同轴永磁Halbach结构磁路及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波器件中导引强流电子束传输的常规方法是采用外加磁场来限制电子束的扩张,研究磁场导引系统对高功率微波器件非常重要。而由于高功率微波器件的小型化,实用化的发展需求,研究周期永磁聚焦(PPM)系统是一个非常有前景的方向。本论文的主要工作是对同轴永磁Halbach结构磁路这种周期聚焦系统进行理论分析和数值模拟,对强流环形电子束在该磁路中的传输进行分析,并对以同轴永磁Halbach结构磁路作为摇摆器(Wiggler)的自由电子激光(FEL)放大器进行粒子模拟。
     分析Halbach结构磁路性质,求解推导出了同轴永磁Halbach结构磁路磁感应强度各分量的近似表达式,特别对磁场高次空间谐波的忽略进行了讨论,对磁场初始相位进行了修正。分析总结该结构磁路的一些性质,同时还讨论了磁环厚度、磁路间隙和磁场周期对磁场幅值的影响。
     理论分析了电子束在磁路中的受力情况,推导出电子束传输的径向力平衡方程,给出束包络平衡条件。通过粒子模拟分析了电子束在Halbach结构磁路中传输的物理过程,主要讨论了磁场强度,电子束电流,电子束厚度,电子束入射角度,入射位置,磁场周期等因素对电子束传输的影响。分析认为:利用同轴永磁Halbach结构磁路导引数kA的电子束,并使之稳定传输是可能的。同时该磁场聚焦形式也为FEL中的束波相互作用提供了一个作用机制。
     作为同轴永磁Halbach结构磁路的一个应用,对同轴波导FEL放大器进行粒子模拟研究。选取TE_(01)模式作为FEL放大器的工作模式,在输入信号频率9.65GHz,功率12.4kW,电子束参数束电压525kV,束电流1kA的条件下,自由电子激光放大器在频率9.65GHz处,输出平均功率达到100MW,束波转换效率为19%,放大器的增益为39 dB。
High-power microwave (HPM) devices require the applied magnetic field to guide the propagation of intense electron beams, and indeed to inhibit the diffusion of the electron beams. Therefore, it is necessary to investigate the magnetic-field guide system. HPM technology development drives the need to investigate the periodic permanent-magnet (PPM) focusing system that is able to operate at a compact and practical size. The research work in this thesis mainly focus on the theoretical analysis and numerical simulation of a coaxial permanent magnet Halbach circuit. Meanwhile, investigate the propagation process of annular intense electron beam in this type of PPM focusing system, and free electron laser (FEL) amplifier with such kind of magnetic circuit as the wiggler with Particle-in-cell(PIC) simulation code.
     Firstly, the magnetic field of coaxial permanent magnet Halbach circuit is calculated using the finite element code (POISSON SUPERFISH). The approximate expressions for the components of the induction magnetic field are obtained. The problem of how to neglect the higher spatial harmonics of the field components is discussed and the initial phases of the field components are modified. Some properties of the magnet circuits are analyzed and summarized. The effects of structure parameters of the magnetic circuits, including the thickness of the magnetic ring, the gap between the coaxial circuits, and the period of the magnet, on the amplitude of the magnetic field are discussed.
     Secondly, the forces acting on intense annular electron beam in such kind of magnetic field are analyzed. The radial force equation with a modified Mathieu function form and the conditions for the electron beam stability are drawn. Then PIC simulation code is used to investigate the physical process of the beam propagation in such kind of magnetic field. The amplitude and period of the magnet field, the electron beam current, the thickness, the initial incident angle of electron beams and the initial emission position related to the stable propagation are discussed. The conclusion is made that several kilo-amperes intense annular electron beam could propagate stably, meanwhile the focusing form of such magnetic geometry provides action mechanism for the interaction between electron beams and microwave in the FEL.
     At last, this thesis studys FEL amplifier with coaxial permanent magnet Halbach circuit as the wiggler through particle simulation as the application of the circuit. The TE_(01) mode is chosen as the operate mode of the FEL amplifier. The simulation results show the FEL amplifier, which is generated by a 525kV, 1kA electron beam with a 9.65 GHz, 12.4 kW input signal at TE_(01) mode, operate at 9.65 GHz with averaged power of 100 MW. The efficiency is about 19% and the gain of the amplifier is 39 dB.
引文
[1]James Benford and John Swgle.High power microwaves[M].Artech House,Inc.,Norwood.1991.
    [2]J.B.Robert,S.Edl.High-power microwave sources and technologies.NewYork:The Institute of Electrical and Electronics Engineer,Inc.
    [3]J.A.Swegle and J.Benford.High-power microwave at 25 years:the current state of development.Proc.Beams'98,vol.1,1998.
    [4]Lawson,J.D.The Physics of Charged-Particle Beams[M].2nd ed.New York:Oxford University Press.1988.
    [5]Miller,R.B.Introduction to the Physics of Intense Charged Particle Beams[M].New York:Plenun Press,1982.
    [6]Humphries,S.,Jr.Charged Particle Beams[M].New York:John Wiley and Sons,1990.
    [7]Reiser,M.Theory and Design of Charged Particle Beams[M].New York:John Wiley and Sons,1994
    [8]Robert J.Barker.高功率微波源与技术[M].北京:清华大学出版社,2005(Robert J.Barker,Edl Schamiloglu.High-Power Microwave Sources and Technologies.Tsinghua University Press,2005).
    [9]F.J.Agee.The US Program International Workshop on High Power Microwave Generation and Pulse Shortening.Edinburgh International Conference Centre United Kingdom.1997:1-8.
    [10]杨建华.低磁场谐振腔切仑科夫振荡器—锥形放大管的研究[D].长沙:国防科技大学,2002.
    [11]马乔生,张永辉,常安碧,周传明.环形电子束在周期永磁场中传输的理论研究[J].核技术.2005.
    [12]电子管设计手册编辑委员会.微波电子管磁路设计手册[M].北京:国防工业出版社,1984.
    [13]杜秉初,汪健如.电子光学[M].北京:清华大学出版社,2002.
    [14]熊祥正,李家胤等.永磁相对论磁控管的实验研究[J].强激光与粒子束,2000,Vol.12,No.1,75-78.
    [15]李宏福,谢仲伶.8mm三次谐波永磁包装回旋管[J].电子科技大学报,2002.
    [16]范菊平,刘国治等.带有反射腔的相对论返波管的理论与实验研究[A].第四届全国高功率微波学术研讨会论文集[C].
    [17]徐勇,丁武,刘庆想.混合型纵向摇摆器理论分析[A].第三届全国高功率 微波学术研讨会论文集[C].
    [18]V.G.Shpak,S.A.Shunailov,et al.A 70-GHz high-power repetitive backward wave oscillator with a permanent-magnet-based electron-optical system[J].Beams' 96.
    [19]鄢扬,蒙林,等.强流电子束在永磁周期聚束系统中的传输研究[A].全国第五届高功率微波学术研讨会论文集[C].
    [20]YANG Jianhua,ZHANG Yazhou,ZHANG Jiande,et al.Propagation of annular IREB in periodic permanent magnetic(PPM) field[J].High Power and Part Beams.2002
    [21]Thorington,C.B.Computer simulation of ion trapping and detrapping in a PPM focused traveling wave tube[J].IEEE Transactions on Electron Devices.2001:56_61.
    [22]Freund,H.P.Three-dimensional nonlinear theory of helix traveling-wave tubes[J].IEEE Transactions on Plasma Science.2000:748_759
    [23]Amboss,K.;Davis,J.;Hively,K..A 50 kW peak power,4 kW average power,moderate confined flow,PPM focused,X-band TWT[A].Electron Devices Meeting[C].1989.
    [24]Pakter,R.;Chiping Chen.Electron beam halo formation in high-power periodic permanent magnet focusing klystron amplifiers[J].IEEE Transactions on Plasma Science.2000:502_510.
    [25]Yong Ho Chin,Matsumoto,S..Development of X-band PPM klystron for JLC project[A].Third IEEE International Vacuum Electronics Conference[C].2002:294_295.
    [26]Sprehn,D.Recent testing of X band PPM klystrons at the Klystron Department at SLAC[A].Fifth IEEE International Vacuum Electronics Conference[C].2004:342_343.
    [27]Caryotakis,E.Jongewaard,R.Phillips,G.Scheitrum,S.Tantawi.Gigawatt Multibeam Klystron.Beams'96.
    [28]A.J.Balkcum,D.B.McDermott,R.M.Phillips,N.C.Luhmann.High-Power Coaxial Ubitron Oscillator:Theory and Design[J].IEEE Transactions on Plasma Science.1998:548_555.
    [29]A.J.Balkcum,D.B.Mcdermontt,et al.250MW X-Band TE_(01) Ubitron Using a Coaxial PPM Wiggler[J].IEEE Transactions on Plasma Science.1996:802-807.
    [30]K.Halbach.Physical and Optical Properties of Rare Earth Cobalt magnets[J].Nuclear Instruments and Methods.1981:109-117.
    [31]电子管设计手册编辑委员会.微波电子管磁路设计手册[M].北京:国防工业出版社,1984.
    [32]周寿增,董清飞.超强永磁体—稀土铁系永磁材料[M].北京:冶金工业出版社,2004.
    [33]李天明.相对论磁控管的理论和实验研究[D].成都:电子科技大学,2005.
    [34]刘圣民.电磁场的数值方法[M].武汉:华中理工大学出版社,1991.
    [35]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [36]James H.Billen,Lloyd M.Young,Poisson Superfish manual,2002
    [37]McDermott D B,Balkcum A J,Phillips R M,et al.Periodic permanent magnet focusing of an annular electron beam and its application to a 250MW ubitron free-electron maser[J].Phys Plasma.1995.
    [38]李承祖.电动力学教程[M].长沙:国防科技大学出版社.1994.
    [39]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社.2000.
    [40]刘锡三.高功率脉冲功率技术[M].北京:国防工业出版社,2005.8,第一版.
    [41]王闽.等离子体物理及其计算机模拟[M].陕西科学技术出版社,1993.
    [42]盛建霓等.电磁场数值分析[M].北京:科学出版社,1984.
    [43]J.M.Dawson.Particle Simulation of Plasmas[J].Rev.Mod.Phys.,Vol.55,No.2,1983,403.
    [44]高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [45]Kapitza PL and Dirac PAM.Proc.Camabr.Phil.Soc 1933,29:297
    [46]Maydey J M.J.Appl.Phys[J].1971,42:1906.
    [47]惠中锡,杨震华.自由电子激光[M].北京,国防工业出版社,1995.
    [48]胡克松.自由电子激光研究进展和应用[A].第四届高能电子学学术论文集[C].
    [49]T.C.马歇尔.自由电子激光器[M].北京:科学出版社.1993.
    [50]杨显清.电磁场与电磁波[M].北京:国防工业出版社.2003
    [51]顾茂章,张克潜.微波技术[M].北京:清华大学出版社.1989.