季铵盐阳离子表面活性剂对小球藻的毒性及QSAR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季铵盐阳离子表面活性剂广泛用作乳化剂、织物软化剂、消毒剂、杀虫剂、腐蚀抑制剂和个人护理产品,使用后作为工业、农业和生活废水排放进入环境中。作为是一类毒性较大的有机污染物,季铵盐阳离子表面活性剂对水生生态系统的影响已引起国内外学者的广泛关注。
     论文在评述季铵盐阳离子表面活性剂生态毒性效应研究进展的基础上,以环境敏感生物-单细胞绿藻普通小球藻为水生生物代表,研究了季铵盐阳离子表面活性剂对小球藻的急性毒性及其定量结构-活性关系(QSAR)。论文取得了以下一些有价值的研究结果:
     1、季铵盐阳离子表面活性剂对小球藻有较强的抑制作用。在实验条件下,随着季铵盐阳离子表面活性剂浓度的增加,其对小球藻的抑制作用增强。通过概率单位法计算得出C_8TMAB、C_(10)TMAB、DTAB、TTAB、CTAB、STAB、CTAC、BDDAC、BDTAC、BDHAC、EDDAB、EDHAB和CPB等13种季铵盐阳离子表面活性剂对小球藻的96 h-EC_(50)分别为9.472、1.138、0.188、0.182、0.156、0.108、0.137、0.203、0.174、0.161、0.197、0.121和0.132 mg/L,毒性的大小表现为以下规律:取代基相同、烷基链长度不同的季铵盐阳离子表面活性剂随着烷基链长度增加,毒性增大;取代基对烷基链长度相同的季铵盐阳离子表面活性剂的毒性影响较小;烷基链长度CL=8~10的季铵盐阳离子表面活性剂的96 h-EC_(50)在1~10 mg/L之间,对小球藻分别属于高毒性化合物;烷基链长度CL=12~18的季铵盐阳离子表面活性剂的96 h-EC_(50)均在1 mg/L以下,对小球藻属于极高毒性化合物;季铵盐阳离子表面活性剂的log(1/EC_(50))值与辛醇/水分配系数logKow和烷基链长度CL存在抛物线关系,调整相关系数R~2adj>0.93。
     2、应用Gaussian 03程序的密度泛函理论(DFT)方法在B3LYP/6-31G(d)水平上计算了11种季铵盐阳离子表面活性剂的29个理化量化参数,采用Simca统计软件的偏最小二乘(PLS)回归分析方法,对活性参数log(1/EC_(50))进行了定量结构-活性关系(QSAR)的研究。最优模型的3个PLS主成分解释了自变量累计方差的95.3%和因变量累计方差的92.8%,具有良好的相关性、稳健性和内部预测性。模型分析表明:季铵盐阳离子表面活性剂的分子体积越大,log(1/EC~(50))值越大;烷基链长度CL、极化率张量α_(zz)、分子中氢原子所带最大正电荷qH~+和熵S~(?)是影响季铵盐阳离子表面活性剂毒性的主要因素;log(1/EC~(50))值随分子的CL、α_(zz)和S~(?)的增大而增大,随qH~+的增大而减小。
     3、简谐振动频率和自然键轨道分析显示,X-N键长和分子中氢原子所带最大正电荷qH~+越小,烷基链长度相同季铵盐阳离子表面活性剂对小球藻的毒性表现出增大的趋势;在NBO分析中,稳定能E2主要由X~–的孤对电子和C–H键的BD~*轨道的相互作用产生,且CTAB的稳定能大于CTAC。
Quaternary ammonium compounds (QACs), which is widely used as emulsifiers, fabric softeners, disinfectants, pesticides, corrosion inhibitors and personal care products, have stayed in the wastewater generated from industry, agriculture and municipality. As a kind of organic pollutants with high toxicity, the ecotoxicity of QACs on aqueous ecosystems has drawn much attention.
     Based on the research progress of the ecotoxicity of QACs, this paper investigated the acute toxicity of QACs on Chlorella vulgaris, a single-celled green alga which is sensitive to environment, and its quantitative structure-activity relationship (QSAR). The results could be listed as follows:
     1. A strong inhibition resulted from QACs was observed on growth of Chlorella vulgaris. The higher the concentration of the QACs, the stronger the growth of Chlorella vulgaris was restrained. After 96 h, EC50 of 13 QACs including C8TMAB, C10TMAB、DTAB, TTAB, CTAB, STAB, CTAC, BDDAC, BDTAC, BDHAC, EDDAB, EDHAB and CPB on C. vulgaris was calculated by the probit method as 9.472, 1.138, 0.188, 0.182, 0.156, 0.108, 0.137, 0.203, 0.174, 0.161, 0.197, 0.121 and 0.132 mg/L, respectively. The results showed that the toxicity of QACs with the same substituent groups was increased with the increase of alkyl chain length, while QACs with different substituent groups performed similar toxicity. QACs with alkyl chain length of from 12 to 18, was expected as strong poison to Chlorella vulgaris with 96 h-EC50 lower than 1.0 mg/L; And QACs with alkyl chain length of from 8 to 10 was classified as high poison to Chlorella vulgaris with 96 h-EC50 in 1.0-10 mg/L. A parabola relationship was performed between log(1/EC50) of the surfactant and octyl alcohol/water partition coefficient, logKow, or the alkyl chain length CL and the R2adj was larger than 0.93.
     2. Density function theory (DFT) of Gaussuan 03 program was employed under the level of B3LYP/6-31G(d) to calculate 29 physico-chemistry and quantum chemistry parameters of 11 QACs, and investigation on QSAR toward log(1/EC50) was conducted by partial least squares (PLS) regression of Simca software. The optimal PLS model with the cumulative cross-validated regression coefficient (Q2cum = 0:893) and the correlation coefficient between observed values and fitted values (R = 0.975) explained 95.3% of the variance of the independent variables and 92.8% of the variance of the dependent variable, indicating good goodness-of-fit, robustness and internal predictivity. The results showed that the larger the molecule volume of QACs, the higher the log(1/EC_(50)), and the toxicity of QACs was greatly affected by factors including CL,α_(zz), S~(?) and qH~+, which could be concluded as that it was enhanced with longer CL, strongerα_(zz) and larger So, but decreased with an increasing qH~+.
     3. Harmonic vibration frequencies and natural bond orbital analysis showed the toxicity of QACs with the same alkyl chain length on C. vulgaris enhanced with the decrease of X-N bond lengths and the most positive net atomic charges on a hydrogen atom qH~+. The stabilization E2 could be mainly by the interaction of the alone electron pair of X- and BD* orbit on C-H bond, and the stabilization of CTAB can be greater than CTAC.
引文
[1] Garcia M T, Ribosa I, Guindulain T, et al. Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment [J]. Environ Pollut. 2001, 111:169-175.
    [2] Tezel U. Fate and effect of quaternary ammonium compounds in biological systems [D]. Georgia Institute of Technology, 2009, 1-24.
    [3] Patrauchan M A, Oriel P J. Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp K [J]. J Appl Microbiol. 2003, 94:266-272.
    [4] Garcia M T, Campos E, Sanchez-Leal J, et al. Effect of the alkyl chain length on the anaerobic biodegradability and toxicity of quaternary ammonium based surfactants [J]. Chemosphere, 1999, 38:3473-3483.
    [5] ComitéEuropéen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) [C]. 6th World Surfactants Congress, 2004, Berlin, Germany.
    [6] Steichen D S. Cationic Surfactants. In: Holmberg K. (ed.), Handbook of Applied Surface and Colloid Chemistry, vol.1 [M]. John Wiley & Sons, Ltd, West Sussex, England, 2001, 310-348.
    [7] Anastácio P M, Lützhoft H C. Surfactant (Geanpol OX-80) toxicity to Selenastrum capricornutum [J]. Chemosphere, 2000, 40:835-838.
    [8] Andrew J M, Ruth GL, Louise E M, et al. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility [J]. Appl Environ Microb, 2004, 70:3449-3456.
    [9] Nalecz-Jawecki G, Grabinska-Sota E, Narkiewicz P. The toxicity of cationic surfactants in four bioassays [J]. Ecotoxicol Environ Saf, 2003, 54:87-91.
    [10] Lewis M A. Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment [J]. Ecotoxicol Environ Safe, 1990, 20:123-140.
    [11] Utsunomiya, A, Watanuki, T, Matsushita, K, et al. Toxic effects of linear alkylbenzene sulfonate, quaternary alkylammonium chloride and their complexes on Dunaliella sp. and Chlorella pyrenoidosa [J]. Environ Toxicol Chem, 1997, 16:1247-1254.
    [12] Kummerer, K, Eitel, A, Braun, U, et al. Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and high-performance liquid chromatography with post-column ion-pairing and fluorescens detection [J]. J Chromatogr A, 1997, 774:281-286.
    [13] Rosen M J, Li F. The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms [J]. Environ Sci Technol, 2001, 35:954–959.
    [14] Sandbacka M, Christianson I, Isomaa B. The acute toxicity of surfactants on fish cells, Daphnia magna and fish-a comparative study [J]. Toxicol in Vitro, 2000, 14:61-68.
    [15] Hrenovic J, Ivankovic T, Sekovanic L, et al. Toxicity of dodecylpyridinium and cetylpyridinium clorides against phosphate-accumulating bacterium [J]. Cent Eur J Biol, 2008, 3:143-148.
    [16]曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研究[J].海洋与湖沼, 2003, 34:201-207.
    [17] EI-Jay A. Toxic effect of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum [J]. Environ Contam Tox, 1996, 57:191-198.
    [18]刘红玉.表面活性剂对水生植物的损伤及生物降解研究[D].湖南农业大学博士学位论文, 2001.
    [19] Girling A, Fernandez J C G, Janssen C R, et al. Development of methods for evaluationg toxicity to freshwater ecosystens [J]. Ecotoxicol Environ safe, 2000, 45:148-176.
    [20]王连生,韩朔睽.分子机构、性质与活性[M].北京:化学工业出版社, 1997.
    [21]王连生,韩朔睽.有机物定量结构-活性相关[M].北京:中国环境科学出版社, 1993.
    [22]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系[M].大连:大连理工出版社. 1999.
    [23]张育红,于红霞,韩朝睽,等.部分取代芳烃对绿藻毒性的研究和QSAR分析[J].环境化学, 2:140-144.
    [24]王晓栋,林志芬,尹大强,等.硝基芳烃致突变性的二维P三维QSAR比较研究[J].中国科学(B辑), 2004, 34:498-503.
    [25]张庆友,许禄.分子三维投影法在苯酚类化合物构效关系研究中的应用[J].高等学校化学学报, 2003, 23:2125-2128.
    [26]林志芬,孔德洋.腈醛混合化合物对发光菌联合毒性的QSAR研究[J].环境化学, 2005, 24:296-301.
    [27]戴家银.部分有机物定量机构-性质/活性相关研究[D].南京大学, 1999.
    [28]王莹蕙.醒类和多环芳烃类化合物对水生生物的急性光致毒性及QSAR研究[D].大连理工大学博士毕业论文, 2009.
    [29] Dai J Y, Jin L J, Yao S C, et al. Prediction of partition coefficient and toxicity for benzaldehyde compounds by their capacity factors and various molecular descriptors [J]. Chemosphere, 2001, 42:899-907.
    [30] Cousins LT, Machay D. Correlating the physical-chemical properties of phthalate esters using the‘three solubility’approach [J]. Chemosphere, 2000, 41:1389-1399.
    [31] Liang C K, Gallagher D A. QSPR prediction of vapor pressure from solely theoretically derived descriptors [J]. J Chem Inf Comput Sci, 1998, 38:321-324.
    [32] McClelland, H E, Jurs P C. Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structures[J]. J Chem Inf Comput Sci, 2000, 40:967-975.
    [33] Huuskonen J, Salo M, Taskinen J. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling[J]. J Chem Inf Comput Sci, 1998, 38: 450-456.
    [34] Karelson M, Lobanov V S, Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR Studies [J]. Chem. Rev, 1996, 96:1027-1044.
    [35] Wold S, Sj?str?m M, Eriksson L. PLS-regression: a basic tool of chemometrics [J]. Chemometr Intell Lab Syst, 2001, 58:109-130.
    [36]唐桂刚,白乃彬.遗传神经网络在QSAR中的应用研究[J].计算机与应用化学, 1999, 16:435-440.
    [37]杨蕾,王鹏,蒋益林,等.改进GA算法结合ANN用于酚类化合物的QSAR研究[J].哈尔滨工业大学学报, 2006. 38(2): 216-218.
    [38]张大仁,赵立新.遗传算法对QSAR研究中变量选择的应用[J].环境化学, 2000. 19(3): 209-214.
    [39]唐桂刚,白乃彬.遗传神经网络在QSAR中的应用研究[J].计算机与应用化学, 1999, 16:435-440.
    [40] Antreas A, Georgia M, Haralambos S, et al. Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model[J]. Polymer, 2006. 47:3240-3248.
    [41]谷成刚,蒋新,颜东云,等.二噁英结构与正辛醇-水分配系数相关性的密度泛函理论[J].环境科学学报, 2008, 28:185-191.
    [42]张幸川,杨郭英,王遵尧,等.密度泛函方法预测二英类化合物( PCDD /Fs)的正辛醇/水分配系数[J].环境科学学报, 2007, 27:257-266.
    [43]谷成刚,蒋新,卞永荣,等.基于DFT的二噁英脂-水分配系数QSPR研究[J].环境科学, 2008, 29:1330-1335.
    [44] Arulmozhiraja S, Morita M. Structure– activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theorybased descriptors [J]. Chem Res Toxicol, 2004, 17:348–356.
    [45] Gu C G, Jiang X, Ju X H, et al. QSARs for congener-specific toxicity of polyhalogenated dibenzo-p-dioxins with DFT and WHIM theory [J]. Ecotoxicol Environ Saf. 2009, 72:60-70.
    [46]杨湘政.超声波/零价铁协同降解氯代芳香化合物与其构效关系研究[D].湘潭大学硕士毕业论文, 2007.
    [47]胡应杰.硝化甘油结构与性能的量子化学、分子动力学和分子力学研究[D].南京理工大学硕士毕业论文, 2004.
    [48]张庆梅.蒽醌及其衍生物的理论化学研究[D].南京理工大学硕士毕业论文, 2005.
    [49] Pasha F A, Srivastava H K, Singh P P. Comparative QSAR study of phenol derivatives with the help of density functional theory [J]. Bioorg Med Chem, 2005, 13:6823-6829.
    [50] Eroglu E, Türkmen H. A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme, CA-II [J]. J Mol. Graph Model, 26, 2007, 701-708.
    [51]韩香云,王遵尧,杨春生,等.苯砜基环烷酸酯类化合物的结构与急性毒性关系的密度泛函理论研究[J].环境科学学报, 2005, 25: 840-844.
    [52]闫秀芬,肖鹤鸣,居学海,等.硝基芳烃对梨形四膜虫毒性的QSAR研究[J].化学学报, 2006, 64 : 375-380
    [53]黄庆国,赵元慧,张爱茜.取代芳烃化合物对水生生物的急性毒性与其分子轨道能级的定量关系[J].科学通报, 1995, 40 :351-353.
    [54] Chen J W, Peijnenburg W J G M, Quan X, et al. The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides [J]. Chemosphere, 2000, 40:1319-1326.
    [55] Gu C G, Jiang X, Ju X H, et al. DFT study on the structure-toxicity relationship of dioxin compounds using PLS analysis [J]. SAR QSAR Environ Res, 2007, 18:603-619.
    [56]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社. 1999.
    [57] Wold S, Wold H, Dunn W J. Report UMINF-83[D], 1984, Department of Chemistry, University of Umea, Sweden.
    [58]张良长.超声波/零价铁协同降解氯代有机物特性及QSAR研究[D].湘潭大学硕士毕业论文, 2008.
    [59] Sandbacka M, Christianson I, Isomaa B. The acute toxicity of surfactants on fish cells, Daphnia magna and fish-a comparative study [J]. Toxicol in Vitro, 2000, 14:61-68.
    [60] Donald J V, Jane R, Bozso E, et al. The acute and chronic toxicity of hexadecyl and heptadecyl sulfate to aquatic organisms [J]. Arch Environ Contam Toxicol, 2006, 51:43-53.
    [61] Guilherminoa L, Lacerda M N, Nogueira A J, et al. In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring [J]. Sci Total Environ, 2000, 247:137-141.
    [62] Lürling M. Effects of a surfactant (FFD-6) on Scenedesmus morphology and growth under different nutrient conditions [J]. Chemosphere, 2006, 62:1351-1358.
    [63] Nyberg H. Growth of Selenastrum capricorniitum in the presence of synthetic surfactants [J]. Wat Res, 1988, 22:217- 223.
    [64] Dave G, Blanck H, Gustafsson K. Biological effects of solvent extraction chemicals on aquatic organisms [J]. J Chem Tech Biotechnol, 1979, 29:249-257.
    [65] RieβM H, Grimme L H. Studies on surfactant toxicity to the freshwater algae Chlorella fusca: a common mode of action? [J]. Sci Total Environ, 1993, Supplement:551-558.
    [66] Wilson B A, Smith V H, Denoyelles F, et al. Effects of three pharmaceutical and personal care products on natural freshwater algal [J]. Environ Sci Technol, 2003, 37:1713-1719.
    [67]王莉,唐丽雅,魏晨曦,等.邻苯二甲酸二(2-乙基)己酯对斜生栅藻的生态毒性作用[J].生态毒理学报, 2009, 3:452-456.
    [68]许银,葛飞,陶能国,等.十六烷基三甲基氯化铵抑制小球藻生长的效应及作用机制[J].环境科学, 2009, 30:205-210.
    [69] OECD. OECD guidelines for the testing of chemical, 201: algal, growth inhibition test [S]. Organization for Economic Co-operation and Development, 2006, Pairs, 25-40.
    [70]国家环境保护局.水和废水监测分析方法[M].中国环境科学出版社, 2002.
    [71] Qian H F, Chen W, Sheng G D, et al. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris [J]. Aquat Toxicol, 2008, 88:301-307.
    [72]许高金.苯酚、苯胺类化合物定量结构与毒性的QSAR研究[D].浙江大学硕士毕业论文, 2003.
    [73] Hansch C, Leo A. Substituent constants for correlation analysis in chemistry and biology [M]. John Wiley, New York, 1979.
    [74] Roberts D W, Costello J. QSAR and mechanism of action for aquatic toxicity of cationic surfactants [J]. QSAR Comb Sci, 2003, 22:220-225.
    [75] Boethling R S. Environmental aspects of cationic surfactants. In J. Cross and E. J. and Singer (ed.), Cationic Surfactants: Analytical and Biological Evaluation, vol. 53 [M]. Marcel Dekker, Inc., New York, USA, 1994.
    [76] van Wijk D, Gyimesi-van den Bos M, Garttener-Arends I, G et al. Bioavailability and detoxification of cationics, I. Algal toxicity of trimethylammonium salts in the presence of suspended matter and humic acid [J]. Chemosphere, 2009, 75:303-309.
    [77]王惠文,朱韵华. PLS回归在消除多重共线性中的作用[J].数理统计与管理, 1996,15: 48-52.
    [78] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr JA, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B.05., Gaussian Inc., 2003, Pittsburgh, PA.
    [79] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem Phys, 1993, 98:5648-5652.
    [80] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37:785-789.
    [81] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M]. Oxford University Press, New York, 1989.
    [82] Ding G H, Li X, Zhang F, Chen J W, et al. Mechanism-based quantitative structure–Activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata [J]. Bull Environ Conta Toxicol, 2009, 83:520-524.
    [83] Koopmans T. Ordering of wave functions and eigenenergies to the individual electrons of an atom [J]. Physica, 1933, 1:104-113.
    [84] Parr R G, Szentpaly L V, Liu S. Electrophilicity index [J]. J Am Chem Soc, 1999, 121:1922–1924.
    [85] Glaser R, Wu Z, Lewis M. Cytosine catalysis of nitrosative guanine deamination and interstrand cross-link formation [J]. J Mol Struct, 2000, 556:131-141.
    [86] Dai Y Z, Yang D S, Zhu F, et al. The QSPR (quantitative structure-property relationship) study about the anaerobic biodegradation of chlorophenols [J]. Chemosphere 2006, 65:2427-2433.
    [87] Han X Y, Wang Z Y, Yang C S. Quantitative correlation of the acute toxicity of phenylthio-carboxylates with their structural and thermodynamic parameters by DFT calculation [J]. Chinese J Struct Chem, 2005, 24:145-150.