铁原卟啉在电极表面吸附与反应的现场振动光谱法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面电化学是表面科学与电化学的重要交叉学科。目前表面电化学的热点之一是生物界面电化学。其研究内容主要包括构建、表征和使用通过生物分子或相关分子构建的具有生物活性的界面。这种电极/电解液功能界面不仅能为生物分子的电子传递等研究提供模型场所,还对电催化和生物传感的研究提供潜在信息。
     金属卟啉广泛存在于自然界,是生物体内各种蛋白质的重要辅基。铁原卟啉(简称FePP)是一种重要的金属卟啉,是血红蛋白、肌红蛋白、细胞色素c和过氧化酶等蛋白(heme-proteins)共同的活性组分,在生物体内具有运输和催化等重要生理功能。近年来,又发现它与一氧化氮的结合(亚硝酰化)和血管舒张、神经传导和细胞毒化等生理过程密切相关。另外它还对不少无机物如,NO_2~-,O_2,H_2O_2,CO_2等的还原具有电催化效应。对于铁原卟啉在电极表面吸附与反应的研究可以实现对此分子在生物和电催化方面分子水平上的理解,还为实现生物催化和生物传感实用化提供重要依据。
     衰减全反射表面增强红外光谱(ATR-SEIRAS)和表面增强拉曼光谱(SERS)具有较高的增强信号,是研究自组装分子在表面的吸附取向以及自组装分子与电极表面电子传递的有利表征手段。铁原卟啉的大部分骨架振动模式是拉曼活性的。传统的SERS技术仅限于币类金属,这就限制了SERS对于铁原卟啉功能化界面的研究。SERS表面选律复杂,也不利于判断分子的吸附取向。另外,拉曼光谱对于铁原卟啉与小分子配位研究主要通过骨架振动频率的改变间接推测,不利于表面配位反应特别是与NO和CO等极性小分子配位反应的研究。铁原卟啉外围替代基团羧基的振动是红外活性的,通过研究羧基在金属电极表面的吸附,可以推测铁原卟啉的吸附取向。而且红外光谱对极性小分子很敏感,所以ATR-SEIRAS可方便研究铁原卟啉与NO和CO等极性小分子的表面配位反应。
     铅酸蓄电池仍然为二次电池中应用范围最广,技术最成熟的化学电源。但由于板栅合金的阳极腐蚀和合金表面的高阻抗的形成使电池放电性能和深充放寿命方面仍存在一些难以解决的问题。板栅的腐蚀性能和合金表面高阻抗层的形成与材料的组成和性质以及表面氧化物膜的生长机理密切相关。我们论文的部分工作是研究阳极膜的生长机理以及筛选合适的材料,进而提高电池性能和延长电池使用寿命。
     本论文的主要研究结果:
     一.铁原卟啉自组装层在金电极表面吸附的现场衰减全反射表面增强红外光谱(in situ ATR-SEIRAS)研究
     铁原卟啉分子是一种重要的功能化分子。我们自行设计了原位衰减全反射表面增强红外光谱(in situ ATR-SEIRAS)附件。本部分工作利用in situ ATR-SEIRAS技术在0.1M HClO_4(pH 1)和PBS(pH 7)溶液中研究了铁原卟啉在Au电极表面吸附状态及随电位的变化情况。
     选用单晶Si半圆柱作为红外窗口。化学镀方法在Si表面镀一层具有表面增强效应的厚度为60nm金膜。采用直接吸附法在金电极表面组装铁原卟啉分子。
     由于铁原卟啉是近D_(4h)结构,根据表面增强红外光谱选律,卟啉环的骨架振动都是非红外活性的,所以在红外光谱上主要观察到环外丙酸基上的羰基振动峰。在0.1M HClO_4溶液中,低电位下的卟啉环外侧的丙酸的主要是以羧酸形式存在,但电位较正时,卟啉环外侧的丙酸的主要存在形式是去质子化的羧基。以上结果表明Au电极表面,随着电位的改变铁原卟啉的吸附状态发生了变化。当电位由负移至较正时,卟啉环的吸附状态由平躺转为大角度倾斜。由于空间位阻的影响铁原卟啉的内酸基中至少一个羧基脱去一个质子,通过静电作用吸附在Au电极表面。状态发生剧烈改变的电位转折点位于0.5V(vs SCE)。
     在pH 7的溶液中,吸附在Au电极表面的铁原卟啉吸附自组装层与pH 1中观察略有不同。首先,羧酸根的积分强度明显增强,而羧酸的积分强度明显减弱;其次,羧酸和羧酸根随电位发生明显改变的电位移至-0.4V (vs SCE);再次,在电位大于-0.4V(vs SCE),出现1563 cm~(-1)处的峰卟啉环外围羧酸根的非对称伸缩振动有关。铁原卟啉的pKa的影响可能是造成两种pH溶液中,铁原卟啉光谱特征不同的原因。
     二.吸附在金电极表面的铁原卟啉与CO配位反应的现场衰减全反射表面增强红外光谱(in situ ATR-SEIRAS)研究
     生命过程中,血红蛋白中的铁原卟啉结合一氧化碳会影响与氧的结合,造成细胞缺氧。因此,铁原卟啉与CO的配位反应一直是人们研究的重点。但以前的研究仅限于本体研究。
     本部分工作利用in situ ATR-SEIRAS研究了0.1M HClO_4溶液中Au电极表面还原态的FePP与CO的表面配位反应。
     在以FePP/Au为电极(50μM FePP硼砂溶液制)的0.1M HClO_4中通入饱和的CO,在电极表面同时可以观察到五配位的Fe~Ⅱ(CO)PP和六配位Fe~Ⅱ(CO)_2PP。最初电极表面以Fe~Ⅱ(CO)PP为主,随着电位的升高,Fe~Ⅱ(CO)_2PP逐渐增多。Fe~Ⅱ(CO)_2PP相当稳定,即使在较高电位(0.8V(vs SCE))也没有氧化完全。这种五配位的Fe~Ⅱ(CO)PP和六配位Fe~Ⅱ(CO)_2PP在表面的出现以及比例随电位变化主要是由于FePP在Au电极表面的吸附取向随电位变化引起。结合红外光谱图和电化学研究发现,Fe~Ⅱ(CO)PP氧化到Fe~Ⅲpp的实质是CO首先从Fe~Ⅱ(CO)PP中解离出来,然后Fe~ⅡPP氧化成Fe~ⅢPP,其中间转换电位为0.09V(vs SCE)。
     换作铁原卟啉丙酮饱和溶液制得的FePP/Au为电极的体系中,其红外谱图与上文中的有极大不同。FePP环外围替代基团羧酸和羧酸根没有在谱图中出现,取而代之的是代表卟啉坏骨架振动的一些红外活性的峰,这些峰也随电位的移动而发生变化。而代表Fe~Ⅱ(CO)PP的峰变得很弱,并没有观察到Fe~Ⅱ(CO)_2PP的存在,这可能在某种程度上反映了丙酮与铁原卟啉的配位。
     三.吸附在金电极表面的铁原卟啉与NO配位反应的现场衰减全反射表面增强红外光谱研究(in situ ATR-SEIRAS)
     NO是一种在生命科学及环境催化方面有非常重要作用的分子。NO是神经传导的重要信息物质,还能引起血管舒张。另外,铁原卟啉作为催化剂能够催化NO_2~-的分解。所有这些作用机理都与NO和铁卟啉的配位息息相关。但关于铁原卟啉与NO的配合很复杂,Fe(Ⅲ)和Fe(Ⅱ)都可以与NO配位,还存在多种等电子体。特别是Fe(Ⅱ)与NO配合物中NO振动在红外光谱中出现的位置与H_2O的剪式振动很相近,给相应的判断带来一定的困难。
     本文采用原位衰减全反射表面增强红外光谱(in situ ATR-SEIRAS)法研究了0.1M HClO_4中Au电极表面FePP自组装层与NO的配位反应以及NO与CO在铁原卟啉自组装层表面的交换反应。
     通过控制电位测量NO与FePP配位前后的原位红外光谱以及改变电位利用原位红外光谱研究其配位过程结合的方法,测定了Au电极表面铁原卟啉亚硝酰配合物的种类以及随电位变化情况。在较高电位出现三价铁原卟啉与NO的配合物,其特征峰出现在1915 cm~(-1),存在电位区间较窄且不稳定容易分解。其结构至认为是Fe~Ⅲ(NO)(OH_2)PP或其等电子体Fe~Ⅱ(NO)~+(OH_2)PP。两个较低频率出现的峰为二价铁原卟啉与一氧化氮的配合物的特征峰,可以在很宽的电位范围稳定存在。其中一个具有不明显Stark效应的位于ca.1670cm~(-1),指认为二价铁原卟啉的单亚硝酰配合物Fe~Ⅱ(NO)PP。另一个具有明显Stark效应的位于ca.1710 cm~(-1),指认为二价铁原卟啉的双亚硝酰配合物Fe~Ⅱ(NO)_2PP。这种同时存在两种铁原卟啉亚硝酰配合物主要是由于铁原卟啉在Au电极表面组装的不均一性引起。
     在含有NO的溶液中通入饱和CO发现,NO与FePP的结合抑制了CO与Fe~ⅡPP的配位。只有在-0.2V(vs SCE),铁原卟啉亚硝酰化合物被还原,NO与铁原卟啉分离的情况下,CO才能与Fe~ⅡPP配位。同样的,-0.1V(vs SCE)在饱和CO溶液中,通入NO 1min,我们发现,CO全部被NO取代,这在另一方面也证实了我们的上述判断。在整个交换过程中,我们并没有观察到代表卟啉环外围的羧酸和羧酸根的红外特征峰,这说明交换反应的发生并不会引起卟啉环吸附取向的转变。
     四.铁原卟啉在铂表面的现场振动光谱法研究
     有关Au或Ag表面通过巯基固定分子而构建功能化界面的研究已有大量报道。为了拓展功能化界面研究,将铁原卟啉分子(FePP)组装在Pt表面也是我们论文的研究目标之一。SERS主要得到铁原卟啉的骨架振动的信息,而SEIRAS则有利于研究极性配体和卟啉环外围替代基团。本文结合SERS和SEIRAS研究了0.1M HClO_4溶液中FePP在Pt表面的吸附行为。
     粗糙的Pt是一种非传统,弱SERS效应的金属。我们利用SERS研究了FePP分子在粗糙Pt电极上的吸附取向以及随电位的变化。粗糙度为101的Pt表面的增强因子为665,在这种增强条件下可以很清楚的观察到FePP分子的骨架振动信息。FePP主要采取近乎垂直方式吸附,其骨架振动模式的随着电位的变化反映了中心铁离子价态的变化。对标志铁原卟啉中心价态变化的ν_4峰强度积分拟合可得Fe~(3+)/Fe~(2+)的中间转换电位为-0.2 V(vs SCE)。表面增强红外光谱的研究发现环外羧酸和羧酸根同时吸附在Pt电极表面。通过对光谱的分析得出卟啉环几乎垂直吸附在电极表面。与Au电极表面FePP的吸附行为不同,环外围羧酸和羧酸根的特征峰基本不随着电位改变而发生移动,这可能与电位采集范围有关。所以,综合拉曼光谱和红外光谱的信息,FePP在Pt表面的吸附模式主要采取近乎垂直吸附模式。
     我们还利用表面增强拉曼效应研究了pH 3和pH 7溶液中FePP在Pt表面的吸附行为。大部分骨架振模式随电位变化与pH1溶液中观察到的研究结果相似。只是Fe~(3+)/Fe~(2+)中间转换电位随pH增大会发生负移。
     五.硫酸溶液中铅电极上阳极Pb(Ⅱ)膜的阳极极化以及稀土元素Yb的添加对铅电极上阳极Pb(Ⅱ)膜以及PbO_2生长的影响
     阳极膜Pb(Ⅱ)膜生长电位0.9V接近于阀控式铅酸电池(VRLA)电池在深放电条件下正极板栅所处的电位,其主要组成为PbO,PbO·PbSO_4和PbSO_4。
     通过对硫酸溶液中铅电极上阳极Pb(Ⅱ)膜的阳极极化的研究我们主要得出以下结论:(1)Pb电极上阳极Pb(Ⅱ)膜的极化主要是由电荷传递过程造成的。(2)Pb电极在H_2SO_4溶液中遵循如下的溶解-沉淀机理以生长PbO膜:(1) Pb+OH~-→Pb(OH)_(ad)+e~-;(2) Pb(OH)_(ad)+OH~-→PbOOH~-+H~++e~-(rds);(3) PbOOH~-→PbO+OH~-。
     Yb具有磁性、荧光激活、无记忆效应的等优点而广泛用作工业添加剂。根据溶解沉积机理,其饱和溶解度与PbOOH~-相近,我们希望Yb的添加可以改善Pb阳极膜的性质。
     Yb的添加可使Pb合金上于0.9V下生长的阳极Pb(Ⅱ)膜阻抗明显下降,并使Pb(Ⅱ)膜的生长速度明显减小。通过对其机理的研究发现PbO区发生阳极腐蚀时,部分的Yb~(3+)较PbOO~-更沉积于基体表面,Yb(OH)_3覆盖在阳极膜内,阻碍了基体与溶解的离子传递,当膜内PbOOH~-的浓度达到饱和时,PbO与Yb(OH)_3也将在膜内更深处发生共沉积,形成共沉积层,从而抑制Pb(Ⅱ)膜的生长。而在1.4V下生长的阳极膜,其主要组成为α-PbO_2和β-PbO_2,Yb的添加可明显抑制β-PbO_2生长但促进了α-PbO_2的生长。对于膜阻抗的研究,发现Yb的添加可抑制PbO合金1.4V下的氧化。
Surface electrochemistry is a rapidly growing inter-discipline of surface scienceand electrochemistry. A recent hot topic in surface electrochemistry is the interfacialbioelectrochemistry which involves the construction, characterization and utilizationof bioactive electrode surfaces modified with functional biomolecules and theirrelated model compounds. These functional electrode/electrolyte interfaces providenot only platforms for the study of the electron transfer but also for the potentialapplications in electrocatalysis and bio-sensing.
     Metalloporphyrins exist in many organisms as prosthetic groups of proteins.Specifically, iron protoporphyrinⅨ(simplified as FePP) is the common active centerof myoglobin, hemoglobin, cytochrome C and peroxide enzymes. FePP has manyimportant functions such as transportation and biocatalysis in vivo. Recent years,FePP modified electrodes were found to exhibit excellent electrocatalytic effects onthe reduction of dioxygen, hydrogen peroxide, nitrite, carbon dioxide and so on. Thestudy of potential dependent structure and reaction of FePP adlayer at electrodes notonly helps to understand its biocatalytic functions at molecular level but also lay thebasis for this functional electrode to be used in catalysis and sensing aspects.
     ATR-surface enhanced IR absorption spectroscopy (ATR-SEIRAS) and surfaceenhanced Raman spectroscopy (SERS) have high surface sensitivity which willfacilitate in situ monitoring of surface adsorption and reaction. Most of the skeletalvibrations of FePP are Raman-active. Strong SER effects are produced mainly oncoinage metals which limited the study of versatile functional surfaces with FePP.The complicated surface selection rule of SERS makes it difficult to deduce theadsorption configuration of adsorbates. Further more, it is quite difficult if notpossible to obtain directly the binding information of small ligands toward FePPadlayer by SERS which can only be judged by the change in relative intensities ofporphyrin ring bands. SEIRAS is very sensitive to the highly polar small molecules,including CO and NO, facilitating the study of surface coordination of FePP with COor NO. In addition, SEIRAS is also suitable for detecting the peripheral propionicand propionate groups of FePP adlayer, thus may help to understand the adsorptionconfiguration of this molecule.
     So far, lead acid batteries remain the most frequently used batteries of all with itshigh performance-price ratio, secure and reliable operation. However, the seriousanodic corrosion and the high impedance layer formed on surface of the grid alloy arethe main factors to affect the discharge performance and deep charge/discharge cyclelife of the batteries. The formation of the high impedance layer is related to thecomposition and the properties of the alloy, as well as the growth mechanism of theanodic oxide film formed on the alloy. It is part of our thesis work to study the growthmechanism of anodic film and select the suitable alloying elements from rare-earthmetals to tackle the anodic corrosion problem.
     The main results and conclusions of the dissertation are summarized as follows:
     (Ⅰ) In situ ATR-SEIRAS study on FePP adlayer self-assembled on a Au electrode
     In situ ATR surface enhanced IR absorption spectroscopy (ATR-SEIRAS) wasfirstly applied to probe potential dependent adsorption configuration of FePP adlayeron Au (FePP/Au) electrodes in 0.1 M HClO_4 (pH 1) and PBS (pH 7).
     A SEIRA-active Au nanoparticle film (ca. 60-nm-thick) was deposited on thetotal-reflecting plane of hemicylindrical Si prism with electroless plating method. TheFePP adlayer immobilized on Au nanoparticle film by soaking the latter in a basicsolution containing dilute FePP as the working electrode.
     FePP is of approximately D_(4h) symmetry structure, IR-active in-plane stretchingvibrations of porphyrin ring skeleton are very weak, only the peripheral propionicacid groups of FePP can be observed in pH 1 solution. At lower potentials, statistically,two peripheral propionic acid groups predominate, FePP mainly lie nearly flat on theAu surface; while at higher potentials, one of them is deprotonated with its twooxygen atoms attached on Au surface, yielding a kind of reorientation (tilting) of theporphyrin ring. The steric hindrance probably prevents the simultaneous adsorption oftwo carboxylate groups on Au surface even at higher potentials.
     Slight different spectral features can be found at pH 7. Firstly, the band forperipheral propionate groups is much stronger at higher potentials at pH 7; Secondly,the porphyrin ring may re-orientate to a relatively large extent by tilting up ring planethrough anchoring a carboxylate group on the metal surface at ca. 0.5 V at pH 1 and-0.4 V at pH7, respectively; Thirdly, the band 1563 cm~(-1), assigned toν_(asCOO-),appeared at the potential higher than -0.4 V at pH 7. Chemical dissociation based on pKa of the two peripheral propionic acid groups at pH 7 may also contribute to thedifferent spectral features observed.
     (Ⅱ) in situ ATR-SEIRAS on CO adducts of FePP adlayer self assembled on a Auelectrode
     Coordination chemistry of CO with metalloporphyrins is a biologically andchemically important topic as promoted by the interest in comparing the coordinationproperties of metalloporphyrins with heme proteins. Historically, studies on CObinding with metalloporphyrins were mainly limited to bulk phase reactions.
     The surface coordination chemistry of carbon monoxide with the reduced form(Fe~ⅡPP) of iron(Ⅲ) protoporphyrinⅨ(Fe~Ⅲpp) monolayer self-assembled on a Auelectrode in 0.1 M HClO_4 was studied for the first time by using in situ ATR- surfaceenhanced infrared absorption spectroscopy (ATR-SEIRAS).
     Both mono- and bis- carbonyl adducts [simplified as Fe~Ⅱ(CO)PP andFe~Ⅱ(CO)_2PP, respectively] were detected on the FePP/Au(prepared with 50μMFePP in 0.1M borax), depending on the history of potential control. Initially theFe~Ⅱ(CO)PP predominates, and the intermediate transition potential for the conversionof Fe~Ⅱ(CO)PP to Fe~ⅢPP and CO was spectrally determined to be ca. 0.09 V (vs. SCE).The ratio of Fe~Ⅱ(CO)_2PP and Fe~Ⅱ(CO)PP increases after a potential excursion to asufficiently positive value. Fe~Ⅱ(CO)_2PP is much more stable against itselectro-oxidation to Fe~ⅢPP than its counterpart Fe~Ⅱ(CO)PP with increasing potential.The observed change of coordination properties may be ascribed to an irreversiblestructural reorganization of the FePP adlayer caused by the potential excursion.
     The great difference of adsorption of FePP on Au can be found with FePP/Auprepared with saturated FePP in acetone. Several relative weak IR-active in-planestretching vibrations of porphyrin ring skeleton can be observed instead of theperipheral propionic acid groups. Fe~Ⅱ(CO)PP can also be found but rather weak, nopeaks ascribed to Fe~Ⅱ(CO)_2PP can be observed with this method, suggesting thestrong coordination of acetone to FePP.
     (Ⅲ) in situ ATR-SEIRAS on NO adduets of FePP adlayer self assembled on aAu electrode
     Nitric oxide is unique among diatomic molecules in that it can bind to manymetals of different oxidation states and different electron configurations. The coordination chemistry of NO with iron porphyrins has been intensively investigated,inspired by both fundamental and technological interests ranging from relevantbiological functions including vasodilatation and neuronal communication toenvironmental concerns about (bio)catalytic reduction and oxidation of nitrites. TheNO coordination with FePP/Au is complicated: first, NO can coordinate to both ferricand ferrous protoporphyrins; second, multiple isoelectronic forms are present for aNO adducts of either ferric or ferrous protoporphyrin; third,ν_(N-O) of NO coordinatedto Fe~Ⅱpp is close toδ_(HOH) of water andν_(C-O) of peripheral carboxylic groups, and thusshould be dealt with care.
     Based on potential controlled ATR-SEIRAS on independent FePP/Au electrodesand multi-step ATR-SEIRAS measurement on one same FePP/Au electrode, for thefirst time, up to three IR bands corresponding to three types of nitrosyl adducts ofFePP have been identified with their intensities (concentrations) varied with thepotential applied. The 1915 cm~(-1) band, which shows up at relatively positivepotentials and stabilizes in a rather narrow potential range can be reasonably assignedto the Fe~Ⅱ(NO)(OH_2)PP species or its isoelectronic format Fe~Ⅱ(NO)~+(OH_2)PP. Theother two bands with much lower frequencies, which can stabilize over a much widerpotential range and exhibit nearly opposite potential dependent intensities, arebasically characteristic of nitrosyl adducts of ferrous FePP. One band at ca. 1670 cm~(-1)with insignificant Stark effect, can be attributed to Fe~Ⅱ(NO)PP. The other above 1705cm~(-1) with significant Stark effect, could be ascribed to Fe~Ⅱ(NO)_2PP. The multi nitrosyladductions may be caused by the largely inhomogeneous structure of the FePP adlayeron Au electrodes.
     The exchange of NO and CO on FePP/Au in 0.1M HClO_4 are brieflyinvestigated. Stronger binding of NO with FePP adlayer prevents the CO coordinationwith the latter, and the formation of Fe~Ⅱ(CO)PP was only found at potentials negativeof -0.2V where Fe~Ⅱ(NO)PP is partially reduced. The exchange of CO and NO onFePP/Au in 0.1M HClO_4 didn't arouse the change of adsorption orientation of FePPon Au surface.
     (Ⅳ) in situ SERS and in situ ATR-SEIRAS study of iron protoporphyrinmonolayer adsorption on polycrystalline Pt electrode
     Self-assembly of molecules including thiols and porphyrins on Au and Agelectrodes has been intensively studied. To broaden the types of functional electrodes,FePP self-assembled on Pt electrode is among the targets of our thesis work. SERS is suitable for detecting the skeletal vibrations of FePP adlayer whereas SEIRAS is goodfor detecting polar ligands and peripheral groups of FePP adlayer. For the first time,both in situ SERS and in situ ATR-SEIRAS were applied to probe adsorption of FePPadlayer on Pt electrodes in 0.1 M HClO_4.
     The potential dependent SERS spectra of FePP adlayer with the enhanced factornearly 10~3 were acquired on a roughened Pt electrode. Analyses of spectral datarecorded at pH1 over a wide potential region made it possible to obtain potentialdependent adsorption isotherms, from which the stranded redox potential was foundto be ca. -0.2 V. Up-tilted orientation of FePP on Pt electrode was assumed based onin situ SERS and in situ ATR-SEIRAS measurements. Unlike FePP on Au electrode,FePP on Pt electrode hardly reorients within the potential range investigated.
     SERS was also extended to the measurements of FePP adsorption on roughenedPt electrode performed in pH 3 and pH 7 solutions (PBS). The intermediate transitionpotential of Fe~(3+)/Fe~(2+) moves to a lower potential at higher pH.
     (Ⅴ) Study of polarization behavior of the anodic Pb(Ⅱ) film on Pb eletrode andthe effect of alloying element Yb on the growth of anodic Pb(Ⅱ) and PbO_2films on Pb alloy electrode in 4.5 M H_2SO_4
     The anodic polarization behavior of anodic Pb(Ⅱ) film preformed on Pbelectrode was studied by using fast speed linear sweep voltammetry (LSV),electrochemical impedance spectroscopy and (EIS) scanning electron microscope(SEM). The mechanism of the formation of the anodic PbO film is suggested asfollows: (1) Pb+OH~-→Pb(OH)_(ad)+e~-; (2) Pb(OH)_(ad)+OH~-→PbOOH~-+H~++e~-(rds); (3)PbOOH~-→PbO+OH~-.
     The anodic Pb(Ⅱ) films formed on Pb and Pb-Yb electrode at 0.9V (vs Hg/Hg_2SO_4) in sulfuric acid solution were studied. The results showed that the additionof Yb can decrease the value of Z' for the anodic Pb(Ⅱ) film and inhibit the growth ofthe film. According to above mechanism proposed for the formation of the anodicPbO film, the inhibition effect of this alloy element can be explained as follows: thesaturated concentration of Yb~(3+) is far smaller than that of PbOOH~-, so Yb~(3+) willprecipitate earlier than PbOOH~- at the innermost of film. Once the concentration ofPbOOH~- is close to the saturated concentration of Yb~(3+), PbOOH~- will co-precipitatewith Yb~(3+) at the innermost of film, inhibiting the film growth.
     The study of anodic PbO_2 film (α-PbO_2 andβ-PbO_2) formed on Pb-Yb electrode at the deep charge potential of 1.4 V in sulfuric acid solution was carried out. Theresults showed that the addition of Yb can promote the growth ofα-PbO_2 but inhibitthe growth ofβ-PbO_2. The growth of PbO under-layer can be inhibited at 1.4V asjudged from the impedance decease after alloying Pb with Yb.
引文
[1] Battistuzzi, G., Borsari, M., Dallari, D., Lancellotti, I., Sola, M. Anion Binding to Mitochondrial Cytochromes c Studied through Electrochemistry. Effects of the neutralization of surface charges on the redox potential [J] Eur. J. Biochem. 1996, 241:208-214.
    [2] Meyer, T.E., Cusanovich, M.A. Structure, function and. distribution of soluble bacterial redox proteins [J] Biochim Biophys. Acta 1989(975): 1-28
    [3] Milazzo,G,Blank,M.合编,肖科、唐宝璋、史尔纲泽,生物电化学一生物氧化还原反应,[M]天津科学出版社:天津.19900。
    [4] Rothemund, P. Formation of porphyrins from pyrrols and aldehydes, [J] J. Am.Chem. Soc. 1935, 57(10): 2010-2011.
    [5] 王莉红,汤福隆卟啉类试剂合成的发展[J]化学试剂,1999,21(5):273-289.
    [6] 郑维忠,曾庆平,王先元 高分子卟啉化合物的制备及应用 研究[M]有机化学,1995,15(5):520-524.
    [7] 刘佩华,田禾.上海化工,1999,11:12-18
    [8] Loi, A., Enk, P., Hoppe, D.H. Functional oligothiophenes as advanced molecular electronic materials [J] J. Mater. Chem. 2002, 12(9):2565-2575.
    [9] 史素姣,钟江帆,姜志宏.光电子[J]激光,1997,8(3):166.
    [10] Imahoi, H., Tamaki, K., Araki, Y. Stepwise Charge Separation and Charge Recombination in Ferrocene-meso,meso-Linked Porphyrin Dimer-Fullerene Triad [J] J. Am. Chem. Soc., 2002,124(18):5165-5174.
    [11] Loewe, R. S., Tomizaki, K., Youngblood, W. J. Synthesis of perylene-porphyrin building blocks and rod-like oligomers for light-harvesting applications [J] J. Mater. Chem., 2002(12), 12: 3438-3451.
    [12] Takahashi, K, NakataniS, S, Yamaguchi, T. Sol. Energy Mater. Sol. Cells, 1997, 45: 12720.
    [13] Jasieniak, J. Johnston, M. Waclawik,E. R. Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell [J] J. Phys. Chem. B, 2004,108 (34):12962-12971.
    [14] Bonfantini, E. E., KBurrell, A., Campbell, W. M. Efficient synthesis of free-base 2-formyl-5,10,15,20-tetraarylporphyrins, their reduction and conversion to [(porphyrin-2-yl)methyl]phosphonium salts [J] J. Porphyrins Phthalocyanines, 2002, 6 (11): 708-719.
    [15] Koehorst, R. B. M., KBoschloo, G., Savenije,T. J. Spectral Sensitization of TiO_2 Substrates by Monolayers of Porphyrin Heterodimers [J] J. Phys. Chem. B, 2000, 104 (10): 2371-2377.
    [16] Odobel, F., Blart, E., Lagree, M. Porphyrin dyes for TiO_2 sensitization [J] J. Mater. Chem. 2003,13 (3): 502-510.
    [17] KBoschloo, G., Goossens, A. Electron Trapping in Porphyrin-Sensitized Porous Nanocrystalline TiO_2, Electrodes [J] J. Phys. Chem. 1996,100 (50): 19489-19494.
    [18] Cherian, S., Wamser,C. C. Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO_2 [J] J. Phys. Chem. B 2000,104 (15): 3624-3629.
    [19] Kalyanasundaram, K., Shelnutt, J. A., Graetzel, M. Sensitization and photoredox reactions of zinc(Ⅱ) and antimony(Ⅴ) uroporphyrins in aqueous media [J] Inorg. Chem. 1988, 27 (16): 2820-2825.
    [20] Groves, J. T., Nemo, T. E. Epoxidation reactions catalyzed by iron porphyrins. Oxygen transfer from iodosylbenzene [J] J. Am. Chem. Soc. 1983, 105(18): 5786-5791.
    [21] MeunierB, CarvalhoM E, RobertA.Aspects of metalloporphyrin-catalyzed oxygenation of hydrocarbons with anionic single oxygen donors, NaOCl and KHSO5 [J] J M ol. Cat. 1987, 41: 185-195.
    [22] Bruice, T. C. Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions [J] Acc. Chem. Res. 1991, 24(8): 243-249.
    [23] Yfrach, G. S., Rigaud, J. L. Light-driven Production of ATP Catalyzed by FF1-ATP Synthase in an Artifical PhotosyntheticMembrane [J]. Nature, 1998, 392: 472-482.
    [24] 陈慧,安太成,房彦军,肉桂酰氧基苯基卟啉及钴配合物的合成及其光催化性能[J]西北师范大学学报(自然科学版),2000,36(2):32-37.
    [25] Tang, Q., Cao, G. Y. The Synthesis of A New Ru - Pt -Porphyrin [J] He Cheng HuaXue 2001, 9(1): 6-81
    [26] Nestler, O., Severin, Kay. A Ruthenium Porphyrin Catalyst Immobilized in a Highly Cross-Linked Polymer [J] Org. Lett. 2001, 3 (24): 3907-3909.
    [27] 吴越,叶兴凯,张长安.金属卟啉化合物的催化作用[J]化学通报,1988,1:20-23.
    [28] Liu C. J., Li, S. G., Pang, W. Q., Che, C. M. Ruthenium porphyrin encapsulated in modified mesoporous molecular sieve MCM-41 for alkene oxidation Chem. Commun. 1997, 1: 65-66.
    [29] Liu, C. J., Yu, W. Y., Li, S. G., Che, C. M. Ruthenium meso-Tetrakis(2, 6-dichlorophenyl) porphyrin Complex Immobilized in Mesoporous MCM-41 as a Heterogeneous Catalyst for Selective Alkene Epoxidations J. Org. Chem. 1998, 63(21): 7364-7369
    [30] Koichiro, J. itsukaw a et al, Inorg. Chimica. Acta. 1994, 216(1-2) 249-251.
    [31] 沈同,生物化学(下册),[M]高等教育出版社,1993,286-403页
    [32] Aoyama, Y., T Uzawa, S., Saita, K., Tanaka, Y. Toi, H., Ogoshi, H., Okamoto, Y. Molecular recognition in the ternary systems of a trifunctional chiral metalloporphyrin, amino esters, and HPLC adsorbent [J] Tetrahedron Lett. 1988, 29(41): 5271-5274.
    [33] Aoyama, Y. Nonaka, S. I., Motomura, T., Ggoshi, H. Binding of Amino Acids with a Bifunctional Metalloporphyrin via Concurrent Metal-Coordination and Electrostatic Interactions [J] Chem. Lett. 1989, 18: 1877.
    [34] Hisanobu Ogoshi; Yasuhisa Kuroda Journal of Synthetic Organic Chemistry, Japan, 1989, 47: 514.
    [35] Yasuhiro Aoyama et al Chem. Lett. 1991, 1211.
    [36] Aoyama, Y., Asakawa, M., Matsui, Y., Ogoshi, H. Molecular recognition. 16. Molecular recognition of quinones: two-point hydrogen-bonding strategy for the construction of face-to-face porphyrin-quinone architectures [J] J. Am. Chem. Soc. 1991, 113(16): 6233-6240.
    [37] Mizutani, T., Ema, T., Yoshida, T., Kuroda, Y. Hisanobu Ogoshi Recognition of α-amino acid esters by zinc porphyrin derivatives via coordination and hydrogen bonding interactions. Evidence for two-point fixation from thermodynamic and induced circular dichroism spectroscopic studies [J] Inorg. Chem. 1993, 32(10), 2072-2077.
    [38] Hayashi, T., Miyahara, T., Hashizume, N., Ogoshi, H. Specific molecular recognition via multipoint hydrogen bonding ubiquinone analogs-porphyrin having four convergent hydroxyl groups pairing [J] J. Am. Chem. Soc. 1993, 115(5): 2049-2051.
    [39] Tadashi, M. Ema, T., Tomita, T., Kuroda, Y., Ogoshi ,H. Recognition of chirality and residual groups of amino acid esters using new trifunctional chiral porphyrins with C_2 symmetry [J] J. Chem. Soc. Chem. Commun., 1993, 6: 520-522.
    [40] Hayashi, T., Takimura, T., Ogoshi, H. Photoinduced Singlet Electron Transfer in a Complex Formed from Zinc Myoglobin and Methyl Viologen: Artificial Recognition by a Chemically Modified Porphyrin [J] J. Am. Chem. Soc., 1995, 117(46): 11606-11607.
    [41] 雷亚春,张勇,刘滇生,潘景浩 卟啉及其配合物在分析化学中应用进展,光谱实验2003,20(4):479-485。
    [42] 王霞,刘道杰,“卟啉试剂住分析化学中的应用”分析科学学报2003,19(5):401-4030
    [43] Agarwala, V. S., Longo, F. R. Proceedings on International Symposium Honoring Doctor Norman Harkerman on His 75th Birthday, San Diego, California, 1986, 56
    [44] 李伟明,宋诗哲.光电化学方法研究不锈钢钝化膜的局部破坏[J]腐蚀科学与防护技术,1992,4(2):223-228
    [45] 宋诗哲,李伟明.卟啉在纯铁表面的化学与电化学修饰[J]物理化学学报,1994,2:135-140
    [46] Vianaa, A. S., Leupoldb, S. F., Montfortsb, P., Abrantesa, L. M. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold [J] Electrochimica Acta 2005, 50: 2807-2813
    [47] Cordasa, C. M., Viana, A. S., Leupold, S., Montforts, F. P., Abrantes, L. M. Self-assembled monolayer of an iron (Ⅲ) porphyrin disulphide derivative on gold [J] Electrochem. Commu. 2003, 5: 36-41.
    [48] Lu, X. Q., Jin, J., Kang, J. W., Lu, B. Q., Liu, H. D., Geng, Z. X. The characterization of 5-{[4-(4-mercapto) phenylmethoxy] phenyl}-10, 15, 20-tris (phenyl) porphyrin cobalt (Ⅱ) self-assembled monolayers (SAMs) and its electrocatalytic oxidation for ascorbic acid [J] Mater. Chem. Phys. 77 (2002) 952-957
    [49] Tanaka, H., Aramata, A. Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: cobalt (Ⅱ) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO_2 electroreduction [J] J. Electroanal. Chem. 1999, 437: 29-35.
    [50] Kanayama, N., Kanbara, T., Kitano, H. Complexation of Porphyrin with a Pyridine Moiety in Self-Assembled Monolayers on Metal Surfaces [J] J. Phys. Chem. B 2000, 104(2): 271-278
    [51] Zhang, Z. J., Imae, T. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption Spectroscopic Studies of a Metalloporphyrin Monolayer Film Formed on Pyridine Self-Assembled Monolayer-Modified Gold [J] Langmuir 2001, 17(15): 4564-4568.
    [52] Ryswyk, H. V. Gabor, R. S., Awasthi, S., Bodzin, D. J., Orosz, K. S. Kinetics of Metalloporphyrin Chemisorption onto Monolayer-Confined Ligands and Subsequent Distal Ligand Exchange [J] Langmuir 2004, 20(26): 11815-11817.
    [53] Pilloud, D. L., Moser, C. C., Reddy, K. S., Dutton, P. L. Surface-Promoted Thioether Linkage between Proto- or Hemato porphyrins and Thiol-Silanized Quartz: Formation of Self-Assembled Monolayers and Interaction with Imidazole and Carbon Monoxide [J] Langmuir 1998, 14(17), 4809-4818.
    [54] Zhang, Z. J., Hu, R. S., Liu, Z. F. Formation of a Porphyrin Monolayer Film by Axial Ligation of Protoporphyrin IX Zinc to an Amino-Terminated Silanized Glass Surface [J] Langmuir 2000, 16(3): 1158-1162.
    [55] Tao, N .J, Cardenas, G., Cunha, E, Shi, Z. In Situ STM and AFM Study of Protoporphyrin and Iron(Ⅲ) and Zinc(Ⅱ) Protoporphyrins Adsorbed on Graphite in Aqueous Solutions [J] Langmuir, 1995, 11 (11); 4445-4448
    [56] Snyder, S.R., White, H.S. Electrochemistry and Structure of Thin Films of (Protoporphyrinato (Ⅸ)) iron (Ⅲ) Chloride [J] J.Phys.Chem. 1995, 99(15): 5626-5632
    [57] Sagara, T, Fukuda, M.; Nakashima, N. Electroreflectance study of hemin adsorbed on a HOPG electrode: Estimation of molecular orientation and analysis of nonfaradaic electroreflectance signal due to the stark effect. [J] J. Phys. Chem. B 1998, 102 (3): 521-527
    [58] 杨培慧,陈晓翔,周志军,蔡继业.不同电极上血红素对青蒿素的电催化还原 催化学报[J]Chin.J.Catal.2004,25(12):943-947.
    [59] 秦玉华,张袁健,徐修冬,许宏鼎,李景虹 细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学[J]化学学报,2004,62(9):860-863.
    [60] 刘有芹,沈含熙 氯化血红素修饰玻碳电极的制备及其作用机理[J]分析化学2004,32(12):1-13.
    [61] Kara, P., Ozkan, D., Kerman, K., Meric, B., Erdem, A., Ozsoz, M. DNA sensing on glassy carbon electrodes by using hemin as the electrochemical hybridization label [J] Anal. Bioanal. Chem. 2002,373 (8): 710-716.
    [62] Zheng, N., Zeng, Y., Osborne, P.G. Electrocatalytic reduction of dioxygen on hemin based carbon paste electrode [J] J. Appl. Electrochem. 2002, 32 (2): 129-133
    [63] Zhang, Z. J.; Imae, T. Hydrogen-Bonding Stabilized Self-Assembled Monolayer Film of a Functionalized Diacid, Protoporphyrin Ⅸ Zinc (Ⅱ) onto a Gold Surface [J] Nano Lett. 2001, 1(5): 241-243.
    [64] Ogunrinde, A., Hipps, K. W., Scudiero, L. A Scanning Tunneling Microscopy Study of Self-Assembled Nickel (Ⅱ) Octaethylporphyrin Deposited from Solutions on HOPG [J] Langmuir 2006, 22(13): 5697-5701.
    [65] Arima, V., Blyth, R.I.R., Sala, F. D., Sole, R. D., Matino, F., Mele, G., Vasapollo, G., Cingolani, R., Rinaldi, R. Long-range order induced by cobalt porphyrin adsorption on aminothiophenol-functionalized Au(111): the influence of the induced dipole [J] Mater. Sci. Eng. C 2004, 24:569-573
    [66] Yamazaki, S.I. Yamada, Y., Ioroi, T., Fujiwara, N., Siroma, Z. Yasuda, K., Miyazaki, Y. Estimation of specific interaction between several Co porphyrins and carbon black: its influence on the electrocatalytic O_2 reduction by the porphyrins [J] J.Electroanal. Chem. 2005,576(2):253-259.
    [67] Marcus, R. S., Sutin, N. Electron transfer in chemistry and. Biology [J] Biochim. Biophys. Acta 1985, 811: 265-322.
    [68] Yamada, T., Hashimoto, T., Kikushima,S., Ohtsuka,T., Nango,Mamoru. Electron Transfer of Manganese Halogenated Tetraphenylporphyrin Derivatives Assembled on Gold Electrodes [J] Langmuir 2001, 17(15): 4634-4640.
    [69] Duong, B., Arechabaleta, R., Tao, N. J. In Situ AFM/STM Characterization Porphyrin Electrode Films for Electrochemical Detection of Neurotransmitters. [J]J. Electroanal. Chem. 1998,447(1):63-69
    [70] Hu, K., Chai, Z., Whitescll, J. K., Bard, A. J. In Situ Monitoring of Diffuse Double Layer Structure Changes of Electrochemically Addressable Self-Assembled Monolayers with an Atomic Force Microscope.[J] Langmuir. 1999,15(9):3343-3347
    [71] Kim, S.Y., Trky, D.A., Bae, I.T., Sandifer, M., Carr, R., Antonio, M.R., Scherson, D. In-Situ Entended X-Ray-Absorption Fine-Structure of an Iron Porphyrin Irreversibly Adsorbed on an electrode surface[J] J. Phys. Chem. 1995,99(25): 10359-10364.
    [72] Bae, I.T., Tolmachev, Y., Mo, Y., Scherson, D., Scheidt,W.R., Ellison, M.K., Cheng, M.C., Armstrong, R.S., Lay, P.A. In situ FeK-edge X-ray absorption spectroscopy of a nitrosyl iron(Ⅱ) porphyrin adduct adsorbed on a high-area carbon electrode in aqueous electrolytes[J] Inorg. Chem. 2001, 40 (14): 3256-3258.
    [73] Choi, H.J., Kwag, G., Kim, S. Electrochemical and XAFS investigation of nitrite reduction by heat-treated mu-oxo derivative of iron phthalocyanine supported on high area carbon[J] J. Electroanal. Chem. 2001,508 (1-2): 105-114.
    [74] Anson, Fred. C., Shi, C.N., Steiger, B. Novel Multinuclear Catalysts for the Electroreduction of Dioxygen Directly to Water[J] Acc. Chem. Res. 1997, 30(11):437-444.
    [75] Makoto, Y., Aritomo, Y., Kenichi, O., Yosuke E, Mizuki K., Tsuyoshi S. Cobaltporphyrin-adsorbed carbon black: highly efficient electrocatalysts for oxygen reduction[J] Polym. Adv. Technol. 2005,16:702-705
    [76] Zhutaeva, G. V., Boikova, G. V., Radyushkina, K.A., Tarasevich, M. R. Adsorption and Electrochemical Behavior of Cobalt Tetra(p-methoxyphenyl)porphyrin at Anisotropic Pyrographite[J] Russ. J. Electrochem. 2002, 38(10):1110-1115.
    [77] Fujihira, M., Sunakawa, K., Osa, T., Kuwana, T. Catalytic electroreduction of molecular oxygen using water soluble iron porphyrin[J] J. Electroanal. Chem. Interracial Electrochem. 1978, 88(2): 299-303.
    [78] Sharp, P. R., Bard, A. J. Electrochemistry in liquid sulfur dioxide. 6. Electrochemical production and isolation of tetrakis (pyridine N-oxide) copper (Ⅲ) hexafluorophosphate[J] Inorg. Chem. 1983, 22(23): 3462-3464.
    [79] Shi, C.N., Anson, F. C. Catalytic pathways for the electroreduction of oxygen by iron tetrakis (4-N-methylpyridyl) porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrolytic graphite electrodes[J] Inorg. Chem. 1990, 29(21): 4298-4305
    [80] Averill, B. A., Orme-Johnson, W. H. In Metallonsin Biological Systems Sigel, H.,[M] Marcel Dekker Ed.; New York, 1978; Vol. 7, Chapter 4.
    [81] Murphy, W. R. Jr., Takeuchi, K. J., Meyer, T. J. Interconversion of nitrite and ammonia: progress toward a model for nitrite reductase[J] J. Am. Chem. Soc. 1982, 104(21):5817-5819.
    [82] Barley, M. H., Takeuchi, K., Murphy, W. R. Jr., Meyer, T. J. Iron porphyrin-based electrocatalytic reduction of nitrite to ammonia[J] J. Chem. Soc., Chem. Commun. 1985, 8:507-508.
    [83] Barley, M. H., Takeuchi, K. J., Meyer, T. J. Electrocatalytic reduction of nitrite to ammonia based on a water-soluble iron porphyrin[J] J. Am. Chem. Soc. 1986, 108(19):5876-5885.
    [84] Barley, M. H., Rhodes, M. R., Meyer, T. J. Electrocatalytic reduction of nitrite to nitrous oxide and ammonia based on the N-methylated, cationic iron porphyrin complex[FeⅢ(H_2O)(TMPyP)]~(5+)[J] Inorg. Chem. 1987, 26(11): 1746-1750.
    [85] Yomathan, J. N., Wood, K. S., Meyer, T. J. Electrocatalytic reduction of nitrite and nitrosyl by iron(Ⅲ) protoporphyrin Ⅸ dimethyl ester immobilized in an electropolymerized film[J] Inorg. Chem. 1992, 31(15): 3280-3285.
    [86] de Groot, M.T., Merkx, M., Wonders, A. H., Koper, M.T.M. Electrochemical reduction of NO by Heroin adsorbed at Pyrolitic graphite[J] J. Am. Chem. Soc. 2005, 127(20): 7579-7586.
    [87] Cheng, S. H., Su, Y. O., Electrocatalysis of Nitric Oxide Reduction by Water-Soluble Cobalt Porphyrin. Spectral and Electrochemical Studies[J] Russ. J. Electrochem. 2002, 38(10): 1110-1115. Translated from Elektrokhimiya, 2002, 38(10):1229-1235.
    [88] Lei, J.P., Ju, H.X. Ikeda, O. Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode[J] J. Electroanal. Chem. 2004, 567(2): 331-338.
    [89] Gao, Y.F., Chen, J.Y. Electrocatalysis of carbon dioxide with hemin and hemin-coated latex[J] J. Electroanal.Chem. 2005, 583(2): 286-291.
    [90] Bhugun, I., Lexa, D., Save ant, J.M. Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(O) Porphyrins: Synergystic Effect of Weak Bro"nsted Acids[J] J. Am. Chem. Soc. 1996, 118(7): 1769-1776.
    [91] Golabi, S. M., Nozadb, A. Electrocatalytic Oxidation of Methanol on a Nickel-Porphyrin Ⅸ Complex Modified Glassy Carbon Electrode in Alkaline Medium[J] Electroanal. 2004, 16(3) 199-209.
    [92] Bewick, A., Kunimatsu, K. Infrared-Spectroscopy of the Electrode-Electrolyte Interphase[J] Surf. Sci. 1980, 101(1-3): 131-138.
    [93] Bewick, A., Kunimatsu, K., Pons, B. S. Infrared-Spectroscopy of the Electrode-Electrolyte Interphase[J]. Electrochim. Acts. 1980, 25(4): 465-468.
    [94] Vess, T. M., Wertz, D. N. Spectrelecchemistry using a movable electrode[J] J. Electroanal.Chem. 1991, 313(1): 81-94
    [95] Osawa, M., Yoshii, K. In situ and real-time surface-enhanced infrared study of electrochemical reactions[J]. Appl. Spectrosc., 1997, 51(4): 512-518.
    [96] Christensen, P., Hamnett, A. In-situ techniques in electrochemistry Ilipsometry and FFIR[J]. Electrochim. Acts. 2000, 45(15-16): 2443-2459.
    [97] Osawa, M., Ataka, K., Yoshii, K., Yotsuyanagi,T. Surface-Enhanced Infi-ared ATR Spectroscopy for in-Situ Studies of Electrode-Electrolyte Interfaces[J]. J. Electron Spectrosc. Relat. Phenom. 1993, 64-5: 371-379.
    [98] Osawa, M., Ataka, K., Yoshii, K., Nishikawa, Y Surface-Enhanced Infrared-Spectroscopy-the Origin of the Absorption Enhancement and Band Selection Rule in the Infrared-Spectra of Molecules Adsorbed on Fine Metal Particles[J] Appl. Spectrosc. 1993, 47(9):1497-1502.
    [99] Osawa, M., Yoshii, K., Ataka, K, Tuyanagi, T. Real-Time Monitoring of Electrochemical Dynamics by Submillisecond Time-Resolved Surface-Enhanced Infrared Attenuated-Total-Reflection Spectroscopy[J] Langmuir 1994, 10(3): 640-642.
    [100] Hartstein, A., Kirtley, J.R., Tsang, J.C. Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers[J] Phys. Rev. Lett. 1980, 45: 201-204.
    [101] Osawa, M., Kuramitsu, M., Hatta, A., Suetaka, W., Seki, H. Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films[J] Surf. Sci. Lett. 1986,175: L787-L793.
    [102] Nishikawa, Y., Nagasawa, T., Fujiwara, K., Osawa, M. Silver island films for Surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement[J] Vib. Spectrosc. 1993,6: 43-53.
    [103] Kang, S.Y., Jeon, I.C. Kim, K. Infrared absorption enhancement at silver colloidal particles[J] Appl. Spectrosc. 1998, 52:278-283.
    [104] Lee, S.J., Kim, K. Diffuse reflectance infrared spectra of stearic acid self-assembled on fine silver particles[J] Vib. Spectrosc. 1998,18:187-201.
    [105] Seelenbinder, J.A., Brown, C.W., Pivarnik, P., Rand, A.G. Colloidal Gold Filtrates as Metal Substrates for Surface-Enhanced Infrared Absorption Spectroscopy[J] Anal. Chem., 1999,71(10): 1963-1966.
    [106] Wan, L. J., Terashima, M., Noda, H., Osawa, M. Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold (111)[J] J. Phys. Chem. B 2000, 104(15):3563-3569.
    [107] Hoffmann, F.M. Infrared reflection-absorption spectroscopy of adsorbed Molecules[J] Surf. Sci. Rep. 1983, 3:107-192.
    [108] Kamata, T., Kato, A., Umemura, J., Takenaka, T. Intensity enhancement of infrared attenuated total reflection spectra of stearic acid Langmuir-Blodgett monolayers with evaporated silver island films[J] Langmuir 1987, 3(6): 1150-1154.
    [109] Johnson, E., Aroca, R. Surface-Enhanced Infrared Spectroscopy of Monolayers[J] J. Phys. Chem. 1995, 99(23): 9325-9330.
    [110] Hatta, A. N. Suzuki, Y. Suzuki and W. Su"etaka, Infrared absorption of polycyanoacrylate enhanced by Ag island films in the Kretschmann's ATR geometry:the coverage dependence[J] Appl. Surf. Sci. 1989, 37: 299-305.
    [111] Hatta, A. T. Ohshima and W. Su"etaka, Observation of the enhanced infrared absorption of p-nitrobenzoate on Ag island films with an ATR technique,[J] J. Appl. Phys. A 1982, 29:71-75.
    [112] Hatta, A. Y. Suzuki and W. Suetaka, Infrared absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration, Evidence for two types of enhanced surface electric fields[J] Appl. Phys. A 1984, 35:135-140.
    [113] Osawa, M., Ikeda, M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and Chemical mechanisms[J] J. Phys. Chem. 1991, 95(24):9914-9919.
    [114] Kuhne C., Steiner, G., Fischer W.B., Salzer, R. Surface-enhanced FTIR spectroscopy on membranes[J] Fresenius'J. Anal. Chem. 1998, 360:750-754.
    [115] Chang, R.K., Furutak, T.E., Surface Enhanced Raman Scattering,[M]Eds. Furutak T.E. Plenum, New York, 1982
    [116] Metiu, H. Surface Enhanced Spectroscopy[J] Prog. Surf. Sci. 1984, 17: 153-320..
    [117] Moskovits, M. Surface-enhanced spectroscopy[J] Rev. Mod. Phys. 1985, 57: 783-826.
    [118] Wakaun, A. 'Surface-enhanced Electromagnetic Processes',in "Solid State Physics", eds H. Ehrenreich and D. Turnbull,Academic Press, New York, 1984, Vol. 38: 223-294.
    [119] Gersten, J.I., Nitzan, A. Photophysics and photochemistry near surfaces and small particles[J] Surf. Sci. 1985, 158(1-3): 165-189.
    [120] Krauth, O., Fahsold, G., Pucci, A. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin Fe films on MgO(001)[J] J. Chem. Phys. 1999,110:3113-3117.
    [121] Bjerke, A.E., Griffiths, P.R., Theiss, W. Surface-Enhanced Infrared Absorption of CO on Platinized Platinum[J] Anal. Chem. 1999, 71(10):1967-1974.
    [122] Aroca, R., Price, B. A New Surface for Surface-Enhanced Infrared Spectroscopy: Tin Island Films[J] J. Phys. Chem. B, 101(33):6537-6540.
    [123] Yoshidome, T., T. Inoue and S. Kamata, Intensity enhancement of the infrared transmission spectra of p-nitrobenzoic acid by the presence of the Pb films[J] Chem. Lett. 1997, 6:533-534.
    [124] Lu, G. Q., Sun, S.G., Chen, S.P., Cai, L. R. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J] J. Electroanal.Chem. 1997, 421(1):19-23.
    [125] Sato, S., K. Kamada and M. Osawa, Surface-enhanced IR absorption (SEIRA) on small Pt particles deposited on an island Au film[J] Chem. Lett. 1999,15-16.
    [126] Zhu,Y., Uchida, H., Watanabe, M. Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique[J] Langmuir 1999,15(25): 8757-8764.
    [127] Oritz, R., Cuesta, A., Marquez, O.P., Marquez, J., Mendez, J.A., Gutierrez, C. Origin of the infrared reflectance increase produced by the adsorption of CO on particulate metals deposited on moderately reflecting substrates[J] J. Electroanal. Chem. 1999, 465(2): 234-238.
    [128] Lu, G. Q., Sun, S.-G., Cai, L. R., Chen, S. P., Tian, Z.-W. In Situ FTIR Spectroscopic Studies of Adsorption of CO, SCN~-, and Poly (o-phenylenediamine) on Electrodes of Nanometer Thin Films of Pt, Pd, and Rh: Abnormal Infrared Effects (AIREs)[J] Langmuir 2000, 16(2):778-786.
    [129] Watanabe, M., Zhu, Y., Uchida, H. Oxidation of CO on a Pt-Fe Alloy Electrode Studied by Surface Enhanced Infrared Reflection-Absorption Spectroscopy[J] J. Phys. Chem.B 2000, 104(8):1762-1768.
    [130] Persson, B.N.J. and R. Ryberg, Vibrational interaction between molecules adsorbed on a metal surface: the dipole-dipole interactions[J] Phys. Rev. B 1981, 24:6954-6970.
    [131] Persson, B.N.J., Liebsch, A. Collective vibrational modes of isotopic mixtures of CO on Cu(111) and Cu(001)[J] Surf. Sci. 1981, 110(2): 356-368.
    [132] Dumas, P., Tobin, R.G., Richards, P. Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: Ⅰ. Silver[J] Surf. Sci. 1986, 171(3):555-578.
    [133] Merklin, G.T., Griffiths, P.R. Influence of Chemical Interactions on the Surface-Enhanced Infrared Absorption Spectrometry of Nitrophenols on Copper and Silver Films[J] Langmuir 13(23):6159-6163.
    [134] Devlin, J.P., Consani, K. Metal surface spectroscopy. Charge transfer and totally symmetric mode activity[J] J. Phys. Chem. 1981, 85(18): 2597-2598.
    [135] Hatta, A., Suzuki, Y., Suetaka, W.[J] Appl. Phys. A 1984, 35: 135.
    [136] Osawa, M., Ataka, K., Ikeda, M., Uchihara, H., Namba, R. Surface-enhanced infrared absorption spectroscopy: Mechanisman d application to trace analysis[J] Anal. Sci. 1991, 7(Suppl.):503-506.
    [137] Hatta, A., Chiba Y., Su'etaka, W. Infrared absorption study of adsorbed species at metal/water interface by use of the Kretschmann configuration[J] Surf. Sci. 1985, 158(1-3): 616-623.
    [138] Suzuki, Y., Sagisaka, K., Hatta, A.[J] Appl. Surf. Sci., 1995, 84: 1.
    [139] Aroca R., Bujalski, R. Surface-enhanced vibrational spectra of thymine, Vib. Spectrosc. 1999,19:11-12.
    [140] T.R. Jensen, R.P.V. Duyne, S.A. Johnson and V.A. Maroni[J] Appl. Spectrosc.2000, 54: 371.
    [141] Wanzenbock, H.D., Mizaikoff, B., Weissenbacher, N., Kellner, R. Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups[J] J. Mol. Struct. 1997, 410—411: 535-538.
    [142] Maroun, F., Ozanam, F., Chazalviel, J. N., Theiss, W.[J] Vib.Spectrosc.1999, 19:193.
    [143] Mattei, G., Mo, Y, Pagannone, M., Vladimir, V.A.[J] Mikrochim.Acta, 1997, 14 (Suppl.):653.
    [144] Wilson, E.B. Jr., Decius, J.C., Cross, P.C. Molecular Vibrations, McGraw-Hill, New York, 1955, 285-286.
    [145] Nishikawa, Y., Fujiwara, K., Shima, T. Quantitative analysis of nanogram samples with Fourier transform infrared transmission surface electromagnetic wave spectroscopy[J] Appl. Spectrosc. 1990, 44:691-694.
    [146] Nishikawa, Y. K. Fujiwara and T. Shima, A Study of the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of silver island films[J] Appl. Spectrosc. 1991.45: 747-751.
    [147] Seelenbinder, J.A., Brown, C.W., Urish, D.W.[J] Appl. Spectrosc.2000, 54:366.
    [148] Kellner, R., Mizaikoff, B., Jakusch, M., Wanzeneb"ock, H.D., Weissenbacher, N. Weissenbacher, Surface-enhanced vibrational spectroscopy: A new tool in chemical IR sensing?[J] Appl. Spectrosc. 1997, 51:495-503.
    [149] Wanzenbock, H.D., Mizaikoff, B., Weissenbacher, N., Kellner, R. Surface enhanced infrared absorption spectroscopy (SEIRA) using external reflection on low-cost substrates[J] Fresenius'J. Anal. Chem. 1998, 362: 15-20.
    [150] Johnson, S.A, Pham, N. H., Novick, V.J., Maroni, V.A. Application of surfaceenhanced infrared absorption spectroscopy as a sensor for volatile organic compounds[J] Appl. Spectrosc. 1997,51:1423-1426.
    [151] Merklin, G.T., He L. T., Griffiths, P.R. Surface-enhanced infrared absorption spectrometry of p-nitorothiophenol and its disulfide[J] Appl. Spectrosc. 1999, 53, 1448-1453.
    [152] Brown, C.W., Li, Y., Seelenbinder, J.A., Pivarnik, P., Rand, A.G., Letcher, S.V., Gregory, O.J., Platek, M.J. Immunoassays Based on Surface-Enhanced Infrared Absorption Spectroscopy Anal.Chem., 1998, 70:2991-2996.
    [153] Holman, H. Y.N., Perry, D.L., Hunter-Cevera, J.C.[J] J. Microbiol. Methods.1998, 34:59.
    [154] Ataka, K., Osawa, M. In situ infrared study of cytosine adsorption on gold electrodes[J] J. Electroanal. Chem. 1999, 460(1-2): 188-196.
    [155] Futamata, M., Diesing, D.[J] Vib. Spectrosc.1999, 19: 187.
    [156] lshida, K.P., Griffiths, P.R. Theoretical and experimental investigation of internal reflection at thin copper films exposed to aqueous solutions[J] Anal. Chem.1994, 66(4): 522-530.
    [157] Ishida, K.P., Griffiths, P.R.[J] J. Colloid Interface Sci.1999, 213:513.
    [158] Matsuda, N., Yoshii, K., Ataka, K., Osawa, M., Matsue, T., Uchida, I.[J] Chem. Lett. 1992, 2:1385.
    [159] Taniguchi, I., Yoshimoto, S., Sunatani, Y., Nishiyama, K.[J] Electrochemistry, 1999, 67: 1197.
    [160] Wan, L. J., Noda, H., Hara, Y., Osawa, M. Effect of solution pH on the structure of a 4-mercaptopyridine monolayer self-assembled on Au (111)[J] J. Electroanal. Chem.2000, 489(1-2):68-75.
    [161] Ito, K., Hayashi, K., Hamanaka, Y., Yamamoto, M., Araki, T., Iriyama, K. Infrared and Raman scattering spectroscopic study on the structures of Langmuir-Blodgett monolayers containing a merocyanine dye[J] Langmuir 1992,8(1): 140-147.
    [162] Zhao,J., Zhang, J., He, H. X., Li, H. L., Liu, Z. F. Enhanced infrared spectra of azobenzene carboxylic acid LB monolayer on discontinuous silver film[J] Chem. Phys. Lett. 1997, 278(4-6): 220-224.
    [163] Nishikawa,Y., Ito, Y., Fujiwara K., Shima, T.[J] Appl. Spectrosc. 1911, 45: 752.
    [164] Nishikawa, Y., Fujiwara, K., Ataka, K. Osawa, M. Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers[J] Anal. Chem. 1993, 65 (5): 556-562.
    [165] Nishikawa, Y., Ito,Y., Yamakami, N., Fujiwara, K., Shima, T.[J] Surf. Interface Anal.1992, 18:481.
    [166] Nishikawa, Y., Fujiwara, K., Osawa, M. Takamura, K.[J] Anal. Sci. 1993, 9: 811.
    [167] Nishikawa, Y., Fujiwara, K., Takamura, K. analysis of residual additives on the surface of cultivated fruits by surface-enhanced infrared spectroscopy[J] Bunseki Kagaku 1994, 43: 425-429.
    [168] Tian, Z.Q., Gao, J.S., Li, X.Q., Ren, B., Huang, Q.J., Cai, W.B., Liu, F.M., Mao, B.W. Can surface Raman spectroscopy be a general technique of surface science and electrochemistry?[J] J. Raman Spectrosc. 1998, 29:703-711.
    [169] Tian, Z.Q., Ren. Molecular-level investigation on electrochemical interfaces by Raman spectroscopy[J] Chinese J. Chem.2000, 18 (2): 135-146.
    [170] J. A. Creighton, The selection rules for surface enhanced Raman spectroscopy, in Spectroscopy of Surfaces, R.J.H Clark abd R.E. Heter (Eds.), (John Wiley & Sons Ltd, New York, 1988, p. 37.
    [171] Creighton, J. A., Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from sers relative intensities[J] Surface Sci. 1983,124 (1):209-219.
    [172] Creighton, J. A. The effective Raman tensor for SER scattering by molecules adsorbed at the surface of a spherical particle[J] Surface Sci. 1985, 158(1-3):211-221.
    [173] Creighton, J. A. The resonance Raman contribution to SERS: Pyridine on copper or silver in aqueous media[J] Surface Sci. 1986,173 (2-3): 665-672.
    [174] Creighton, J. A., Alvavez, M. S., Weltz, D. A., Garoff, S. M., Kim, W. Surface-enhanced Raman scattering by molecules adsorbed on aqueous copper colloids[J] J. Phys. Chem. 1983, 87 (24):4793-4799.
    [175] Sass, J. K., Neff, H., Moskovits, M., Holloway, S. Electric field gradient effects on the spectroscopy of adsorbed molecules[J] J. Phys. Chem. 1981, 85 (6): 621-623.
    [176] Clark, R. J. H., Dines, T.J. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods[J] Angew. Chem. Int. Ed. Engl. 1986,25:131.
    [177] A. C. Albrecht, On the Theory of Raman Intensities[J] J. Chem. Phys. 1961,34 (5):1476-1484.
    [178] Tang, J., Albrecht, A.C. in: Raman Spectroscopy, Theory,[M] Ed. Practice, H.A., Szymanski, Plenum Press: New York, 1970, vol. 2, p. 33.
    [179] Lombardi, J.R., Birke, R.L., Lu, T., Xu, J. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions[J] J. Chem. Phys. 1986, 84 (8):4174-4180.
    [180] R. K. Chang, T. E. Futak, Surface enhanced Raman Scattering[M] New York, Plenum Press: 1982.
    [181] Pettinger, B. in Adsorption of Molecules at Metal electrodes[M] New York, Lipkowski, J., Ross, P. N. Eds, VCH, 1992.
    [182] Paul, R. L., McQuillan,A. J., Hendra, P. J., Fleischmann,,M. Laser Raman spectroscopy at the surface of a copper electrode[J] J. Electroanal. Chem. 1975, 66(3): 248-249.
    [183] Allen, C. S, Schatz,G. C., Van Duyne, R. P. Tunable laser excitation profile of surface enhanced raman scattering from pyridine adsorbed on a copper electrode surface[J] Chem. Phys. Lett. 1980, 75: 201-205.
    [184] Li, X.Y., Spiro T.G. Resonance Raman Spectroscopy of metalloporphyrins In Biological Applications of Raman Spectroscopy; Spiro,[M] New York, T. G., Ed.; Wiley-Interscience: 1988; Vol. 3; pp 1-38.
    [185] Bayachou, M., Lin, R., Cho, W., Farmer, P.L. Electrochemical Reduction of NO by Myoglobin in Surfactant Film: Characterization and Reactivity of the Nitroxyl (NO~-) Adduct[J] J. Am.Chem.Soc. 1998, 120(38): 9888-9893.
    [186] Jiang, R., Dong, S. Study on the electrocatalytic reduction of H_2O_2 at iron protoporphyrin modified electrode with a rapid rotation-scan method[J] Electrochim. Acta, 1990, 35(8):1227-1232.
    [187] Ozawa, S., Sakamoto, E., Ichikawa, T., Watanabe, Y., Morishima, I. Model Studies of Nitrosyl Intermediates in the Catalytic Cycle of Dissimilatory Nitrite Reductases[J] Inorg.Chem. 1995, 34(25): 6362-6370.
    [188] Collman, J.P., R.B. Boulatove, Sunderland, C, J., Shiryaeva, I.M., Berg, K.E. Electrochemical Metalloporphyrin-Catalyzed Reduction of Chlorite[J] J.Am.Chem.Soc. 2002, 124(36): 10670-10671.
    [189] Zhao, G. Zhang, L. Wei, X. An unmediated H_2O_2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes,[J] Anal. Biochem. 2004,329:160-161.
    [190] Niki, K., Hardy, W. R.,Hill, M. G., Li, H., Sprinkle, J. R., Margoliash, E., Fujita, K., Tanimura, R.,Nakamura, N., Ohno, H., Richards, J. H., Gray, H. B. Coupling to Lysine-13 Promotes Electron Tunneling through Carboxylate-Terminated Alkanethiol Self-Assembled Monolayers to Cytochrome c[J] J. Phys. Chem. B 2003, 107(37): 9947-9949.
    [191] Imabayashi, S., Mita, T., Kakiuchi, T. Effect of Mono-CDNP Substitution of Lysine Residues on the Redox Reaction of Cytochrome c Electrostatically Adsorbed on a Mercaptoheptanoic Acid Modified Au(111) Surface[J] Langmuir 2005, 21(6): 2474-2479.
    [192] Sagara, T., Kubo, Y., Hiraishi, K. Estimation of the Orientation of Heme in Cytochrome c Immobilized on a Carboxylate-Terminated Alkanethiol Monolayer on a Au Electrode by the Use of Electroreflectance Spectroscopy with Polarized Light Incidence[J] J. Phys. Chem. B 2006, 110(33): 16550-16558.
    [193] .hambright, P., Fleischer, E.B. Acid-base equilibriums, kinetics of copper ion incorporation, and acid-catalyzed zinc ion displacement from the water-soluble porphyrin.alpha.,.beta.,.gamma.,.delta.-tetrakis(1-methyl-4-pyridinio)porphine tetraiodide[J] Inorg. Chem. 1970, 9(7): 1757-1761.
    [194] Cohen, I.A., Ostfeld, D., Lichtenstein, Characterization of a d7 iron system. Tetraphenylporphineiron (Ⅰ) anion[J] J. Am. Chem. Soc. 1972, 94(13): 4522-4525.
    [195] Lexa, D., Momenteau, M., Mispelter, Electrochemical study of the effect of axial coordination upon the redox behavior of iron porphyrins in dimethylformamide[J] Bioelectrochemistry and Bioenergetics 1974, 1(1-2): 108-117.
    [196] Donald G. D. in the porphyrins vol Ⅲ, part 4, d. Dolphin, Ed, Academic, Press, New York, 1979, pp 127-155.
    [197] Enemark, J. H., Feltham, R. D. Principles of Structure, Bonding, and Reactivity for Metal Nitrosyl Complexes. Coord. Chem. Rev. 1974, 13, 339-406. Revised by Enemark, see: Westcott, B.L., Enemark, J.H. In Inorganic Electronic Structure and spectroscopy. Leve, A. B. P., Solomon, E.I., Eds..
    [198] M.E. Kastner, Schiedt, W.R., Mashiko, T., Reed, C.A.Molecular structure of diaquo-.alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinatoiron(Ⅲ)perchlorate and perchlorato-.alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinatoiron(Ⅲ). Two new structural types for iron (Ⅲ) porphyrins[J] J. Am Chem. Soc., 1978, 100(2): 666-667.
    [199] Collman, J.P., Hoard, J.L., Kim, N., Lang, G., Reed, C.A.Synthesis, stereochemistry, and structure-related properties of. alpha..beta.,.gamma.,.delta.-tetraphenyl porphinatoiron(Ⅱ)[J] J. Am.Chem.Soc. 1975, 97(10): 2676-2681.
    [200] Teraoka, J., Kitagawa, T. Raman characterization of axial ligands for penta-and hexacoordinate ferric high-and intermediate-spin (octaethylporphyrinato) iron (Ⅲ) complexes. Elucidation of unusual resonance Raman spectra of cytochrome c'[J] J. Phys. Chem. 1980, 84(15):1928-1955.
    [201] Gouterman, M., in the porphyrins, Vol.(Ⅲ), Part A[M] New York, (D. Dolphin, Ed.), Academic Press, 1979, 1-156.
    [202] Jeanmaire, D.L., van Duyne, R.P. Surface Raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J] J. Electroanal. Chem. 1977, 84(1):1-20.
    [203] Lippitsch, M.E. Surface enhanced Raman spectra of biliverdine and pyrromethenone adsorbed to silver colloids[J] Chem. Phys. Lett. 1981,79:224-261.
    [204] Alben, J.O. in the porphyrins vol Ⅲ, part 7,[M] New York, d. Dolphin, Ed, Academic, Press, 1979, pp 323-345.
    [205] Spiro, T.G., Strekas, T.C. Some Fully Acetylated Sugar Acids and their Derivatives[J] J. Am. Chem. Soc. 1974, 62(5), 1074-1076.
    [206] Tamamoto, T., Palmer, G, Gill, D., Salmeen, I.T., Rimai, L The Valence and Spin State of Iron in Oxyhemoglobin as Inferred from Resonance Raman Spectroscopy[J] J.Biol.Chem. 1973, 248:5211-5213.
    [207] Kitagawa, T., Ozaki, Y., Kyogoku, Y. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.[J] Adv, Biophys. 1978, 11:153-196.
    [208] Spiro, T.G., Burke, J.M. Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogs[J] J. Am. Chem. Soc. 1976, 98(18): 5482-5489.
    [209] Kitagawa, T., Iizuka, T., Saito, M.m Kyogoku, Y.[J] Chem. Lett. 1975, 8: 49.
    [210] McMahon J. J., Baer S., Melendres, C. A. Surface Raman Scattering and Electrochemistry of Iron Protoporphyrin Ⅸ at a Polycrystalline Silver Electrode[J]J. Phys. Chem. 1986,. 90(8):1572-1577.
    [211] Schiedt, W.R., Gutterman, M., In iron porphyrin, PartⅠ[M] A.B.P. Lever and Gray, H.B.,Eds., Addition-Wesley, Reading, Ma, 1983, pp89-106.
    [212] Strong, J.D., Burke, J. M., Daly, PO., Wright, P., Spiro, T.G. Resonance Raman spectra of nitrosyl heme proteins and of porphyrin analogs [J] J. Am. Chem. Soc. 1980, 102(18):5815-5819.
    [213] James R. Kincaid, Marek W. Urban, Takeshi Watanabe, Kazuo Nakamotolnfrared spectra of matrix-isolated metal complexes of octaethylporphine [J] J. Phys. Chem.; 1983; 87(16): 3096-3101.
    [214] Krim, L., Sorgues, S., Soep, B., Shafizadeh, N. Infrared Spectra of RuTPP, RuCOTPP, and Ru (CO)_2TPP Isolated in Solid Argon [J] J. Phys. Chem. A., 2005, 109(37): 8268-8274.
    [215] Alderton, W. K., Cooper, C. E., Knowles, R. G. Nitric oxide synthases: structure, function and inhibition [J] Biochem J. 2001; 357: 593-615.
    [216] Zhang, J., Snyder, S. H. Nitric oxide in the nervous system [J] Annu. Rev. Pharmacol. Toxicol. 1995, 35 : 213-233.
    [217] 丁学琴 一氧化碳—一种新型的信使分子[J]《国外医学》麻醉学与复苏分册,2000,21 (2):100
    [218] Armstrong, F. A., Hill, H. A. O., Walton, N. J. Direct electrochemistry of redox proteins [J] Acc. Chem. Res. 1988, 21(11):407-413.
    [219] 朱松燃,蓄电池手册,天津大学出版社,2002.
    [220] Archdale, G., Harrison, J. A. The electrochemical dissolution of Pb to form PbSO_4 by a solution-precipitation mechanism [J] J. Electroanal. Chem. 1972, 34(1):21-26.
    [221] D. Pavlov, R. Popova, [J] ibid. 15(1970)1483.
    [222] Baugh, L. M., Bladen, K. L., Tye, F. L. The theory of the ac voltammetry of reversible electrode processes at tubular electrodes [J] J. Electroanal. Chem. 145(1983)355.
    [223] Guo, Y. L. J. Electrochem. Soc., 1995, 142:3643-3645.
    [224] 柳厚田,梁海河,杨炯,杨春晓,周伟舫[J]化学学报 2002,60:427-430.
    [225] D. Pavlov, Processes in solid state at anodic oxidation of a lead electrode in H_2SO_4 solution and their dependence on the oxide structure and properties [J] Electrochim. Acta, 1978, 23(9):845-854.
    [226] Fleischmann, M., Thirsk,H. R. [J] Trans. Faraday. Soc. 1955, 51:71-78.
    [227] Hampson, N. A., Kelly S., Peters, K. [J] J. Appl. Elcctrochem. 1980, 10:91-93.
    [228] 卫昶,陈霞玲,周伟舫[J]化学学报 1992,50:27-29.
    [229] 杨炯,梁海河,柳厚田,周伟舫[J]复旦学报(白然科学版),2000,39:427-429.
    [230] 柳厚田,杨炯,梁海河,庄继华,周伟舫[J]电化学,2000,6:265-269.
    [231] Liu, H. T., Yang, J, Liang, H. H., Zhuang, J. H., Zhou, W. F. [J] J. Power Sourse, 2001, 93:230-236.
    [232] Liu, H. T., Yang, C. X., Zhang, X. H., Zhou, Y. B., Zhou, W. F. [J] J. Fudan. Univ. (Nat. Sci), 2001, 40:688-691.
    [233] Liu, H. T., Yang, C. X., Zhang, X. H., Zhou, Y. B., Zhou, W. F. [J] Chin. J. Chem. 2002, 20:591-594.
    [234] Liu, H. T., Zhang, X. H., Zhou, Y. B., Yang, C. X., Zhou, W. F. [J] Mater. Lett. 2003, 57:4597.
    [1] 姚建林,博士学位论文,[D]厦门大学固体表面国家重点实验室,2001.
    [2] Miki, A., Ye, S., Osawa, M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions [J] Chem. Commun. 2002, 14:1500-1501.
    [3] 南安普顿电化学小组,电化学中的仪器方法,[M]复旦大学出版社:上海,1992.
    [4] 藤屿昭,相泽益男,井上澈,电化学测定方法,[M]北京大学出版社:北京,1995.
    [5] 陈允魁,红外吸收光谱法及其应用,[M]上海交通大学出版社:上海,1991.
    [6] 马礼敦,高等结构分析,[M]复旦大学出版社:上海,2001
    [7] 朱自莹,顾仁敖,陆天虹,拉曼光谱在化学中的应用,[M]东北大学出版社:沈阳,1998.
    [1] Tao, N.J, Cardenas, G, Cunha, F., Shi, Z. In Situ STM and AFM Study of Protoporphyrin and Iron(Ⅲ) and Zinc(Ⅱ) Protoporphyrins Adsorbed on Graphite in Aqueous Solutions[J] Langmuir, 1995, 11(11); 4445-4448
    [2] Snyder, S.R., White, H.S. Electrochemistry and Structure of Thin Films of (Protoporphyrinato (Ⅸ)) iron (Ⅲ) Chloride[J] J.Phys.Chem. 1995, 99 (15): 5626-5632
    [3] Sagara, T, Fukuda, M.; Nakashima, N. Electroreflectance study of hemin adsorbed on a HOPG electrode: Estimation of molecular orientation and analysis of nonfaradaic electroreflectance signal due to the stark effect.[J] J. Phys. Chem. B 1998, 102 (3): 521-527
    [4] Tian Z.Q. Surface-enhanced Raman spectroscopy: advancements and applications[J] J. Raman. Spec. 1998, 29 (8): 703-711.
    [5] Hinnen,C., Parsons, R., Niki K. Electrochemical and spectroreflectance studies of the adsorbed horse heart cytochrome c and cytochrome c_3 from D. Vulgafis, miyazaki strain, at gold electrode[J] Journal of Electroanalytical Chemistry, 1983,147(1-2):329-337
    [6] Cai, W. B., Stefan, Ionel C. Scherson D. A. Determination of adsorption isotherm of species adsorbed on roughened silver electrodes from in situ quantitative surface enhanced Raman spectroscopy[J] Journal of Electroanalytical Chemistry, 2002, 524-525: 36-42.
    [7] McMahon J. J., Baer S., Melendres, C. A. Surface Raman Scattering and Electrochemistry of Iron Protoporphyrin Ⅸ at a Polycrystalline Silver Electrode[J]J. Phys. Chem. 1986,. 90(8):1572-1577.
    [8] Ikezawa, Y., Sekiguchi, R., Kitazume, T. Adsorption of benzoic acid on Au (111) and Au(110) electrodes in acidic media by IRAS[J] Electrochimica. Acta 2000, 46(5):731-736
    [9] Yan,Y.G.; Xu,Q.J.; Cai,W.B. Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy[J] Acta Chimica. Sinica. 2006, 64(6):458-462.
    [10] Xiao X.Y.; Sun, S.G. Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry, EQCM, in situ FTIRS and Raman spectroscopy[J] Electrochimica. Acta 2000, 45(18): 2897-2902
    [11] Zhang, Z. J.; Imae, T. Hydrogen-Bonding Stabilized Self-Assembled Monolayer Film of a Functionalized Diacid, Protoporphyrin Ⅸ Zinc (Ⅱ), onto a Gold Surface Nano Lett. 2001, 1(5): 241-243.
    [12] Pilloud D. L., Chen X.X, Dutton P. L., Moser C. C. Electrochemistry of Self-Assembled Monolayers of Iron Protoporphyrin Ⅸ Attached to Modified Gold Electrodes through Thioether Linkage[J] J. Phys. Chem. B 2000, 104(13):2868-2877
    [13] L.J. Boucher, J. J. Katz The Infared Spectra of Metalloporphyrins (4000-160 Cm~(-1))~1[[J] J. Am. Chem. Soc., 1967, 89(6): 1340-1345.
    [14] Sla dkova, M., Vlc kova,B., Mojzes, P., s louf, M., Naudind, C., Bourdond, G.L. Probing strong optical fields in compact aggregates of silver nanoparticles by SERRS of protoporphyrin Ⅸ[J] Faraday Discuss. 2006, 132: 121-134.
    [1] Swistak, C., Kadish, K.M. Electrochemistry of iron porphyrins under a carbon monoxide atmosphere. Interactions between carbon monoxide and pyfidine[J].Inorg. Chem. 1987, 26(3): 405—412.
    [2] Balducci, G., Chottard, G., Gueutin, C., Lexa, D., Saveant, J.M. Electrochemistry of iron(Ⅰ) porphyrins in the presence of carbon monoxide. Comparison with zinc porphyrins[J] Inorg. Chem., 1994, 33(9); 1972-1978.
    [3] Gueutin, C., Lexa, D., Momenteau, M., Saveant, J.M. Reaction of carbon monoxide with alkyliron porphyrins generated from alkyl halides and electrochemically produced iron(Ⅰ) and iron(O)porphyrins[J] J. Am. Chem. Soc., 1990, 112(5); 1874-1880.
    [4] Jeffrey R. Hill, Dana D. Dlott, M. D. Fayer, Kristen A. Peterson, Chris W. Rella, Michael M. Rosenblatt, Kenneth S. Suslick and Christopher J. Ziegler Vibrational relaxation of carbon monoxide in model heme compounds. 6-coordinate metaUoporphyrins (M=Fe, Ru, Os)[J] Chem. Phys. Lett., 1995, 244(3-4):218-223
    [5] Locke, B., Lian, T., Hochstrasser, R.M. Determination of Fe-CO geometry and heme rigidity in carbonmonoxyhemoglobin using femtosecond IR spectroscopy[J] Chem. Phys. 1991, 158:409-419.
    [6] Andrew, C. R., Green, E. L., Lawson, D. M., Eady, R. R. Resonance Raman Studies of Cytochrome c' Support the Binding of NO and CO to Opposite Sides of the Heine: Implications for Ligand Discrimination in Heme-Based Sensors[J] Biochemistry, 2001, 40:4115-4122
    [7] Yu, N.T., Kerr, E. Vibrational modes of coordinated CO, CN~-, O~2, and NO In Biological Applications of Raman Spectroscopy; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1988; Vol. 3; pp 41-93
    [8] Linder, D. P., Rodgers, K. R., Banister, J., Wyllie, G. R. A., Ellison, M. K., Scheidt, W. R. Five-Coordinate Fe~ⅢNO and Fe~ⅡCO Porphyrinates: Where Are the Electrons and Why Does It Matter?[J] J. Am. Chem. Soc., 2004, 126(43): 14136-14148.
    [9] Bae, I.T., Tolmachev, Y.,Mo, Y., Scherson, D., Scheidt, W.R.;Ellision, M.K., Cheng, M.C., Armstrong, R. S., Lay, P.A. In Situ Fe K-edge X-ray Absorption Spectroscopy of a Nitrosyl Iron(Ⅱ) Porphyrin Adduct Adsorbed on a High-Area Carbon Electrode in Aqueous Electrolytes[J]. Inorg. Chem. 2001, 40(14): 3256-3258.
    [10] Ye, S,, Zhou,W., Abe, M., Nishida, T., Cui, L. E, Uosaki, K., Osawa, M., Sasaki Y. Electrochemical Control of CO/NO Ligand Exchange in a Triruthenium Cluster Monolayer Assembled on a Gold Electrode Surface[J].J. Am. Chem. Soc. 2004, 126(24): 7434-7435.
    [11] Zhou, W., Ye, S., Abe, M., Nishida, T., Uosaki, K., Osawa, M., Sasaki, Y. Oxidation States and CO Ligand Exchange Kinetics in a Self-Assembled Monolayer of a Triruthenium Cluster Studied by In Situ Infrared Spectroscopy[J]. Chem. Eur. J. 2005, 11(17): 5040-5054.
    [12] Sun, S. G., Cai, W. B., Wan, L. J., Osawa, M. Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy[J] J. Phys. Chem. B. 1999, 103(13): 2460-2466.
    [13] Cai, W. B., Stefan, I.C., Scherson, D. A. Determination of adsorption isotherm of species adsorbed on roughened silver electrodes from in situ quantitative surface enhanced Raman spectroscopy[J]. J. Electroanal.Chem.2002, 524-525:36-42
    [14] Sla dkova, M., Vlc kova,B., Mojzes, P., s louf, M., Naudind, C., Bourdond, G.L. Probing strong optical fields in compact aggregates of silver nanoparticles by SERRS of protoporphyrin Ⅸ[J] Faraday Discuss. 2006, 132: 121-134.
    [15] McMahon, J. J., Baer, S., Melendres, C. A. Surface Raman Scattering and Electrochemistry of Iron Protoporphyrin Ⅸ at a Polycrystalline Silver Electrode[J] J. Phys. Chem. 1986, 90 (8):1572-1577.
    [16] Miki, A., Ye, S., Osawa,M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions[J] Chem. Commun. 2002, 14:1500-1501.
    [17] Wayland, B. B.; Mehne, L F.; Swartz, J. Mono-and biscarbonyl complexes of iron(Ⅱ) tetraphenylporphyrin[J] J. Am. Chem. Soc. 1978, 100(8): 2379-2383.
    [18] Krim, L, Sorgues, S., Soep, B., Shafizadeh, N. Infrared spectra of RuTPP, RuCOTPP, and Ru(CO)_2TPP isolated in solid argon[J] J. Phys.Chem. A 2005, 109(37):8268-8274.
    [19] Struass, S. H.; Holm, R. H. Carbon monoxide affinities of iron(Ⅱ) octaethylporphyrin, octaethylchlorin, and octaethylisobacteriochlorin[J] Inorg. Chem. 1982, 21(3):863-868.
    [20] Albert, J.O., Caughey, W.S. An infrared strudy of bound carbon monoxide in the human red blood cell, insolated hemoglobin, and heme carbonyls. Biochemistry[J] J. Am. Chem. Soc 1968, 7(1):175-183.
    [21] Caughey, W.S., Barlow, C.S., O'Keefe, D.H., O'Toole, M.C. Ann. N.Y. Spectroscopic studies of cis and trans effects in hemes and hemins.[J] Acad. Sci., 1973, 206:296.
    [22] Yan, Y. G;, Li, Q. X., Huo, S. J., Ma, M., Cai, W. B., Osawa, M. Ubiquitous Strategy for Probing ATR Surface-Enhanced Infrared Absorption at Platinum Group Metal-Electrolyte Interfaces[J] J. Phys. Chem. B. 2005, 109(16): 7900-7906.
    [23] Guesta, A., Gutierrez, C. Study by Fourier Transform Infrared Spectroscopy of the Electroadsorption of CO on the Ferrous Metals. 1. Iron[J] J. Phys.Chem. 1996, 100(30):12600-12608.
    [24] Gilman, S. The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. Ⅱ. The "Reactant-Pair" Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol~1[J] J. Phys. Chem. 1964, 68(1); 70-80.
    [25] Marcus, R. S., Sutin, N. Electron transfer in chemistry and. Biology[J] Biochim. Biophys. Acta 1985, 811,265-322.
    [26] K Kunimatsu., Aramata, A., Nakajima, N., Kita, H. Infrared spectra of carbon monoxide adsorbed on a smooth gold electrode: Part Ⅱ. Emirs and polarization-modulated irras stuidy of the adsorbed co layer in acidic and alkaline solutions[J] J.Electroanal. Chem. 1986,207(1-2):293-307.
    [27] Marboutin, L, Boussac, A., Berthomieu, C. Redox infrared markers of the heme and axial ligands in microperoxidase: bases for the analysis of c-type cytochromes[J] J. Bio. Inorg. Chem. 2006, 11(7): 1427-1432.
    [28] Li, X.Y., Spiro T.G. Resonance Raman Spectroscopy of metalloporphyrins In Biological Applications of Raman Spectroscopy;[M] Spiro, T. G., Ed.; Wiley-Interscience: New York, 1988; Vol. 3; pp 1-38.
    [1] Koshland, D.E, Jr. The molecule of the Year. NO news is good news[J]. Science, 1992, 258: 1861-1864.
    [2] Butler, A.R.., William, D.L.H. The physiological role of nitric oxide[J].Chem Soc Rev, 1993, 22(4):233-241.
    [3] Stamler, J.S.,Singel, D.J., Loscalzo,J. Biochemistry of nitric oxide and its redox-activated forms[J]. Science, 1992,258:1898-1902.
    [4] Yu,A.E.,Hu,S.,Spiro, T.G.,Burstyn, J.N. Resonance Raman Spectroscopy of Soluble GuanylylCyclase Reveals Displacement of Distal and Proximal Heme Ligands by NO[J]J.Am.Chem.Soc.1994,116: 4117-4118.
    [5] Ignarro, L.J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein.[J] Circ.Res. 1989,65,1-21.
    [6] Moncada,S.,Palmer, R.M.J.,Higgs,E.A.NitricOxide:physiology, pathophysiology, andpharma cology[J].Pharmacol. Rev.1991, 43:109-142.
    [7] Obayashi,E., Tsukamoto, K., Adachi,S., Takahashi,S., Nomura, M., Iizuka, T., Tsukamoto, K., Adachi, S., Shiro, Y. Unique Binding of Nitric Oxide to Ferric Nitric Oxide Reductase from Fusarium oxysporum Elucidated with Infrared, Resonance Raman, and X-ray Absorption Spectroscopies[J]. J.Am.Chem. Soc. 1997, 119(33): 7087-7816.
    [8] Averill, B. A., Dissimilatory Nitrite and Nitric Oxide Reductases[J].Chem. Rev. 1996, 96(7): 2951-2964.
    [9] Enemark, J. H., Feltham, R. D. Principles of Structure, Bonding, and Reactivity for Metal Nitrosyl Complexes. Coord. Chem. Rev. 1974, 13, 339-406. Revised by Enemark, see: Westcott, B.L., Enemark, J.H. In Inorganic Electronic Structure and spectroscopy. Leve, A. B. P., Solomon, E.I., Eds..
    [10] Li, X.Y., Spiro T.G. Resonance Raman Spectroscopy of metalloporphyrins In Biological Applications of Raman Spectroscopy; Spiro, T. G., Ed.; Wiley-lnterscience: New York, 1988; Vol. 3; pp 1-38.
    [11] Andrew, C. R., Green, E. L., Lawson, D. M., Eady, R. R. Resonance Raman Studies of Cytochrome c'Support the Binding of NO and CO to Opposite Sides of the Heme: Implications for Ligand Discrimination in Heme-Based Sensors[J] Biochemistry, 2001, 40:4115-4122
    [12] Choi, I. K., Liu Y.M., Feng,D.W., Paeng, K. J., Ryan, M. D. Electrochemical and spectroscopic studies of iron porphyrin nitrosyls and their reduction products[J] Inorg. Chem. 1991, 30(8); 1832-1839.
    [13] Mu, X.H., Kadish, K. M. In situ FTIR and UV-visible spectroelectrochemical studies of iron nitrosyl porphyrins in nonaqueous media[J]. lnorg. Chem.1988, 27(26):4720-4725.
    [14] Mu, X.H., Kadish, K.M. ELectrochemical and spectroelectrochemical characterization of intermolecular nitrosyl transfer between iron and cobalt porphyrins[J]. Inorg.Chem.1990, 29(5): 1031-1036.
    [15] Wang, Y.N., Averill, B.A.J. Direct Observation by FTIR Spectroscopy of the Ferrous Heme-NO~+ Intermediate in Reduction of Nitrite by a Dissimilatory Heme cd_1 Nitrite Reductase[J]. J. Am. Chem. Soc. 1996, 118(16):3972-3973.
    [16] Maxwell, J. C., Caughey, W. S. An infrared study of nitric oxide bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds[J].Biochemistry 1976, 15(2): 388-396.
    [17] Sampath, V., Zhao, X.-J., Caughey, W. S. Nitric oxide synthases in mammals.[J].Biochem. Biophys. Res. Commun. 1994, 198: 281-287.
    [18] Zhao, X. J., Sampath, V., Caughey, W. S. Infrared characterization of nitric oxide bonding to bovine heart cytochrome c oxidase and myoglobin.[J].Biochem. Biophys. Res. Commun. 1994, 204(2): 537-543.
    [19] Miller, L. M., Pedraza, A. J., Chance, M. R. Identification of Conformational Substates Involved in Nitric Oxide Binding to Ferric and Ferrous Myoglobin through Difference Fourier Transform Infrared Spectroscopy (FTIR)[J].Biochemistry 1997,36(40): 12199-12207.
    [20] Obayashi, E., Tsukamoto, K., Adachi, S., Takahashi, S., Nomura, M., Iizuka, T., Shoun, H., Shiro, Y. Unique Binding of Nitric Oxide to Ferric Nitric Oxide Reductase from Fusarium oxysporum Elucidated with Infrared, Resonance Raman, and X-ray Absorption Spectroscopies[J].J. Am. Chem. Soc. 1997, 119(33)7807-7816.
    [21] Yoshimura, T., Suzuki, S., Nakahara, A., Iwasaki, H., Masuko, M.; Matsubara, T. Spectral properties of nitric oxide complexes of cytochrome c'from Alcaligenes sp. NCIB 11015[J].Biochemistry 1986, 25(9):2436-2442.
    [22] Walker, F. A., Ribeiro, J. M. C., Montfort, W.R. In Metals in Biological System[M] Sigel, H., Sigel, A., Eds.; Marcel Dekker: New York, 1998,: vol 36, pp 619-661.
    [23] Fujita, E; Fajer, J. Models for nitrite reductases. Redox chemistry of iron-nitrosyl porphyrins, chlorins, and isobacteriochlorins and.pi. cation radicals of cobalt-nitrosyl isobacteriochlorins[J].J. Am. Chem. Soc. 1983, 105(22): 6743-6745.
    [24] Ozawa, S.J., Sakamoto, E., Ichikawa, T., Watanab, Y., Morishima, I. Model Studies of Nitrosyl Intermediates in the Catalytic Cycle of Dissimilatory Nitrite Reductases[J]. Inorg. Chem.1995, 34(25): 6362-6370.
    [25] Ding, X.D., Weichsel, A., Andersen, J.F., Schokhireva, T.K., Balfour, C., Pierik, A.J., Averill, B.A., Monrfort, W.R., Walker, F. A. Nitric Oxide Binding to the Ferri-and Ferroheme States of Nitrophorin 1, a Reversible NO-Binding Heme Protein from the Saliva of the Blood-Sucking Insect, Rhodnius prolixus[J]. J. Am. Chem. Soc.1999, 121(1):128-138.
    [26] Praneeth, V. K., Nather, V., Peters, G., Lehnert, N. Spectroscopic properties and electronic structure of five-andsix-coordinate iron(Ⅱ) porphyrin NO complexese: effect of the axial N-Donor ligand[J].Inorg. Chem. 2006, 45, 2795-2811.
    [27] Olson, L.W.; Schaeper, D; kancon, D; Kadish KM. Characterization of several novel iron nitrosyl porphyrins[J]J. Am. Chem. Soc. 1982, 104(7): 2042-2044.
    [28] Barley, M. H., Takeuchi, K. J., Meyer, T. J. Electrocatalytic reduction of nitrite to ammonia based on a water-soluble iron porphyrin[J].J. Am. Chem. Soc. 1986,108(19): 5876-5885.
    [29] Bedioui, F., Trevin, S., Albin, V., Villegas, M.G.; Devynck, Design and characterization of chemically modified electrodes with iron(Ⅲ) porphyrinic-based polymers: study of their reactivity toward nitrites and nitric oxide in aqueous solution[J]. J. Anal. Chim. Acta. 1997, 34(2-3):177-185.
    [30] Bae, I.T., Tolmachev, Y., Mo, Y., Scherson, D., Scheidt, W.R., Ellision, M.K., Cheng, M.C.; Armstrong, R. S., Lay, P. A. In Situ Fe K-edge X-ray Absorption Spectroscopy of a Nitrosyl Iron(II) Porphyrin Adduct Adsorbed on a High-Area Carbon Electrode in Aqueous Electrolytes[J]. Inorg. Chem. 2001, 40(14): 3256-3258.
    [31] Shi, O. F., Cai, W. B., Scherson, D. A. In Situ Surface-Enhanced Raman Scattering Studies of the Nitrosyl Adduct of Hemin Adsorbed on Roughened Silver Surfaces in Aqueous Electrolytes[J].J. Phys. Chem. B 2004, 108(45): 17281-17284.
    [32] Wayland, B. B., Olson, L. W. Spectroscopic studies and bonding model for nitric oxide complexes of iron porphyrins[J].J. Am. Chem. Soc. 1974, 96(19): 6037-6041.
    [33] Ma. M.; Yan, Y.G., Huo, S.J., Xu, Q.J., Cai, W.B. In Situ Surface-Enhanced IR Absorption Spectroscopy on CO Adducts of Iron Protoporphyrin IX Self-Assembled on a Au Electrode[J].J. Phys. Chem. B 2006, 110(30): 14911-14915.
    [34] Ye, S,, Zhou,W., Abe, M., Nishida, T., Cui, L. E, Uosaki, K., Osawa, M.,Sasaki Y. Electrochemical Control of CO/NO Ligand Exchange in a Triruthenium Cluster Monolayer Assembled on a Gold Electrode Surface[J].J. Am. Chem. Soc. 2004, 126(24): 7434-7435.
    [35] Zhou, W., Ye, S., Abe, M., Nishida, T., Uosaki, K., Osawa, M., Sasaki, Y. Oxidation States and CO Ligand Exchange Kinetics in a Self-Assembled Monolayer of a Triruthenium Cluster Studied by In Situ Infrared Spectroscopy[J]. Chem. Eur. J. 2005, 11(17): 5040-5054.
    [36] .de Groot, M.T., Merkx, M., Wonders, A. H., Koper, M.T.M. Electrochemical reduction of NO by Hemin adsorbed at Pyrolitic graphite[J] J. Am. Chem. Soc. 2005, 127: 7579-7586.
    [37] Mimica, D., Zagal, J.H., Bedioui, E Electroreduction of nitrite by hemin, my.oglobin and hemoglobin in surfactant films[J].J. Electroanal. Chem.2001, 497(1-2):106-113.
    [38] Pilloud, D.L., Chen, X.X., Dutton, P.L., Moser, C. C. Electrochemistry of Self-Assembled Monolayers of Iron Protoporphyrin Ⅸ Attached to Modified Gold Electrodes through Thioether Linkage[J].J. Phys. Chem. B 2000, 104 (13): 2868-2877.
    [39] Cai, W. B., Stefan, I.C., Scherson, D. A. Determination of adsorption isotherm of species adsorbed on roughened silver electrodes from in situ quantitative surface enhanced Raman spectroscopy[J]. J. Electroanal.Chem.2002, 524-525:36-42
    [40] Swistak, C., Kadish, K.M. Electrochemistry of iron porphyrins under a carbon monoxide atmosphere. Interactions between carbon monoxide and pyridine[J].Inorg. Chem. 1987, 26(3): 405-412.
    [41] de Vooys, A. C. A., Koper, M. T. M., van Santen, R. A., van Veen, J. A. R. Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode[J].Electrochim. Acta 2001, 46(6): 923-930.
    [42] Janssen, L. J. J., Pieterse, M. M. J., Barendrecht, E. Reduction of nitric oxide at a platinum cathode in an acidic solution[J].Electrochim. Acta 1977, 22(1): 27-30.
    [43] de Vooys, A. C. A., Koper, M. T. M., van Santen, R. A., van Veen, J. A.R. Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes[J]. J. Catal. 2001, 202(2):387-394.
    [44] Otsuka, K., Sawada, H., Yamanaka, I. hydrogen-nitric oxide cell for the synthesis of hydroxylamine[J]. J. Electrochem soc, 1996, 143(11): 3491-3497
    [45] Vilakazi, S. L., Nyokong, T. Electrocatalytic properties of vitamin B_(12) towards oxidation and reduction of nitric oxide[J].Electrochim. Acta 2000, 46(4): 453-461.
    [46] Pan, K. C., Chuang, C. S., Cheng, S. H., Su, Y. O. Electrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes[J]. J. Electroanal. Chem. 2001, 501(1-2): 160-165.
    [47] Cheng, S.-H., Su, Y. O. Electrocatalysis of Nitric Oxide Reduction by Water-Soluble Cobalt Porphyrin. Spectral and Electrochemical Studies[J].Inorg. Chem. 1994, 33(25): 5847-5854.
    [48] Daiber, A., Nauser, T.,Takaya, N., Kudo, T.,Weber, P.,Hultschig, C.,Shoun, H., Ullrich, V. Isotope effects and intermediates in the reduction of NO by P450_(NOR) J.[J].Inorg. Biochem. 2002, 88(3-4): 343-352.
    [49] Lei,J.P., Ju, H.X., Ikeda, O. Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode[J]. J. Electroanal. Chem. 567 (2004) 331-338
    [50] Lorkovic, I., Ford, P. C. Nitric Oxide Addition to the Ferrous Nitrosyl Porphyrins Fe(P)(NO) Gives trans-Fe(P)(NO)_2 in Low-Temperature Solutions[J].J. Am. Chem. Soc.2000, 122(27): 6516-6517.
    [51] Scheidt, W.R., Lee, Y.J., Hatano, K.H. Preparation and structural characterization of nitrosyl complexes of ferric porphyrinates. Molecular structure of aquonitrosyl (meso-tetraphenylporphinato) iron (Ⅲ) perchlorateand nitrosyl (octaethylporphinato)iron(Ⅲ) perchlorate[J].J. Am.Chem. Soc. 1984, 106(11):3191-3198.
    [52] .Sagara, T., Fukuda, M., Nakashima, N. Electroreflectance Study of Hemin Adsorbed on a HOPG Electrode: Estimation of Molecular Orientation and Analysis of Nonfaradaic Electroreflectance Signal Due to the Stark Effect[J].J. Phys. Chem. B 1998, 102(3): 521-527.
    [53] Snyder, S. R., White, H. S. Electrochemistry and Structure of Thin Films of (Protoporphyrinato(Ⅸ))iron(Ⅲ) Chloride[J].J. Phys. Chem. 1995, 99(15): 5626-5632.
    [54] Tao, N.J., Cardenas, G., Cunha, F., Shi, Z. In Situ STM and AFM Study of Protoporphyrin and Iron (Ⅲ) and Zinc (Ⅱ) Protoporphyrins Adsorbed on Graphite in Aqueous Solutions[J]. Langmuir 1995, 11(11): 4445-4448.
    [1] Slater, A.F.G., Swiggard, W.J., Orton, B.R., Flitter,W.D., Goldberg, D.E. Cerami A, Henderson GB An Iron-carboxylate Bond Links the Heme Units of Malaria Pigment. Proc.Natl.Acad.Sci.[J] 1991,88:325-329
    [2] Abe, M. In Spectroscopy of Biological System[M] Clark, R. J. H., Hester, R. E., Eds.; John Wiley & Sons: New York, 1986; Vol, 13, Chapter 7.
    [3] Tu, A. T. Raman Spectroscopy in Biology: Principles and Applications;[M] John Wiley & Sons; New York, 1982; Chapter 12.
    [4] Li M. Gouterman, in the porphyrins vol Ⅲ, part 2, d. Dolphin, Ed, Academic, Press, New York, 1979, pp 1-156.
    [5] Li, X.Y., Spiro T.G. Resonance Raman Spectroscopy of metalloporphyrins In Biological Applications of Raman Spectroscopy; Spirt), T. G., Ed.; Wiley-Interscience: New York, 1988; Vol. 3; pp 1-38.
    [6] Cao, P.G., Yao, J.L., Ren, B, Gu, R.A, Tian, Z.Q. Potential Dependence of the Orientation of Thiocyanate Adsorbed on an Iron Electrode as Probed by Surface-Enhanced Raman Spectroscopy[J] J. Phys. Chem. B 2002, 106(29): 7283-7285
    [7] Tian, Z.Q., Gao, J.S., Li, X.Q., Ren, B., Huang, Q.J., Cai, W.B., Liu, F.M., Mao, B.W. Can surface Raman spectroscopy be a general technique of surface science and electrochemistry?[J] J. Raman Spectrosc. 1998, 29:703-711.
    [8] Tian, Z.Q., Ren. Molecular-level investigation on electrochemical interfaces by Raman spectroscopy[J] Chinese J. Chem.2000, 18 (2): 135-146.
    [9] Cao, P., Sun, Y., Yao, J. L., Ren, B., Gu, R.A., Tian, Z. Adsorption and Electro-Oxidation of Carbon Monoxide at the Platinum-Acetonitrile Interface as Probed by Surface-Enhanced Raman Spectroscopy[J] Langmuir 2002, 18(7): 2737-2742
    [10] Luis A. Sanchez, Thomas G. Spiro Surface-Enhanced Raman Spectroscopy as a Monitor of Iron(Ⅲ) Protoporphyrin Reduction at a Silver Electrode in Aqueous and Acetonitrile Solutions: Vibronic Resonance Enhancement Amplified by Surface Enhancement[J] J. Phys. Chem. 1985, 89(5): 763-768..
    [11] W.B. Cai, I.C. Stefan, D. A. Scherson, Determination of adsorption isotherm of species adsorbed on roughened silver electrodes from in situ quantitative surface enhanced Raman spectroscopy.[J] J. Electroanal.Chem. 2002, 524-525:36-42.
    [12] 蔡文斌,任斌,毛秉伟,全朝,田中群 集中粗糙铂电极上表面增强效应初探,[J]物理化学学报,1996,12(12):1071-1073.
    [13] Bizzarri, A.R., Cannistraro, S. Evidence of electron-transfer in the SERS spectra of a single iron-protoporphyrin Ⅸ molecule[J] Chem. Phys. Lett. 2004, 395: 222-226.
    [14] McMahon, J. J., Baer, S., Melendres, C. A. Surface Raman Scattering and Electrochemistry of Iron Protoporphyrin Ⅸ at a Polycrystalline Silver Electrode[J] J. Phys. Chem. 1986, 90 (8):1572-1577.
    [15] Osawa, M. In Handbook of Vibrational Spectroscopy,[M] Chalmers J. M., Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, U.K., 2002; Vol. 1, pp785.
    [16] Yan, Y.G., Li, Q. X., Huo, S.J., Ma, M., Cai, W.B., Osawa, M. Ubiquitous Strategy for Probing ATR Surface-Enhanced Infrared Absorption at Platinum Group Metal-Electrolyte Interfaces[J] J. Phys. Chem. B 2005, 109(16): 7900-7906.
    [17] Ma. M., Yan, Y.G, Huo, SJ., Xu, QJ., Cai, W.B. In Situ Surface-Enhanced IR Absorption Spectroscopy on CO Adducts of Iron Protoporphyrin Ⅸ Self-Assembled on a Au Electrode[J] J. Phys. Chem. B 2006, 110(30): 14911-14915.
    [18] Ye, S,; Zhou,W.; Abe, M.; Nishida, T.; Cui, L. E; Uosaki, K.; Osawa, M.; Sasaki Y. Electrochemical Control of CO/NO Ligand Exchange in a Triruthenium Cluster Monolayer Assembled on a Gold Electrode Surface[J] J. Am. Chem. Soc. 2004, 126(24): 7434-7435.
    [19] Atsushi Miki, Shen Ye and Masatoshi Osawa. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions[J] Chem. Commun. 2002, 14,1500-1501.
    [20] Pilloud D. L., Chen, X.X., P. Dutton, L., Moser, C. C. Electrochemistry of Self-Assembled Monolayers of Iron Protoporphyrin Ⅸ Attached to Modified Gold Electrodes through Thioether Linkage [J] J. Phys. Chem. B 2000, 104(13): 2868-2877.
    [21] Bizzarri, A. R., Cannistraro, S. Temporal fluctuations in the SERRS spectra of single iron-protoporphyrin IX molecule [J] Chem. Phys. 2003, 290: 297-306.
    [22] Inamura, I. Uchida, K. Association behavior of protoporphyrin IX in water and aqueous poly(N-vinylpyrrolidone) solutions. Interaction between protoporphyrin Ⅸ and poly(N-vinylpyrrolidone). [J] Bull. Chem. Soc. Jpn., 1991, 64(6): 2005-2007.
    [23] Scolaro, L. M., Castriciano, M., Romeo, A., Patane, S., Cefali, E., Allegrini, M. Aggregation Behavior of Protoporphyrin IX in Aqueous Solutions: Clear Evidence of Vesicle Formation [J] J. Phys. Chem. B, 2002, 106(10): 2453-2459.
    [24] Sla dkova, M., Vlc kova, B., Mojzes, E, s louf, M., Naudind, C., Bourdond, G. L. Probing strong optical fields in compact aggregates of silver nanoparticles by SERRS of protoporphyrin Ⅸ [J] Faraday Discuss. 2006, 132: 121-134.
    [25] Smulevich, G., Spiro, T. G. Surface enhanced Raman spectroscopy evidence that adsorption on silver particles can denature Heine proteins [J] J. Phys. Chem. 1985, 89(24): 5168-5173.
    [26] Keating, C. D., Kovaleski, K. M., Natan, M. J. Protein: Colloid Conjugates for Surface Enhanced Raman Scattering: Stability and Control of Protein Orientation. [J] J. Phys. Chem. B 1998, 102(47): 9404-9413.
    [27] 郑军伟,李晓伟,徐浩元,周耀国,顾仁敖。粗糙银电极上高铁血红素的非共振表面增强拉曼光谱研究,[J]光谱学于光谱分析,2003,23(2):294-296。
    [28] Zhang, Z. j., Imae.Toyoko Hydrogen-Bonding Stabilized Self-Assembled Monolayer Film of a Functionalized Diacid, Protoporphyfin Ⅸ Zinc(Ⅱ), onto a Gold Surface [J] Nano letters. 2001, 1(5): 241-243.
    [29] Chun Li and Toyoko Imae Protoporphyrin Ⅸ Zinc (Ⅱ) Organization at the Air/Water Interface and Its Langmuir-Blodgett Films. [J] Langmuir 2003, 19(3): 779-784.
    [30] L. J. Boucher, J. J. Katz. The Infared Spectra of Metalloporphyrins (4000-160 Cm-1) [J] J. Am. Chem. Soc. 1967, 89(6): 1340-1345.
    [31] Dote, J. L., Mowery, R. L. Infrared reflectance-absorption spectra of Langmuir-Blodgett stearic acid monolayers on gold and aluminum: influence of substrate [J] J. Phys. Chem. 1988, 92 (6): 1571-1575.
    [32] Smith, E. L., Porter, M. D. L. Structure of monolayers of short chain n-alkanoic acids (CH_3 (CH_2) nCOOH, n=0-9) spontaneously adsorbed from the gas phase at silver as probed by infrared reflection spectroscopy [J] J. Phys. Chem. 1993, 97 (30): 8032-8038.
    [33] Yan, Y. G.; Xu, Q. J.; Cai, W. B. Study of electroadsorption of aromatic molecules on Pt electrodes with surface enhanced IR absorption spectroscopy [J] Acta Chimica. Sinica. 2006, 64(6): 458-462.
    [34] Zhang, Z. J.; Imae, T. Hydrogen-Bonding Stabilized Self-Assembled Monolayer Film of a Functionalized Diacid, Protoporphyrin IX Zinc (II), onto a Gold Surface [J] Nano Lett. 2001, 1(5): 241-243.
    [1] H.Hang,R.G.Barradas.[J]中国科学技术大学学报,1986,16:263.
    [2] Pu, C., He, Z. L., Liu H. T., Chen, X. L., Zhou, W. F. [J] Chin J. Chem 1990, 5:396.
    [3] Y. Guo, J. Kinetics of Oxidation Processes on Lead Electrode in H_2SO_4. [J] Electrochem. Soc., 1995, 142(10):3378-3382.
    [4] Liu, H. T, Wang, Q. Z, Wan, Y., Zhou, W. F. Problems on the Study of Anodic Films on Pb in Sulfuric Acid Solution(Ⅱ) [J] Electrochemistry, 1996, 2(2): 123-128.
    [5] Liu, H. T., Wang, Q. Z., Zhou, W. F. J. Reconsideration of some fundamental aspects of anodic Pb(Ⅱ) films on lead and its alloys in sulfuric acid solution [J] J. Power Sources. 1999. 84(1):107-113.
    [6] Barradas, R. G. Some observations on the effects of temperature and illumination on the anodic passivation of lead in sulphuric acid [J] J. Electroanal. Chem. 1983, 158(1): 165-173
    [7] D. Pavlov, Kh. N. Puliev, E. Klaya, N. Iordanov [J] J. Electrochem. Soc., 1969, 116:316.
    [8] Liu, H. T., Liang, H. H., Yang, J., Zhou, W. F. [J] Chin J. Chem 2000, 18:489.
    [9] Han, J., Pu, C., Zhou, W. F. Determination of the phase composition of anodic lead(Ⅱ) film formed in sulfuric acid solution [J] J. Electroanal. Chem., 1994, 368(1-2):43-46
    [10] Guo, Y. L. Electrochemical Properties of the Basic Lead Sulfate Layers on Pb in H_2SO_4 [J] J. Electrochem. Soc., 1993, 140(12): 3369-3374.
    [11] Liu, H. T., Liang, H.-H., Yang, J. Zhou, W. F. [J] Chin J. Chem 2000,18:489.
    [12] D. Pavlov. B. D McNicol and D. A. J. Rand (Eds). Power Sources for Electric Vehicles [C] Elsevier, Amsterdam, 1984:146
    [13] 柳厚田,杨炯,梁海河,庄继华,周伟鲂[J]化学学报,2002,60:463.
    [14] M. Pourbaix (Ed), Atlas D' equilibres Electrochimiques, Gauthier-Villars, Paris, 1963
    [15] Dawson, J. L. The Electrochemistry of Lead.[M] London: Academic Press, 1979, 309-353
    [16] Zhou, W. F., Liu, H. T., Wei, C., Sun [J] J. Acta Chimi. Sin. 1986, 44:399.
    [17] Zhou, W. F., Chen, X. L., [J] Acta Chimi. Sin., 1985, 43:333.
    [18] Casson, P., Hampson, N. A., Peters. K. Fundamentals of lead acid cells: Part Ⅳ. The reduction of porous PbO_2 electrodes in sulphuric acid [J] J. Electroanal. Chem, 1978, 87(1-2):213-219.
    [19] Sun, Q. J., Guo, Y. L., Effects of antimony on the formation process of 3PbO·PbSO_4·H_2O on Pb and Pb-Sb electrodes [J] J. Electronanal. Chem, 2000, 493(1-2):123-129.
    [20] Liu, H. T., Liang, H. H., Yang, J., Zhou, W. F. [J] Chinese J. Chem., 2000, 489:18.
    [21] 周伟舫,电化学测量,[M]上海科学技术出版社,上海,1983,p46.