphenol (IPP) was employed in the luminol-H_2O_2-HRP CL system. The optimized CL reaction conditions and the evaluation of its enhancing capabilities in the luminol-H_2O_2-HRP CL system were described. Under the optimized conditions, the dynamic range of HRP by using PIP as an enhancer was 5.0×10-11 g/mL-4.0×10-8 g/mL, with the detection limit of 9.0 pg /mL. The results showed that IPP would be a more potent enhancer than PIP, which was the most widely used enhancer. The precise mechanism of the HRP-catalyzed CL oxidation of luminol in the presence of IPP has been discussed. AFP was chosen to prove the novel CL immunoassay as a typical model. The new CL immunoassay involved a binding event between carboxylic acid coated MBs and anti-AFP, and the formation of sandwich immunocomplexes between the MBs and anti-AFP-HRP. The concentration of AFP was monitored based on the HRP label activity toward the oxidation of luminol, which was quantified by CL method. The corresponding calibration plot of relative CL intensity versus the concentration of human AFP was linear over the range from 0.5 ng/mL to 5.0 ng/mL, and the detection limit was 0.5 ng/mL, which was lower than that in the ELISA. The feasibility of the immunoassay system for clinical applications was investigated by analyzing several real samples, in comparison with the ELISA method. The calibration curve indicated that there was no significant difference between the results given by two methods. 4. The study on the new enhanced CL system of luminol-H_2O_2-HRP-bromophenol blue and its applications
     In this work, a novel enhancer, bromophenol blue (BPB) was employed in the luminol-H_2O_2-HRP CL system. The optimized CL reaction conditions and the evaluation of its enhancing capabilities in the luminol-H_2O_2-HRP CL system were described. Under the optimized conditions, the dynamic range of HRP by using BPB as an enhancer was 5.0×10~(-11) g/mL-1.0×10~(-9) g/mL, with the detection limit of 1.0×10~(-11) g/mL. The results showed that BPB would be a more potent enhancer than PIP, which was the most widely used enhancer. The precise mechanism of the HRP-catalyzed CL oxidation of luminol in the presence of BPB has been studied. After optimizing the CL reaction conditions, this new luminol-H_2O_2-HRP-BPB CL system was applied to a sandwich-type CLIA based on the magnetic separation. A linear range was obtained when the concentrations of AFP were from 1.0 ng/mL to 50.0 ng/mL, with the detection limit of 0.2 ng/mL. The present method was successfully applied to the determination of AFP in human serum samples. The results indicated that this proposed protocol could be quite promising for the application in immunoassay.
     5. The studies on the enhanced chemiluminescence immunoassay biosensor by using gold nanoparticles as solid supports
     In this work, we described a sensitive and promising analytical mehtod employing new CL enhancers, BPB or IPP, based on MBs separation and gold nanoparticles (AuNPs) labeling technique. HRP-labeled AFP antibody was first bound on the surface of AuNPs by electrostatic, then the new luminol-H_2O_2-HRP-BPB (or IPP) CL systems were applied to a sandwich-type CLIA for the determination of AFP based on the magnetic separation. This novel strategy takes advantage of easy magnetic separation by MBs and amplification feature of colloidal gold label along with CL intensity enhanced by BPB (or IPP) for luminol-H_2O_2-HRP system. A linear ranges of AFP standard solution were 0.1 ng/mL-5.0 ng/mL and 0.008 ng/mL-0.3 ng/mL,respectively. And the detection limits of AFP were 0.01 ng/mL and 5.0 pg/mL, respectivrly. An enhanced chemiluminescence immunoassay method for the sensitive and rapid determination of CEA was proposed in this paper. Firstly, luminol and anti-CEA-antibody were simultaneously bound on the surface of AuNPs by covalence. Secondly, the new luminol-H_2O_2-HRP-IPP CL systems were applied to a sandwich-type CLIA for the determination of CEA based on the magnetic separation. A linear range of CEA standard solution was 0.5 ng/mL-50.0 ng/mL, with detection limit of 0.5 ng/mL.
     The proposed methods were also used to determine AFP (or CEA) in human serum samples, and the results were well corresponding to those of conventional ELISA.
引文
[1]方肇伦等著,流动注射分析法,北京:科学出版社, 1998, P280-281.
    [2]林金明,赵利霞,王栩等著,化学发光免疫分析,化学工业出版社, 2008, pp1-2, P189.
    [3] Barni F, Lewis S W, Berti A, et. al.,Forensic application of the luminol reaction as a presumptive test for latent blood detection, Talanta, 2007, 72: 896-913.
    [4] Nakayama T, Amachi T, Fungal peroxidase: its structure, function, and application, J. Mol. Catal. B: Enzym., 1999, 6:185-198.
    [5] SAKHAROV I Y, ALPEEVA I S, EFREMOV E E, Use of Soybean Peroxidase in Chemiluminescent Enzyme-Linked Immunosorbent Assay, J. Agric. Food Chem. 2006, 54:1584-1587.
    [6] Tatsu Y, Yoshikawa S, Homogeneous Chemiluminescent Immunoassay Based on Complement-Mediated Hemolysis of Red Blood Cells, Anal. Chem. 1990, 62: 2103-2106.
    [7] Lin J-M, Shan X, Hanaoka S, et. al. Luminol Chemiluminescence in Unbuffered Solutions with a Cobalt(II)-Ethanolamine Complex Immobilized on Resin as Catalyst and Its Application to Analysis, Anal. Chem. 2001, 73: 5043-5051.
    [8] Ding C. F., Zhong H., Zhang Sh. Sh., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags, Biosens. Bioelectron., 2008, 23: 1314-1318.
    [9] Fan A, Lau C, Lu J, Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label, Anal. Chem. 2005, 77: 3238-3242.
    [10] Sánchez F G, Díaz N, García J A G, Study of the enhanced chemiluminescence from the luminol-horseradish peroxidase-hydrogen peroxide-p-coumaric acid system at very short times: stopped flow selective determination of p-coumaric acid in beers, Anal. Chim. Acta 1995, 310: 399-406.
    [11] Díaz N, Sánchez F. G, García J A G, Aniline derivatives as enhancers and inhibitors of the luminol-H2O2 horseradish peroxidase chemiluminescence: Effects of the Hammett constants of the substituents, J. Photoch. Photobio. A: Chemistry, 1998, 113: 17-33.
    [12] Wang L, Yang P, Li Yet, al., A flow-injection chemiluminescence method for the determination of some estrogens by enhancement of luminol–hydrogen peroxide–tetrasulfonated manganese phthalocyanine reaction, Talanta 2006, 70: 219-224.
    [13] Díaz A N, Sánchez F. G, García J A G, Hydrogen peroxide assay by using enhanced chemiluminescence of the luminol-H202-horseradish peroxidase system: Comparative studies,Anal. Chim. Acta 1996,327:161-165.
    [14] Ramos M C, Torijas M C, Diáz A N, Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide, Sensor. Actuat. B 2001, 73: 71-75.
    [15] Gámiz-Gracia L, García-Campa?a A M, Soto-Chinchilla J J, et. al., Analysis of pesticides by chemiluminescence detection in the liquid phase, Trends in Anal. Chem., 2005, 24(11): 927-942.
    [16] Kricka L J, Clinical applications of chemiluminescence, Anal. Chim. Acta 2003, 500: 279-286.
    [17] Dodeigne C, Thunus L, Lejeune R, Chemiluminescence as a diagnostic tool. A review, Talant, 2000, 51: 415-439.
    [18] Litting J S, Nieman T A, Flow injection chemiluminescence study of acridinium eater stability and kinetics and kinetics of decomposition, J. Biolumin. Chemilumin., 1993, 8: 25-31.
    [19] Mccapra F, Chemical mechanisms in Bioluminescence, Acc. Chem. Res., 1976, 9: 201-208.
    [20] Du J X, Lu J R, Flow injection chemiluminescence determination of isoniazid using the lucigenin periodate system, Luminescence, 2006, 21: 26-30.
    [21] Luo L, Zhang Z, Hou L, et. al., The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application, Talanta, 2007,72:1293-1297.
    [21]焦奎,张书圣,酶联免疫分析技术及应用,北京:化学工业出版社, 2004, P20-26.
    [22] Avramens S, Nakane P K, Papamichall M, 25 Years of Immunoenzymatic Techniques. Amsterdam: Elsevier, 1992.
    [23] Gosling J P, Clin Chem, A decade of development in immunoassay methodology, 1990, 36: 1408-1427.
    [24]吴健民主编,临床化学自动化免疫分析,北京:科学出版社, 2000, p3-23.
    [25] Wu A H B, A selected history and future of immunoassay development and applications in clinical chemistry, Clin. Chim. Acta, 2006,369: 119-124.
    [26] Surugiu I, Danielsson B, Ye L, et. al., Chemiluminescence Imaging ELISA Using an Imprinted Polymer as the Recognition Element Instead of an Antibody, Anal. Chem. 2001, 73: 487-491.
    [27] Whitehead T P, Thorpe G H G, Carter T J N, et. al. Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay, Nature (London), 1983 305: 158-159.
    [28] Matthews J A, Batki A, Hynds C. Enhanced chemiluminescent method for the detection of DNA Dot-hybridization assays, Anal. Biochem., 1985, 151: 205-209.
    [29] Dotsikas Y, Loukas Y L, Employment of 4-(1-imidazoyl)phenol as a Luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigen-horseradish peroxidase conjugate-based assay, Anal. Chim. Acta., 2004, 509: 103-109.
    [30] Kricka L J, Chemiluminescence and bioluminescence techniques, Clin, Chem., 1991, 37: 1471-1481.
    [31] Olszowski S, Olszowska E, ska T S, et. al., Chemiluminescence of ABEI-labelled IgG triggered by the N-chloramine-H2O2-p-iodophenol system, Luminescence 1999, 14:139-145.
    [32] Qi H, Zhang Y, Peng Y, et. al., Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode, Talanta 2008, 75: 684-690.
    [33] Mayer A, Neuenhofer S, Luminscent labels-More than just an alternative to radioisotopes, Angew. Chem. Int. Ed. Engl., 1994, 33: 1044-1072.
    [34] Lin J-M, Yamada M, Electrogenerated Chemiluminescence of Methyl-9-(p-formylphenyl) Acridinium Carboxylate Fluorosulfonate and Its Applications to Immunoassay, MICROCHEM. J. 1998, 58: 105-116.
    [35] Brown R C, Weeks I, Fisher M, et. al., Employment of a Phenoxy-Substituted Acridinium Ester as a Long-Lived Chemiluminescent Indicator of Glucose Oxidase Activity and Its Application in an Alkaline Phosphatase Amplification Cascade Immunoassay, ANAL. BIOCHEM. 1998, 259: 142-151.
    [36] Silvaieh H, Wintersteiger R, Schmid M G, et. al., Enantioselective sequential-injection chemiluminescence immunoassays for 3,3′,5-triiodothyronine (T3) and thyroxine (T4), Anal. Chim. Acta 2002, 463: 5-14.
    [37] Ahn K C, Lohstroh P, Gee S J,et. al., High-Throughput Automated Luminescent Magnetic Particle-Based Immunoassay to Monitor Human Exposure to Pyrethroid Insecticides Anal. Chem. 2007, 79: 8883-8890.
    [38] Sudhaharan T, Reddy A R, A bifuntional luminogenic sustrate for two luminscent enzymes: firely luciferase and horseradish peroxidase, J. Anal. Biochem., 1999, 271(2): 159-167.
    [39] Ito H, Suzuki H, Miki Y et.al, Jpn. Patent, 1996, 08(038): 196.
    [40] Mitoma Y., Hara K., Kumakura, S., Jpn. Patent, 1995, 07(311): 197.
    [41] Thorpe G H, Kricka L J, Gillespie E et.al, Enhanced of the horseradish peroxidase-catalyzed chemiluminescent oxidation of cyclic diacyl hydrazides by 6-hydroxybenzothiazoles, Anal. Biochem., 1985, 145: 96-100.
    [42] Kricka L J, US Patent, 1996, 5(512): 451.
    [43] Nozaki O, Kricka L J, Campbell, L J et. al, Bioluminescnece and chemiluntinescene: Fundamental and applied aspects, Wiley, Chichester, 1994, 52.
    [44] Zhou Y, Zhang Y, Lau C, et. al., Sequential Determination of Two Proteins by Temperature-Triggered Homogeneous Chemiluminescent Immunoassay, Anal. Chem. 2006, 78: 5920-5924.
    [45] Sasamoto K, Deng G, Ushijima T, et. al., Benzothiazole derivatives as substrates for alkaline phosphatase assay with fluorescence and chemiluminescence detection, Analyst, 1995, 120: 1709-1714.
    [46] Adam W, Bronstein I, Edwards B, et.al., Electron Exchange Luminescence of Spiroadamantane-Substituted Dioxetanes Triggered by Alkaline Phosphatase. Kinetics and Elucidation of pH Effects, J. Am. Chem. Soc. 1996, 118: 10400-10407.
    [47] Christofides N D, Sbeehan C P, Enhanced chemiluminescence labeled-anti-body immunoassay (Amerlite-MAB) for free thyroxcine: design, development, and Technical valiation, Clin. Chem., 1995, 41: 17-23.
    [48] Bronstein L, Voyta J C, Edwards B, Acomparision of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay, Anal. Biochem., 1989, 180: 95-98.
    [49] Thorpe G H, Bronstein I, Kricka L J et. al., Chemiluminescence enzyme immunoassay of alpha-fetoprotein based on an adamantly dioxetane phenylphosphate substrate, Clin. Chem., 1989, 35: 2319-2321.
    [50]赵利霞,林金明,屈锋,微板式磁化学发光酶免疫分析法对人绒毛膜促性腺激素HCG的灵敏快速测定,化学学报,2004, 62: 71-77.
    [51] Zhao L, Lin J-M, Li Z, et. al., Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater, Anal. Chim. Acta, 2006, 558: 290-295.
    [52] Duford R T, Nightingale D, Gaddum L W, Luminescence of grignard compounds in electric and magnetic fields and related electrical phenomena, J. Am. Chem. Soc., 1927, 49: 1858-1864.
    [53] Harvey N, Luminescence during electrolysis, J. Phys. Chem., 1929, 33: 1456-1459.
    [54] Knight A W, Greenway G M, Occurrence, Mechanisms and analytical applications of electrogenerated chemiluminescence, Analyst, 1994, 119: 879-890.
    [55] Yin X-B, Dong S, Wang E, Analytical applications of the electrochemiluminescence of tris (2,20-bipyridyl) ruthenium and its derivatives, Trends in Anal. Chem., 2004, 23(6), 432-441.
    [56] Miao W, Bard A J, Electrogenerated Chemiluminescence. 80. C-Reactive ProteinDetermination at High Amplification with [Ru(bpy)3]2+-Containing Microspheres, Anal. Chem. 2004, 76: 7109-7113.
    [57] Zhan W, Bard A J, Scanning Electrochemical Microscopy. 56. Probing Outside and Inside Single Giant Liposomes Containing Ru(bpy)32+, Anal. Chem. 2006, 78: 726-733.
    [58] Cao W, Ferrance J P, Demas J, et. al., Quenching of the Electrochemiluminescence of Tris(2,2’-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection, J. Am. Chem. Soc., 2006, 128: 7572-7578.
    [59] Zhan W, Bard A J, Electrogenerated Chemiluminescence. 83. Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels, Anal. Chem. 2007, 79: 459-463
    [60] Zhang J, Qi H, Li Y, et. al., Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex, Anal. Chem., 2008, 80: 2888-2894.
    [61] Zanarini S, Rampazzo E, Ciana L D,et. al., Ru(bpy)3 Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification, J. AM. CHEM. SOC. 2009, 131: 2260-2267.
    [62] Richter M M, Electrochemiluminescence (ECL), Chem. Rev. 2004, 104: 3003-3036.
    [63] Miao W, Electrogenerated Chemiluminescence and Its Biorelated Applications, Chem. Rev. 2008, 108: 2506-2553.
    [64] Schlaeppi J-M A, Kessler A, F?ryt W, Development of a Magnetic Particle-Based Automated Chemiluminescent Immunoassay for Triasulfuron, J. Agric. Food Chem. 1994, 42: 1914-1919.
    [65] Adamczyk M, Mattingly P G, Moore J A, et. al., Design of Acridinium-9-carboxamides and Anti-acridinium Antibodies for Chemiluminescent Signal Enhancement, Bioconjugate Chem. 2001, 12: 329-331.
    [66] García Sánchez F, Navas Diaz A, González García J A, Relation between the structure of some heterocyclic derivatives and other compounds, and their effects as enhancers or inhibitors of the luminol-H2O2-horseradish peroxidase chemiluminescence. J. Photochem. Photobio. A, 1997 105: 11-14.
    [67] Navas Diaz A, García Sánchez F, González García J A, Thin-layer chromatography with chemiluminescent detection of enhancers of the luminol-H2O2-peroxidase system[J]. J. Chromatogr. A, 1996, 724: 411-415.
    [68]封满良,章竹君,张新荣,增强化学发光酶免疫分析法测定血清中的铁蛋白,分析化学, 1999, 22 (8): 788-790.
    [69]章竹君,程明洁,化学发光酶联免疫检测血清中麻疹病毒抗体,高等学校化学学报, 1994, 15(4): 515-517.
    [70] Kuroda N, Shimoda R, Wada M, et. al., Lophine derivatives and analogues as new phenolic enhancers for the luminol–hydrogen peroxide-horseradish peroxidase chemiluminescence system, Anal. Chim. Acta, 2000, 403: 131-136.
    [71] Kuroda N, Kawazoe K, Nakano H et al., New phenylboronic acid derivatives as enhancers of the luminal-H2O2-horseradish peroxidase chemiluminescence reaction, Luminescence, 1999, 14: 361-364.
    [72] Dotsikas Y, Loukas Y L, Effect of the luminol signal enhancer selection on the curve parameters of an immunoassay and the chemiluminescence intensity and kinetics, Talanta, 2007, 71: 906-910.
    [73] Luo J, Yang X, Flow injection chemiluminescent immunoassay with para-phenylphenol and sodium tetraphenylborate as synergistic enhancers, Anal. Chim. Acta, 2003, 485: 57-62.
    [74] Rodríguez A, Pina D G., Yélamos B, et. al., Thermal stability of peroxidase from the african oil palm tree Elaeis guineensis, Eur. J. Biochem., 2002, 269(10): 2584-2590.
    [75] Zhuang H-S, Huang J-L, Chen G-N, Synthesis of a new biacridine and its use as the chemiluminescent probe for immunoassay of carcinoembryonic antigen, Anal. Chim. Acta, 2004, 512: 347-353.
    [76] Shi J, Zhu Y, Zhang X et.al., Recent developments in nanomaterial optical sensors, Trends in Anal. Chem., 2004, 23: 351-340.
    [77] Faulk W P, Taylor G M, An immunocolloid method for the electron microscope, Immunochemistry, 1971, 8: 1081-1083
    [78] Gómez-Hens A, Fernández-Romero J M, Aguilar-Caballos M P, Nanostructures as analytical tools in bioassays, Trends in Anal. Chem., 2008, 27: 394-406.
    [79] Song S, Wang L, Li J, et. al.,Aptamer-based biosensors, Trends in Anal. Chem., 2008, 27: 108-117.
    [80]樊爱萍,刘彩云,廖志新等,基于金纳米微粒的化学发光金属免疫分析,分析化学, 2006, 34(1): 35-37.
    [81] Li Z-P, Wang Y-C, Liu C-H, et. al., Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay, Anal. Chim. Acta 2005, 551: 85-91.
    [82] Wang Z, Hu J, Jin Y, et. al., In Situ Amplified Chemiluminescent Detection of DNA and Immunoassay of IgG Using Special-Shaped Gold Nanoparticles as Label, Clin. Chem. 2006, 52: 1958-1961.
    [83] Liu C-H, Li Z-P, Du B-A, et. al., Silver Nanoparticle-Based Ultrasensitive Chemiluminescent Detection of DNA Hybridization and Single-Nucleotide Polymorphisms, Anal. Chem. 2006, 78: 3738-3744.
    [84] Li Z-P, Liu C-H, Fan Y-S et. al., A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels, Anal. Biochem., 2006, 359: 247-252.
    [85] Michalet X, Pinaud F F, Bentolila L A, et.al., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, 2005,307: 538-542.
    [86] Huang Xi, Li L, Qian H, et. al., A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET), Angew. Chem. Int. Ed. 2006, 45: 5140-5143.
    [87] Matsunaga T, Kawasaki M, Yu X, et. al., Chemiluminescence Enzyme Immunoassay Using Bacterial Magnetic Particles, Anal. Chem., 1996, 68: 3551-3554.
    [88] Tanaka T, Matsunaga T, Fully Automated Chemiluminescence Immunoassay of Insulin Using Antibody-Protein A-Bacterial Magnetic Particle Complexes, Anal. Chem. 2000, 72: 3518-3522.
    [89] Tanaka T, Takeda H, Ueki F, et.al., Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles, J. Biotechnol., 108 (2004) 153–159
    [90] Cao Z, Li Z, Zhao Y, et. al., Magnetic bead-based chemiluminescence detection of sequence-specific DNA by using catalytic nucleic acid labels, Anal. Chim. Acta, 2006, 557: 152-158.
    [91] Wang X, Lin J-M, Ying X, Evaluation of carbohydrate antigen 50 in human serum using magnetic particle-based chemiluminescence enzyme immunoassay, Anal. Chim. Acta 2007, 598: 261-267.
    [92] Pale?cek E, Fojta M, Magnetic beads as versatile tools for electrochemical DNA and protein biosensing, Talanta, 2007, 74: 276-290.
    [93] Fu Z, Yan F, Liu H, et. al., A channel-resolved approach coupled with magnet-captured technique for multianalyte chemiluminescent immunoassay, Biosens. Bioelectron., 2008, 23: 1422-1428.
    [94] Wang X, Zhang Q-Y, Li Z-J, et. al., Development of high-performance magnetic chemiluminescence enzyme immunoassay forα-fetoprotein (AFP) in human serum, Clin. Chim. Acta, 2008, 393: 90-94.
    [95] Miao J, Cao Z, Zhou Y, et. al., Instantaneous Derivatization Technology for Simultaneous and Homogeneous Determination of Multiple DNA Targets, Anal. Chem. 2008, 80: 1606-1613.
    [96] Zhou X, Xing D, Zhu D, et. al., Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity, Anal. Chem. 2009, 81: 255-261.
    [97] MAGLIULO M, SIMONI P, GUARDIGLI M, et. al., A Rapid Multiplexed Chemiluminescent Immunoassay for the Detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes Pathogen Bacteria, J. Agric. Food Chem. 2007, 55: 4933-4939.
    [98] Edwards K A, Baeumner A J, Liposomes in analyses, Talanta, 2006, 68: 1421-1431.
    [99] Ja-an Annie H, Ming-Ray H, Application of a Liposomal Bioluminescent Label in the Develo- pment of a Flow Injection Immunoanalytical System, Anal. Chem. 2005, 77: 3431-3436.
    [100] Egashira N, Morita S, Hifumi E, et. al., Attomole Detection of Hemagglutinin Molecule of Influenza Virus by Combining an Electrochemiluminescence Sensor with an Immunoliposome That Encapsulates a Ru Complex, Anal. Chem. 2008, 80: 4020-4025.
    [101] Soh N, Nishiyama H, Asano Y, et. al., Chemiluminescence sequential injection immunoassay for vitellogenin using magnetic microbeads, Talanta,2004, 64: 1160-1168.
    [102] Economou A, Sequential-injection analysis (SIA):A useful tool for on-line samplehandling and pre-treatment, Trends in Anal. Chem., 2005, 24: 416-425.
    [103] Zhang R, Hirakawa K, Seto D et. al., Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody, Talanta, 2005, 68: 231-238.
    [104] Zhang R, Nakajima H, Soh N, et. al., Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads, Anal. Chim. Acta, 2007, 600:105-113.
    [105] Ioana S, Juraj S, Lei Y, et.al, Development of a flow injection capilary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Anal. Chem., 2001, 73: 4388-4392.
    [106] Lin J H, Yan F, J u H X, Noncompetitive enzyme immunoassay for carcino-embryonic antigen by flow injection chemiluminescence, Clin. Chim. Acta., 2004, 41: 109-115.
    [107] Luo J-X., Yang X-C., Flow injection chemiluminescent immunoassay with para- phenylphenol and sodium tetraphenylborate as synergistic enhancers, Anal. Chim. Acta., 2003, 485: 57-62.
    [108] Zhang Y, Zhang Z, Yang F, A sensitive immunoassay for determination of hepatitis B surface antigen and antibody in human serum using capillary electrophoresis with chemiluminescence detection, J.Chromatogr. B, 2007, 857: 100-107.
    [109] Liu Y-M, Mu H-B, Zheng Y-L, et. al., Capillary electrophoretic immunoassay for alpha-fetoprotein with chemiluminescence detection, J. Chromatogr. B, 2007, 855: 280-285.
    [110] Zhi Q, Xie C, Huang X, et. al., Coupling chemiluminescence with capillary electrophoresis to analyze single human red blood cells, Anal. Chim. Acta, 2007, 583: 217-222.
    [111] Liu Y-M, Cheng J-K, Ultrasensitive chemiluminescence detection in capillary electrophoresis J. Chromatogr. A, 2002, 959: 1-13.
    [112] Tamas K, Szegi, Immunoluminometric detection of human procalcitonin, J. Biochem. Biophys. Methods., 2002, 53: 157-164.
    [113] Saito K, Niina N, Yamazaki S, et. al., Simple and sensitive method for determination of glycoalkaloids in potato tubers by high-performance liquid chromatography with chemiluminescence detection Hitoshi Kodamatani, J. Chromatogr. A, 2005, 1100: 26-31.
    [114] Tsukagoshi K, Obata Y, Nakajima R, Miniaturization of batch- and flow-type Chemiluminescence detectors in capillary electrophoresis, J. Chromatogr. A, 2002, 971: 255-260.
    [115] Jandik P, Weigl B H, Kessler N, et.al, Initial study of using a laminar fluid diffusion interface for sample preparation in high-performance liquid chromatograp, J. Chromatogr. A, 2002, 954: 33-40.
    [116] Tsukagoshl K, Jinno N, Nakajima R, Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers, Anal. Chem., 2005, 77: 1684-1688.
    [117] Yakovleva J, Davidsson R, Bengtsson M, et. al., Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection, Biosens. Bioelectron., 2003, 19: 21-34.
    [118] Cheek B J, Steel A, Torres M P, et. al., Chemiluminescence Detection for Hybridization Assays on the Flow-Thru Chip, a Three-Dimensional Microchannel Biochip, Anal. Chem., 2001, 73: 5777-5783.
    [119] Huang X, Ren J, Chemiluminescence detection for capillary electrophoresis and microchip capillary electrophoresis, Trends in Anal. Chem., 2006, 25: 155-166.
    [120] Tsukagoshi K, Saito T, Nakajima R, Analysis of antioxidants by microchip capillary electrophoresis with chemiluminescence detection based on luminol reaction, Talanta, 2008, 77: 514-517.
    [121] García Sanchez F, Navas Díaz A, González García J A, P-phenol derivatives as enhancers of the chemiluminescent luminol-horseradish peroxidase-H2O2 reaction: substituent effects, J. Lumin., 1995, 65: 33-39.
    [122] Thorpe G H G, Kricka L J , Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase, Methods Enzymol. 1986, 133: 331-353.
    [123] Kricka L J, Cooper M, Ji X Y, Synthesis and Characterization of 4-Iodophenylboronic Acid: A New Enhancer for the Horseradish Peroxidase-Catalyzed Chemiluminescent Oxidation ofLuminol, Anal. Biochem., 1996, 240: 119-125.
    [124] Kricka L J, Stott R A W, Thorpe G H G, et. al., Luminescence Techniques in Chemical and Biochemical Analysis, Marcel Dekker, New York, 1991, pp. 599.
    [125] Easton P M, Simmonds A C, Rakishev A, et. al., Quantitative Model of the Enhancement of Peroxidase-Induced Luminol Luminescence, J. Am. Chem. Soc., 1996, 118: 6619-6624.
    [126] Becke A D, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98: 5648.
    [127] Frisch M J, Trucks G W, Schlegel H B, et. al., GAUSSION03, RevisionB.01, Gaussian, Inc., Pittsburgh, PA, 2003.
    [128] DiLabio G A, Pratt D A, LoFaro A D, et. al., Theoretical Study of X-H Bond Energetics (X = C, N, O, S): Application to Substituent Effects, Gas Phase Acidities, and Redox Potentials, J. Phys. Chem. A, 1999, 103: 1653–1661.
    [129] Lazarou Y G, Papagiannakopoulos P, Theoretical Investigation of the Thermochemistry of Hydrofluoroethers, Chem. Phys. Lett., 1999, 301:19-28.
    [130] Radical Stability-A Theoretical Perspective, H. Zipse, Springer Berlin /Heidelberg, ISSN: 0340-1022 (Print), 1436-5049; (Online), ISBN: 978-3-540-31329-8, 2006, 263, 163-189.
    [131] Tanner P A, Wong A Y S, Spectrophotometric determination of hydrogen peroxide in rainwater, Anal.Chim.Acta, 1998, 370: 279-287.
    [132] Guo Z, Li L, Shen H, Study and analytical application of bromopyrogallol red as a hydrogen donor substrate for peroxidase, Anal. Chim. Acta, 1999, 379: 63-68.
    [133] Chen Q, Li D, Zhu Q, Zheng H, et. al., Application of iron-tetrasulfonatophthalocyanine as a new mimetic peroxidase in the determination of hydrogen peroxide with p-hydroxyphenylpropionic acid as a substrate, Anal. Chim. Acta, 1999, 381: 175-182.
    [134] Chut S, Li J, Tan S N, Reagentless Amperometric Determination of Hydrogen Peroxide by Silica Sol-Gel Modified Biosensor, Analyst, 1997, 122: 1431-1434.
    [135] Ma H, Jarzak U, Thiemann W, Synthesis and spectroscopic properties of new luminol-linked calixarene derivatives, Anal. Chim. Acta, 1998, 362: 121-129.
    [136] Marle L, Greenway G M, Determination of hydrogen peroxide in rainwater in a miniaturised analytical system, Anal. Chim. Acta, 2005, 548: 20-25.
    [137] Greenway G M, Leelasattarathkul T, Liawruangrath S, et. al., Ultrasound-enhanced flow injection chemiluminescence for determination of hydrogen peroxide, Analyst, 2006, 131: 501-508.
    [138] Tahirovi? A, ?opra A, Omanovi?-Mikli?anin E, et. al., A chemiluminescence sensor for the determination of hydrogen peroxide, Talanta, 2007, 72:1378-1385.
    [139] Wymann M P, Tscharner V v, Deranleau D A, et. al., Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst, Anal. Biochem., 1987, 165: 371-378.
    [140] Kuhara M, Takeyama H, Tanaka T, et. al., Magnetic Cell Separation Using Antibody Binding with Protein A Expressed on Bacterial Magnetic Particles, Anal. Chem. 2004, 76: 6207-6213.
    [141] Ji Z, Pinon D I, Miller L J, Development of Magnetic Beads for Rapid and Efficient Metal-Chelate Affinity Purifications, Anal. Biochem., 1996,240: 197-201.
    [142] Kricka L J, Schmerfeld-Pruss D, Edwards B, Chemiluminescent assay of enzymes using proenhancers and pro-anti-enhancers, J. Biolumin. Chemilumin., 1991, 6: 231-238.
    [143] Sasamoto H, Maeda M, Tsuji A, Chemiluminescent assay of alkaline phosphatase using phenacyl phosphate, Anal. Chim. Acta, 1995, 306: 161-166.
    [144] Sasamoto H, Maeda M, Tsuji A, et. al., Sensitive immunological assays for human chorionic gonadotrophin and prostatic acid phosphatase using phenacyl phosphate as a chemiluminescent label, Anal. Chim. Acta, 1995, 309: 221-225.
    [145] Kokado A, Tsuji A, Maeda M, Chemiluminescence assay of alkaline phosphatase using cortisol-21-phosphate as substrate and its application to enzyme immunoassays, Anal..Chim..Acta, 1997, 337: 335-340.
    [146] Navas Díaz A, García Sánchez F, Ranos M C, et. al., Horseradish peroxidase sol-gel immobilized for chemiluminescence measurements of alkaline-phosphatase activity, Sensor. Actuat. B, 2002, 82: 176-179.
    [147] Navas A D, García F S, García J A G, Chemical indicators as enhancers of the chemiluminescent luminol-H2O2-horseradish peroxidase reaction, J. Photochem. Photobio. A., 1995, 87: 99-103.
    [148]李永勤,杨瑞馥,以膜为固相载体的免疫胶体金快速试验,微生物学免疫学进展, 2003, 31(1): 74-78.
    [149]黄永莉,程维兴,邢颜超,胶体金免疫层析技术检测HBsAg临床应用评价,临床军医杂志, 2003, 3: 89-91.
    [150] Thanh N T K, Rosenzweig Z, Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles, Anal. Chem., 2002, 74: 1624-1628.
    [151] Nam J-M, Thaxton C S, Mirkin C A, Nanoparticle-Based Bio-Bar Codes for the Ultra sensitive Detection of Proteins, Science, 2003, 301: 1884-1886.
    [152] Segawa T, Kamidate T, Watanabe H, Determination of hydrogen peroxide with fluorescein chemiluminescence catalyzed by horseradish peroxidase, Anal. Sci., 1990, 6: 763-764.
    [153] Segawa T, Kamidate T, Watanabe H, Role of 3-morpholino-1-propanesulfonic acid as energy transferer in chemiluminescence reaction of fluorescein catalyzed by horseradish peroxidase, Bull Chem Soc Jpn, 1993, 66: 2237-2241.
    [154] Segawa T, Kamidate T, Watanabe H, Effect of buffer components on the determination of hydrogen peroxide using fluorescein chemiluminescence reaction, Nippon Kagaku Kaishi, 1992, 956-960.
    [155] Hass Y, Würzberg E, Chemiluminescence of Luminol and related compounds under electron-beam excitation. Enhancement of light yields by addition of dyes, J Phys. Chem., 1979, 83: 2692-2696.
    [156] Rosi N L, Giljohann D A, Thaxton C S, et. al., Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation, Science, 2006, 312:1027-1030.
    [157] Chen Z, Zu Y, Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly Enhanced Activity, Langmuir, 2007, 23: 11387-11390.
    [158] Ambrosi, A, Casta?eda, M T, Killard, A J, et. al., Double-Codified Gold Nanolabels for Enhanced Immunoanalysis, Anal. Chem., 2007, 79: 5232-5240.
    [159] Zhu T, Vasilev K, Kreiter M, et.al, Surface Modification of Citrate-Reduced Colloidal Gold Nanoparticles with 2-Mercaptosuccinic Acid, Langmuir, 2003, 19: 9518-9525.
    [160] Brown K R, Fox A P, Natan M J, Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO2 Electrodes J. Am. Chem. Soc. 1996, 118: 1154-1157.
    [161] Alumanda, M. D. R., Minoru, K., Trapping method of antibodies on surfaces of polymerizing discs for enzyme immunoassay, Anal. Chim. Acta., 1995, 312: 85-94
    [162] Eckert K, Fuhrmann-Selter T, Maurer H R, et. al, A colorimetric immunoassay for the detection of E-cadherin and carcinoembryonic antigen (CEA) expression on human colon carcinoma cell lines in vitro, Cancer Lett., 1996, 105: 1-4.
    [163] Sand T T, Zielinski J E, Arthur C, et. al., Development of an immunosensor based on pressure transduction, Biosens. Bioelectron., 2003, 18: 797-804.
    [164] Oh B K, Kim Y-K, Park K W, et al, Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium, Biosens. Bioelectron., 2004, 19: 1497-1504.
    [165] Kaiser T, Gudat P, Stock W, et.al., Biotinylated Steroid Derivatives as Ligands for Biospecific Interaction Analysis with Monoclonal Antibodies Using Immunosensor Devices, Anal. Biochem., 2000, 282: 173-185.
    [166] Yu H, Yan F, Dai Z. et al, A disposable amperometric immunosensor forα-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbonelectrode, Anal. Biochem., 2004, 331: 98-105.
    [167] Nidhi Nath, Ashutosh Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in teal time on a surface, Anal Chem, 2002, 74: 504-509.
    [168] Zhang Z-F, Cui H, Lai C-Z, et. al., Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications, Anal. Chem. 2005, 77: 3324-3329.
    [169] Ding C, Zhang M, Zhao F, Zhang S, Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid, Anal. Biochem., 2008, 378: 32-37.
    [140] Zhang S-B, Wu Z-S, Guo M-M, et. al., A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle labelTalanta, 2007, 71:1530-1535.