薄漂移区横向高压器件耐压模型及新结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
横向高压器件是高压集成电路的关键器件,受到了众多学者深入的研究。随着半导体技术的快速发展,功率器件和常规低压器件等比例减小。由于漂移区电场的二维本质,一维模型不能深入揭示其物理机理。对于采用终端技术的高压器件,由于边界条件的复杂使二维模型求解困难,因此反映横向和纵向电场耦合作用的电场和击穿电压模型亟待建立。高压器件中击穿电压和导通电阻之间的折衷关系,是众多器件设计者研究的热点。设计具有与CMOS工艺兼容的薄漂移区高压器件是功率半导体技术的一个重要发展方向。
     本文研究了薄漂移区高压器件的二维耐压模型和改善击穿电压和导通电阻折衷关系的新结构。首次提出了薄漂移区D-RESURF器件二维表面电场模型和薄漂移区阶梯掺杂器件耐压模型。提出三种高压器件新结构:薄型双漂移区高压器件、P埋层低掺杂漏SOI高压器件和双面阶梯埋氧层PSOI高压器件,并进行部分实验研制。
     基于Poisson方程,建立表面注入P_b区D-RESURF器件二维表面电场模型。随着漂移区的减薄,纵向电场对表面电场的调制作用显著增强。基于该模型,分析结构参数对表面电场和纵向电场耦合作用的影响,给出获得最大击穿电压和最小导通电阻的优化条件,计算了漂移区厚度和长度与击穿电压的关系。在理论的指导下,成功研制了900VD-RESURF器件。提出漂移区不完全耗尽型S-RESURF器件二维耐压模型,分析器件分别在P_(body)N_e结、N~+N_e结和体内PN结发生击穿的情况。在满足最优表面电场条件下,导出反映电荷共享效应的二维RESURF判据。
     建立薄漂移区阶梯掺杂器件二维耐压模型。由于横向电场相互耦合,在不同掺杂区界面处产生新的电场峰。在纵向电场的耦合作用下,电场峰值降低,漂移区表面电场趋于均匀。借助此模型,研究了结构参数对漂移区电荷共享效应的影响,给出了器件参数之间的优化关系。表面阶梯掺杂器件正向导通电流大部分流经表面,导通电阻降低。阶梯掺杂漂移区器件改善了器件在导通电阻和击穿电压之间的折衷关系,且具有较好的工艺容差。
     提出薄型双漂移区结构。由于表面注入N~-层掺杂浓度较高,漏电流绝大部分流经表面,使导通电阻下降。在沟道区下方采用P离子注入埋层,改善漂移区电场分布,P埋层电场的调制作用在表面电场中引入新的电场峰,使表面电场分布均匀。在漂移区掺杂剂量相同的情况下,随着表面N~-层厚度的降低和掺杂浓度的提高,导通电流显著增大。结果表明:薄型双漂移区器件较常规器件击穿电压提高16%,导通电阻下降24%。
     在低掺杂漏SOI器件的N型漂移区中部注入P埋层形成BLD SOI器件。在埋氧层纵向电场和埋层附加电场的调制下,沟道边缘表面电场降低,优化漂移区浓度增大,导通电阻显著下降。在漏极引入低掺杂漏区,缓解了漏结的曲率效应,击穿电压增大。结果表明:埋层低掺杂漏SOI结构较常规SOI器件击穿电压提高29%,导通电阻下降22%。在理论的指导下,实验研制了超过700V的SOI高压器件。
     提出双面阶梯埋氧层部分SOI高压器件结构,称为DSB PSOI。双面阶梯埋氧层的附加电场对表面电场的调制作用使表面电场达到近似理想的均匀分布;耗尽层通过源极下硅窗口向硅衬底扩展,埋氧层中纵向电场加强,提高了击穿电压,且缓解了自热效应。获得器件结构参数间二维的优化关系。结果表明:在保持导通电阻较低的情况下,双面阶梯埋氧层部分SOI结构击穿电压较常规SOI器件提高58%,温度降低10-30K。
As a key device in high voltage integrated circuit,lateral high-voltage device has been deeply investigated by many scholars.With the quick development of semiconductor technology,the power devices and conventional low-voltage devices are scaled down.Because of the 2-D nature of electrical field in the drift region the 1-D model could not explain deeply the physical mechanism of the device.Owing the complexity of the boundary conditions,the 2-D model of the high-voltage device with some terminal technology is difficult to be solved. The model of the electrical field and breakdown voltage that can describe the interaction between the lateral and vertical electrical fields must be developed.It is a hotspot for many device designers to improve the trade-off between the breakdown voltage and the specific on-resistance of the high-voltage device.Novel thin drift region high-voltage device compatible with CWOS technology is an important developing trend of power semiconductor technology.
     In this dissertation,the 2-D breakdown voltage models and the new structures to improve the trade-off between the breakdown voltage and the on-resistance of the thin drift region high-voltage device are investigated.A 2-D surface electrical field model of the thin drift region D-RESURF device and a breakdown voltage model of the thin drift region device with step doping profile are firstly proposed.Three new structure of high-voltage devices are developed, i.e.the thin double drift region high voltage device,the low doped drain SOI high voltage device with P buffed layer and the PSOI high voltage device with double-faced step buffed oxide layer,and the partial experiments are carried out.
     The 2-D model for the surface electrical field of the D-RESURF device with sturface implanted P_b region is developed based on Poisson equation.The vertical electrical field influences strongly the surface electrical field when the drift region is thin.Besed on the model, the influence of the structure parameters on the coupling effect between the vertical electrical field and the surface electrical field has been examined.The optimal criterion for the maximum breakdown voltage and the minimum on-resistance has also been obtained.The dependence of the breakdown voltage on drift region length and thickness is calculated.The 900V D-RESURF devices have been fabricated with the guide of the analytical model.The 2-D breakdown voltage model of the S-RESURF device for the incompletely depleted drift region is given.The characteristic of the S-RESURF device is investigated when breakdown occurs at the P_(body)N_e junction,N~+N_e junction and vertical PN junction.A 2-D RESURF criterion including the charge sharing effect is derived when optimum surface dectrical field is realized.
     A 2-D breakdown voltage model of the thin drift region device with step doping profile is demonstrated.A new electrical field peak appears between two regions with different doping concentration by the interaction of the lateral electrical field.The surface electrical field peaks are reduced by the coupling of the vertical electrical field,which leads to more or less uniform field profile in drift region.Based on the model,the influence of the structure parameters on the charge sharing is investigated;the optimum relationship among the structure parameters of the high-voltage device is obtained.The current of the thin drift region device with surface step doping profile flows mostly on the surface of the drift region which reduces the on-resistance of the device.The thin dirft region device with step doping profile enhances the trade-off between the breakdown voltage and the on-resistance and has a better technology tolerance.
     A structure of the thin double drift region is proposed.The current can flow mostly along the surface of the drift region because the doping concentration of the surface implanted N~- layer is very high and the on-resistance of the high-voltage device is declined.P buried layer is implanted under the channel region which improves the drift region electrical field distribution. The electrical field modulation of the P buried layer inducts a new electrical field peak in the surface electrical field which leads to more or less uniform field profile.For the same drift region doping dose,with the increase of the surface N~- layer's doping concentration and the decrease of the thickness,the drain current is enhanced greatly.The results show that the breakdown voltage of the thin double drift region device is increased by 16%and the on-resistance is decreased by 24%compared to the conventional device.
     P buried layer is incorporated inside the N drift region of the SOI device with low doped drain,which is called BLD SOI device.By the influences of the buffed layer's additional electrical field and the buried oxide layer's vertical electrical field,the surface electrical field near the channel is reduced and the optimal drift region doping concentration is increased,so the on-resistance is decreased significantly.A low doped drain region is introduced near the drain which can reduce the drain curvature and enhance the breakdown voltage.The results show that compared to the conventional SOI device the breakdown voltage of the BLD SOI device is increased by 29%and the on-resistance is decreased by 22%.Over 700V SOI high voltage device is manufactured successfully with the guide of the model.
     A novel structure of PSOI high voltage device with double-faced step buried oxide layer is proposed,which is called DSB PSOI.The surface electric field reaches nearly ideal uniform distribution due to the additive electric field modulation by double step buried oxide layer.A silicon window underneath the source helps to reduce self-heating. Depletion region spreads into the substrate and the vertical electric field in the buried layer is enhanced,which results in a higher breakdown voltage.A 2-D optimal relation between the structure parameters is also obtained.The results indicate that the breakdown voltage of DSB PSOI device is increased by 58%and temperature is declined by 10-30K in comparison to conventional SOI device,maintaining the low on-resistance.
引文
[1]Bose B K.Power electronics-a technology review.Proceedings of the IEEE,1992,80(8):1303-1334
    [2]Van Wky J D,F C Lee.Power electronics technology at the dawn of the new millennium-status and future.IEEE Annual Power Electronic Specialists conference,1999,1(7):3-12
    [3]Van Wyk J D.Power electronics technologies at the dawn of a new centrury-past achievements and future expectations.IPEMC,2000,1:9-20
    [4]Burgers K C,Olejniczak K J,Ang S S,et al.The use of multichip module technology for power electronics miniaturization and packaging.APEC,1997,1:23-27
    [5]Baliga B J.Trends in power semiconductors devices.IEEE Transactions on Electron Devices,1996,43(10):1717-1731
    [6]Majumdar G Future of power semiconductors.PESC,2004,1:10-15
    [7]Moll J L,Tanenbaum M,Goldey J M,et al.P-N-P-N transistor switches.Proceedings of IRE,1956,44(9):1174-1182
    [8]Baliga B J.An overview of smart power technology.IEEE transactions on electron devices,1991,38(7) 1568-1575
    [9]Lee F C.Technology trends toward a system in a module in power electronics.IEEE Circuits and systems magazine,2002,2(4):4-22
    [10]Bemet S,Teichmann R,Zuekerberger A,et al.Comparison of high-power IGBT's and hard-driven GTO's for high-power inverters.IEEE transactions on industry applications,1999,35(2):487-495
    [11]Rohwein G J,Roose L D,Portnoy W M.Characterization of high power thyfistors.IEEE internatioual pulsed power conference,1995,1:336-341
    [12]Kuo D S,Hu C,Chi M H.dv/dt Breakdown in power MOSFET's.IEEE electron device letters,1983,4(1):1-2
    [13]Singh H,Hummer C R.High action thyristors for pulsed applications.IEEE international pulsed power conference,1999,2:1126-1128
    [14]Azuma M,Kurata M.GTO thyristors.Proceeding oflEEE,1988,76(4):419-427
    [15]Paxman D H.Power devices-past present and future,IEE colloquium on power semiconductor devices,1994:1-9
    [16]Kuo D S,Hu C,Chi M H.dr/dr Breakdown in power MOSFET's.IEEE electron device letters,1983,4(1):1-2
    [17]Love R P,Gray P V,Adler M S.A large-area power MOSFET designed for low conduction losses.IEEE transactions on electron devices,1984,31(6):817-820
    [18]Lane W A,Salama C A T.Epitaxial VVMOS power transistors.IEEE transactions on electron devices,1980,27(2):349-355
    [19]Hakim H,Bolognesi D,De Pestel E Integrated VDMOS transistor with reduced JFET effect.Proceeding of European solid-State device research conference,2006:278-281
    [20]Tosic N,Pesic B,Stojadinovic N.Reliability testing of power VDMOS transistors.Proceeding of microelectronics,1997,2:14-17
    [21]Rey Tauriac Y,Taurin M,Lhermite H,et al.Reliability oriented process and device simulation of power VDMOS transistors in Bipolar/CMOS/DMOS technology.IPFA,2003:29-35
    [22]Efland T R,Tsai C Y,Pendharkar S.Lateral thinking about power devices(LDMOS).IEDM,1998:679-682
    [23]Kitamura A,Motoi Y,Fujishima N.Self-isolated and high performance complementary lateral DMOSFETs with surrounding-body regions.ISPSD,1995:42-47
    [24]Nakagawa A,Kawaguchi Y.Improved 20V lateral trench gate power MOSFETs with very low on-resistance of 7.8m Ωmm2.ISPSD,2000:47-50
    [25]陈星弼.功率MOSFET和高压集成电路.东南大学出版社,1990
    [26]Ajit J S,Kinzer D,Ranjan N.1200V high-side lateral MOSFET in junction-isolated power IC technology using two field-reduction layers.ISPSD,1993:230-235
    [27]Matsunaga S,Sawada M,Sugi A,et al.Low gate charge 20v class trench-aligning lateral power MOSFET.ISPSD,2006:1-4
    [28]Shenal K.Optimized trench MOSFET technologies for power devices.IEEE transactions on electron devices,1992,39(6):1435-1443
    [29]http://info.electric.hc360.com/2006/03/23101446611.shtml
    [30]http://comm.ccidnet.com/art/1897/20060815/808313_1.html
    [31]Xingbi C.Breakthrough to the "silicon limit" of power devices.International conference on Solid-State and integrated circuit technology,1998:141-144
    [32]Kondekar P N.Simulation study of charge imbalance in super-junction power MOSFET.IEEE conference on electron devices and solid-state circuits,2005:551-554
    [33]Quddus M T,Tu L,Ishiguro T.Drain voltage dependence of on resistance in 700V super junction LDMOS transistor.ISPSD,2004:201-204
    [34]Li Y P,Lee F C,Boroyevich D.IGBT device application aspects for 50-kW zero-current-transition inverters.IEEE transactions on industry applications,2004,40(4):1039-1048
    [35]Takahashi H,Kaneda M,Minato T.1200V class reverse blocking IGBT for AC matrix converter.ISPSD,2004:121-124
    [36]Fujii T,Yoshikawa K,Koga T,et al.4.5kV-2000A A power pack IGBT(ultra high power flat-packaged PT type RC-IGBT).ISPSD,2000:33-36
    [37]Castagno S,Curry R D,Loree E.Analysis and comparison of a fast turn-on series IGBT stack and high-voltage-rated commercial IGBTS.IEEE transactions on plasma science.2006,24(5):1692-1696
    [38]Sheng K,Firmey S J,Williams B W.Thermal stability of IGBT high-frequency operation.IEEE transactions on industrial electronics,2000,47(1):9-16
    [39]Mehra H.Applications of MOS controlled(MCT) and MOS turn-off(MTO) thyristors.IEEE power engineering society summer meeting,2000,2:1219-122
    [40]Bo Zhang,Huang A Q,Budong You,et al.Comparative study of 1800V and 2400V MCT and IGBT.International conference on communications,circuits and systems,2002,2:1736-1739
    [41]张波,李肇基,方健.功率半导体器件技术的研究与进展.中国集成电路,2003,50:8-12
    [42]Baliga B J.Power integrated circuits-a brief overview.IEEE transactions on electron devices,1986,33(12):1936-1939
    [43]Lee F C,Daan Van Wyk J,Boroyevich D,et al.An integrated approach to power electronics systems.Proceedings of the power conversion conference,2002,1:7-12
    [44]Liang Y C,Oruganti R,Oh T B.Design considerations of power MOSFET for high frequency synchronous rectification.IEEE transactions on power electronics,1995,10(3):388-395
    [45]Lindemarm A,Foerster S.Design aspects for power MOSFET components in automotive electronics.IPEMC,2006:1988-1993
    [46]http://news.ccidnet.com/art/1743/20070307/1031155_1.html
    [47]Declerq M J,Plummer J D.Avalanche breakdown in high voltage DMOS devices.IEEE transactions on electron devices,1976,23:1-6
    [48]Jaejune J,Amborg T,Zhiping Y,et al.Circuit model for power LDMOS including quasi-saturation.SISPAD,1999:6-8
    [49]Adler M S,Owyang K W,Baliga B J,et al.The evolution of power device technology.IEEE transactions on electron devices.1984,31(11):1570-1591
    [50]Sze S M.Physics of Semiconductor Devices.New York:Wiley,1981.
    [51]Hongxia L,Yue H.Substrate hot holes injection induced breakdown characteristics of thin gate oxide.Chinese journal of semiconductors.2001,22(10):1240-1245
    [52]Charles G S,Pingkeng K,John L M.The effect of high fields on MOS device and circuit performance.IEEE transations on electron devices,1984,31:1386-1393
    [53]Adler M S,Temple V A K,Ferro A P,et al.Theory and breakdown voltage for planar devices with a single field limiting ring.IEEE transactions on electron devices,1977,24(2):107-113
    [54]Johnson M K,Annis A D,Sandoe J N,et al.An analysis of the dynamic behavior of field limiting ring passivation system.IEEE transactions on electron devices,1989,36(6):1203-1211
    [55]Goud C B,Bhat K N.Breakdown voltage of field plate and field limiting ring techniques:numerical comparison.IEEE transactions on electron devices,1992,39(7):1768-1770
    [56]Xu Cheng,Sin J K O,Shen J,et al.A general design methodology for the optimal multiple field limiting ring structure using device simulator.IEEE transactions on electron devices,2003,50(11):2273-2279
    [57]Adler M S,Ferro A P.Field calculations of planar diffused structures with field limiting rings.International electron devices meeting,1973,19:105-108
    [58]Bhardwaj A,Ranjan K,Namrata,et al.Impact of field limiting ring technique on breakdown voltage of irradiated Si sensors.IEEE nuclear science symposium conference record,2003,1:632-635
    [59]Lin H C,Petrosky K,Lampe D,et al.Estimate of increase of planar junction breakdown voltage with field limiting ring.IEEE industry applications society annual meeting,1988,1:674-677
    [60]Souza M M D,Subhas J V,Bose S C,et al.A novel area efficient floating field limiting ring edge termination technique.Solid-state electronics,2000,44:1381-1386
    [61]Groud C B,Bhat K N.Two-dimensional analysis and design considerations of high-voltage planar junctions equipped with field plate and guard ring.IEEE transactions on electron devices,1991,38(6):1497-1504
    [62]Saxena V,Jian N S,Steckl A J.High-voltage Ni-and Pt-SiC Schottky diodes utilizing metal field plate termination.IEEE transactions on electron devices,1999,46(3):456-464
    [63]Hossain Z,Lshigwo T,Tu L,et al.Field-plate effects on the breakdown voltage of an integrated high-voltage LDMOS transistor.ISPSD,2004:237-240
    [64]Chung S K Analytic model for field-plate-edge breakdown of planar devices terminated with field plate and semi-resistive layer.IEE proceeding science,measurement and technology,2004,151(1):21-24
    [65]Jaume D,Charitat G;Reynes J M,et al.High-voltage planar devices using field plate and semi-resistive layers.IEEE transaetious on electron devices,1991,38(7):1681-1684
    [66]Terashima T,Yamashita J,Yamada T.Over 1000V n-eh LDMOSFET and p-eh LIGBT with JI RESURF structure and multiple floating field plate.ISPSD,1995:455-459
    [67]Lynch W,Cordero N,Kelly W M.Advanced physical model for the optimization of the width of a resistive Schottky barrier field plate.IEE proceedings circuits,devices and systems,1998,145(4):260-263
    [68]Hori S,Tsuchitani M,Oosawa N,et al.4.5kV IGBT termination technique using the SIPOS RESURF structure.ISPSD,1998:277-280
    [69]Sakai T,So K C,Shen Z,et al.Modeling and characterization of SIPOS passivated high voltage n and p-channel lateral RESURF type DMOSFETS.ISPSD,1992:288-292
    [70]Mukherjee S,Chou C J,Shaw K,et al.The effects of SIPOS passivation on DC and switching performance of high voltage MOS transistors.IEDM,1986:646-649
    [71]Stochmeier T,Lilja K SIPOS-passivation for high voltage power termination.ISPSD,1991:145-148
    [72]Hitchman J I,Kane J.SIPOS deposition ina low press CVD reactor.Journal of crustal growth,1991,55(10):485-499
    [73]Matsushita T,Aoki T,Ohtsu T,et al.Highly reliable high-voltage transistors by ues of the SIPOS process.IEEE transactions on electron devices,1976,23(8):826-830
    [74]Stengl R,Gosele U,Fellinger C,et al.Variation of lateral doping as a field terminator for high-voltage power devices.IEEE transactions on electron devices,1986,33(3):426-428
    [75]Lai T M L,Sin J K O,Man Wong,et al.Implementation of linear doping profiles for high voltage thin-film SOI devices.ISPSD,1995:315-320
    [76]Xingbi C,Fan X E Optimum VLD makes SPIC better and cheaper.International conference on solid-state and integrated-circuit technology,2001,1:104-108
    [77]Merchant S,Arnold E,Baumgart H,et al.Realization of high breakdown voltage(>700V) in thin SOI devices.ISPSD,1991:31-35
    [78]Xingbi C,Mawby P A,Salama C A,et al.Lateral high-voltage devices using an optimized variational lateral doping.IJE,1996,3(80):449-459
    [79]Hardikar S,Tadikonda R,Green D W,et al.Realizing high-voltage junction isolated LDMOS transistors with variation lateral doping.IEEE transactions on electron devices,2004,51(12):2223-2228
    [80]Hardikar S,Xu Y Z,De Souza M M,et al.1200V fully implanted Jl technology.Electronics Ietters,2000,36(18):1587-1589
    [81]Jin H,Xing Z,Yangyuan W.Linearly varying surface-implanted n layer used for improving trade-off between breakdown voltage and on-resistance of RESURF LDMOS transistor.Microelectronics journal,2001,32:967-971
    [82]Hu Y,Booth R V H,White M H.An analytical model for the lateral channel electric field in LDD structures.IEEE transactions on electron devices,1990,37(10):2254-2264
    [83]Orlowski M K,Wemer C,Klink J.Model for the electric fields in LDD MOSFET's.IEEE transactions on electron devices,1989,36(2):375-381
    [84]Appels J A,Vaes H M J,Ruis W N J.Thin layer high-voltage junction FET(resurf JFET).IEEE electron device letters,1981,2(2):38-40
    [85]Appels J A,Vaes H M J.High voltage thin layer devices(RESURF devices).IEDM,1979,25:238-241
    [86]Xingbi C,Song Z Q,Zhaojin L.Optimization of the drift region of power MOSFET's with lateral structures and deep junctions.IEEE transactions on electron devices,1987,34(11):2344-2348
    [87]Ludikhuize A W.Performance and innovative trends in RESURF technology.Proceeding of solid-state device research conference,2001:35-44
    [88]Wildi E J,Gray P V,Chow T P,et al.Modeling and process implementation of implanted RESURF type devices.International electron devices meeting,1982,28:268-271
    [89]LudikhuizeAW.A review of RESURF technology.ISPSD,2000:11-18
    [90]Holland P M,Lgic P M.An alternative process architecture for CMOS based high side RESURF LDMOS transistors.International conference on microelectronics,2006:195-198
    [91]Sankarara N E M,Amaratunga G,Milne W I.A study of the RESURF principle for thin epitaxial layer high voltage integrated circuits.ISPSD,1992:172-175
    [92]De Souza MM,Narayanan E M S.Double resurf technology for HVICs.Electronics letters,1996,32(12):1092-1092
    [93]乔明,方健,肖志强,等.1200V MR D-RESURF LDMOS与BCD兼容工艺研究.半导体学报,2006,27(8):1447-1452
    [94]Hossain Z,Imam M,Fulton J,et al.Double-RESURF 700V n-channel LDMOS with best-in-class on-resistance.ISPSD,2002:137-140
    [95]Imam M,Hossain Z,Quddus M,et al.Design and optimization of double-RESURF high-voltage lateral devices for manufaeturable process.IEEE transactions on electron devices,2003,50(7):1697-1700
    [96]Disney D R,Paul A K,Darwish M,et al.A new 800V lateral MOSFET with dual conduction paths.ISPSD,2001:399-402
    [97]Disney D R.A new 600V lateral PMOS device with a buried conduction layer.ISPSD,2003:41-44
    [98]Hardikar S,Souza M M D,Xu Y Z,et al.A novle double RESURF LDMOS for HVIC's.Mieroelectronics journal,2004,35:305-310
    [99]Khemka V,Parthasarathy V,Zhu R,et al.A floating RESURF(FRESURF) LD-MOSFET device concept.IEEE eleletron device letters,2003,24(10):664-666
    [100]Baoxing D,Bo Z,Zhaoji L.A new super junction LDMOS with N~+-floating layer.IPEMC,2006:1-4
    [101]Na R,Udrea F,Sheng K,et al.Lateral unbalanced super junction for high breakdown voltage on SOI.ISPSD,2001:395-398
    [102]Wangjun C,Bo Z,Zhaoji L.SJ-LDMOS with high breakdown voltage and untra-low on-resistance.Electronics letters,2006,42(2):1-2
    [103]Yamazaki M,Kobayashi H,Shinohara S.Forward transient behavior of PiN and super junction diodes.ISPSD,2004:197-200
    [104]Bai Y,Huang A Q,Li X.Junction termination technique for super junction devices.ISPSD,2000:257-261
    [105]Zingg R P.New benchmark for RESURF,SOI and super-junction power devices.ISPSD,2001:343-346
    [106]Park I Y C,Salama C A.Super junction LDMOS transistors-implementing super junction LDMOS transistors to overcome substrate depletion effects.IEEE circuits and devices magazine,2006,22(6):10-15
    [107]Fujihira T.Therory of semiconductor superjunction devices.Journal of applied physics,1997,36(10):6254-6262
    [108]Kondekar P N.Simulation study of charge imbalance in super-junction power MOSFET.IEEE conference on electron devices and solid-state circuits,2005:551-554
    [109]Imam.M,Quddus.M,Adams.J,et al.Efficacy of Charge Sharing in Reshaping the Surface Electric Field in High-Voltage Lateral RESURF Devices.IEEE Transactions electron devices,2004,51(1):141-148
    [110]Dejan K,Georges C,Slavko A.A new analytical model for determination of breakdown voltage of RESURF structures.Solid-state electronics,1996,39(9):1353-1358
    [111]Han S Y,Na J M,Shin J C,et al.An analytical model of the breakdown voltage and minimum epi layer length for RESURF pn diodes.Solid-state electronics,1996,39(8):1247-1248
    [112]Parpia Z,Andre C,Salama T.Optimization of RESURF LDMOS transistors:an analytical approach,liEE transactions on electron devices,1990,37(3):789-796
    [113]Popescu A,Udrea F,Ng R,et al.Analytical modeling for the RESURF effect in JI and SOI power devices,lie Proceeding of Circuits,Devices and Systems,2002,149(56):273-284
    [114]Han S Y,Kim H W,Chung S K.Surface field distribution and breakdown voltage of RESURF LDMOSFETs.Microelectronics journal,2000,31:685-688
    [115]Jin H,Xing Z.Quasi-2-D analytical model for the surface field distribution and optimization of RESURF LDMOS transistor.Microelectronics journal,2001,32:655-663
    [116]Weifeng S,Longxing S.Analytical models for the surface potential and electrical field distribution of bulk-silicon RESURF devices.Solid-state electronics,2004,48:799-805
    [117]Xiaoyan L,Jinfeng K,Lei S,et al.Threshold voltage model for MOSFETs with high-k gate dielectrics.IEEE electron device letters,2002,23(5):270-272
    [118]Suzuki K,Tosaka Y,Sugii T.Analytical threshold voltage model for short channel double-gate SOI MOSFET's.IEEE transactions on electron devices,1996,43(7):1166-1168
    [119]Hongmei W,Xuemei X,Xing Z,et al.Modeling the threshold voltage of deep-submicrometer fully depleted SOI MOSFETs.Electronics letters,1997,36(16):1415-1416
    [120]Colak S.Effects of drift region parameters on the static properties of power LDMOST.IEEE Trans Electron Dev,1981,28:1455-1461
    [121]韩磊.高压功率变换用SPIC中部分单元的研究.博士论文,电子科技大学,2002
    [122]Merchant S.Arbitrary lateral diffusion profiles.IEEE transactions on electron devices,1995,42(12):2226-2230
    [123]Stupp E H,Colak S,Ni J.Low specific on-resistance 400V LDMOST.IEDM,1981,27:426-428
    [124]Mena J G,Salama C A T.High-voltage multiple-resistivity drift-region LDMOS.Solid State Electronics,1986,29(6):647-656
    [125]张波,段宝兴,李肇基.具有n~+浮空层的体电场降低LDMOS结构耐压分析.半导体学报,2006,27(4):730-734
    [126]Luo X,Zhang B,Li Z,et al.SOI high-voltage device with step thickness sustained voltage layer.Electronics letters,2008,44(1):55-56
    [127]Manasevit H M,Simpson W I.Single-crytal silicon on a sapphire substrate.Journal of applied physics,1964,35:1349-1351
    [128]Lemnios Z J,Radack D J,Zolper J C.The future of silicon-on-insulator(SOI) technology in microelectronic systems.IEEE international SOI conference,2004:9-13
    [129]Tendler J M,Dodson J S,Fields J S,et al.Power4 system microarchitecture,IBM journal of research and development,2002,46(1):5-25
    [130]http://cpu.zol.com.cn/48/486862.html
    [131]Nakagawa A,Yamaguehi Y,Ogura T.500V three phase inverter ICs based on a new dielectric isolation technique,ISPSD,1992:328-332
    [132]Sumida H,Hirabayashi A,Shimabukuro H,et al.A high performance plasma display panel driver IC using SOI,ISPSD,1998:137-140
    [133]Velichko A A.Prospects of SOI technology evolution.Siberian Russian workshop electron devices and materials,2002,1:18-22
    [134]Ohashi H,Ohnra J,Tsukakoshi T,et al.Improved dielectrically isolated device integration by silicon-wafer direct bonding(SDB) technique.International electron devices meeting,1986,32:210-213
    [135]杨道虹,徐晨,沈光地.乙二醇辅助多层硅/硅直接键合.半导体学报,2005,26(2):395-398
    [136]Zvanut M E,Stahlbush R E,Carlos W E,et al.SIMOX with epitaxial silicon:point defects and positive charge.IEEE transactions on nuclear science,1991,38(6):1253-1258
    [137]Brown G A,Revesz A G.Defect electrical conduction in SIMOS buried oxides.IEEE transactions on electron devices,1993,40(9):1700-1705
    [138]Lawrence R K,Loannou D E,Hughes H L,et al.Charge trapping versus buried oxide thickness for SIMOX structures.IEEE transactions on nuclear science,1995,42(6):2114-2121
    [139]Yemin D,Meng C,Jing C,et al.Fabrication fo high quality patterned SOI materials by optimized low-dose SIMOX.IEEE international SOI conferernce,2004:61-69
    [140]Aspar B,Lagahe C,Moriceau H,et al.Smart-cut(R) process:an original way to obtain thin films by ion implantation.Conference on/on implantation technology,2000:255-260
    [141]Li Y X,Zhang Z K,Ni W H,et al.SOl wafer achieved by smart-cut process.International proceeding of solid-state and integrated circuit technology,1998:761-764
    [142]郭宇锋.SOI横向高压器件耐压模型和新结构研究.博士论文,电子科技大学,2005
    [143]Bruel M,Aspar B,Charier B,et al."Smart cut":a promising new SOI material technology.IEEE international SOI conference,1995:178-179
    [144]Sato N,Nakayama J,Ohmi K,et al.High resistive ELTRAN(R) SOI-epi~(TM) wafers for RF application.IEEE international SOI conference,2001:67-68
    [145]Sato N,Sakaguchi K,Ymagata K,et al.High-quality epitaxial layer transfer(ELTRAN) by bond and etch-back of porous Si.IEEE international SOl conference,1995:176-177
    [146]Ito M,Yamagata K,Miyabayashi H,et al.Scalability potential in ELTRAN(R) SOI-epi wafer.IEEE international SOI conference,2000:10-11
    [147]Huang Y S,Baliga B J.Extension of resurf principle to dielectrically isolated power devices.ISPSD,1991:27-30
    [148]Zingg R P,Weijland I,Zwol H V,et al.850V DMOS-switch in silicon-on insulator with specific Ron 13-mm2.IEEE international SOl conference,2000:62-63
    [149]Zhang S D,Sin J K,Laim T M L,et al.Numerical model of linear doping profiles for high-voltage thin-film SOI devices.IEEE transactions on electron devices,1999,46(5):1036-1041
    [150]Ratnam P.Novel silicon-in-insulator MOSFET for high-voltage integrated circuits.Electronics letter,1989,25(8):536-537
    [151]Yasuhnra N,Nakagawa A,Furukawa K.SOI device structures implementing 650V high voltage output devices on VLSIs.International electron devices meeting,1991:141-144
    [152]Funaki H,Yamaguchi Y,Hirayama K,et al.New 1200V MOSFET structure on SOI with SIPOS shielding layer.International power semiconductor devices and ICs,1998:25-28
    [153]Park J M,Grasser T,Kosina H,et al.Numerical study of partial-SOI LDMOSFET power devices.International semiconductor device research symposium,2001:114-117
    [154]Kim I J,Matsumoto S,Sakai T,et al.Breakdown voltage improvement for thin-film power MOSFET's by a buried oxide step structure.IEEE electron device letters,1994,15(5):148-150
    [155]段宝兴.横向高压器件电场调制效应及新器件结构研究.博士论文,电子科技大学,2007