群体智能算法及其在移动机器人路径规划与跟踪控制中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体智能是指无智能的主体通过合作表现出智能行为特性的系统,群体智能在没有集中控制且不提供全局模型的前提下,为寻找复杂问题的解决方案提供了基础。群体智能算法是基于群体行为对给定的目标进行寻优的启发式搜索算法,其寻优过程体现了随机、并行和分布式等特点。群体智能算法的典型代表是1995年Kennedy和Eberhart提出的粒子群优化(Particle Swarm Optimization,PSO)算法。PSO算法自提出以来,由于其计算简单、易于实现、控制参数少等特点,引起了国内外相关领域众多学者的关注和研究。J.Sun等在深入研究PSO算法单个粒子收敛行为的基础上,受量子物理学的启发提出了具有量子行为的粒子群优化(Quantum-behaved Particle SwarmOptimization,QPSO)算法,QPSO算法具有控制参数更少,收敛速度快,全局搜索能力强等特点。
     本文以QPSO算法为基础,提出了几种不同搜索策略的改进QPSO算法;针对离散空间优化问题,提出了二进制编码的具有量子行为的粒子群优化(Binary QPSO,BQPSO)算法,对其进行了深入的分析和研究;并研究了群体智能算法在移动机器人路径规划和轨迹跟踪控制中的应用方法,具体内容如下:
     (1)阐述了群体智能优化算法及移动机器人路径规划和轨迹跟踪控制的研究背景;介绍了两种典型的群体智能算法的研究现状,即蚁群优化(ACO)算法和PSO算法;对移动机器人路径规划和轨迹跟踪控制的设计方法作了详细的介绍;提出了本课题的研究思路和方法。
     (2)为了进一步提高QPSO算法在解决多峰优化问题中全局搜索能力,增加算法后期群体的多样性,提高算法在大范围内进行搜索的能力,提出了在群体中采用随机选择最优个体的操作策略以避免群体的多样性过小,从而提高算法的全局搜索能力,通过对标准测试函数的求解表明改进算法的全局求解能力得到了提升。
     (3)详细分析了智能群体的决策机制,发现在智能群体决策过程中,个体粒子参与决策的权利根据个体的优劣程度是不相同的,提出了在QPSO算法中引入线性权重算子和精英选择算子进一步提高QPSO算法的搜索效率及优化性能。两种改进算法通过在标准测试函数中的求解显示了较好的性能,其中引入线性权重算子的改进方法取得了较为明显的优势。
     (4)针对离散空间优化问题,给出了二进制编码的QPSO算法的设计思路,提出了BQPSO算法的进化方程。通过泛函分析的方法和随机过程方法分析了BQPSO算法的收敛性,得出全局收敛的结论。对多个测试函数的求解结果显示了BQPSO算法相对于二进制编码的PSO(BPSO)算法的优越性。
     (5)算法参数是影响算法性能和效率的关键,文中对BQPSO算法的控制参数的取值方式作了系统的研究,提出了该参数的三种控制策略,即固定取值策略、线性取值策略和自适应取值策略,通过对测试函数的求解分别研究了这三种控制策略,得出了具有指导意义的结论。分析了BQPSO算法的多样性控制方法,基于群体多样性的度量方式,提出了采用重新初始化最优平均值和变异最优个体的方式对群体操作避免群体的多样性过小,从而提高算法的性能。
     (6)分析了移动机器人路径规划的不同技术方法,提出了BQPSO算法和栅格技术相结合的机器人路径规划方法,并利用多个设计实例来验证该方法的设计效果,仿真结果显示了该方法能够在工作空间中规划出适合机器人运动的无碰撞路径。
     (7)分析了移动机器人轨迹跟踪控制的两种控制器设计方法。根据反演设计方法设计了轨迹跟踪控制器;分析了滑模变结构控制的基本原理,采用指数趋近律和幂次趋近律相结合的方法,设计了新的滑模跟踪控制律,并使用PSO算法、QPSO算法和改进QPSO算法分别优化了反演跟踪控制器和滑模跟踪控制器中的参数,使用多个实例验证了优化后的跟踪控制器的设计效果;通过对设计效果的分析和比较,表明了两种跟踪控制器都能够控制机器人实现对既定轨迹的跟踪,仿真结果显示QPSO算法及改进算法能够在轨迹跟踪控制器的参数优化中取得更好的优化效果。
     (8)使用一个综合实例验证了BQPSO算法结合栅格法应用于移动机器人路经规划,改进QPSO算法应用于移动机器人轨迹跟踪控制器设计中的有效性和可行性,为移动机器人路径规划和轨迹跟踪整体设计提供了一种新的方法。
     论文最后对所做工作与主要研究成果进行了总结,并提出了进一步的研究方向。
Swarm Intelligence(SI) is the property of a system whereby the collective behaviors of agents interacting locally with their environment.SI provides a basis with which it is possible to explore collective problem solving without centralized control or the provision of a global model.SI algorithm is a kind of heuristic search method that can solve the specified problems based on collective behaviors.The characteristic of SI algorithm is stochastic,parallel and distributed.Particle Swarm Optimization(PSO) algorithm is one of the typical SI algorithms which is developed by Kennedy and Eberhart in 1995.Since PSO algorithm was developed,it has attracted many researchers in the fields concerned as its characteristics of simple computation,easy realization and few parameters.J.Sun proposed Quantum-behaved Particle Swarm Optimization(QPSO) algorithm based on the deep study of PSO algorithm and inspired by quantum physics.QPSO algorithm has much fewer parameters and much stronger global search ability than the PSO algorithm.
     Several improved QPSO algorithms with different search strategies are proposed base on QPSO algorithm.QPSO algorithm by binary encoding(BQPSO) is proposed for solving discrete problems,and is given deep analysis and study on it.The applications of SI in the path planning and tracking control of mobile robot are also studied in the work.The main contents of this dissertation are as follows:
     (1) Research background of SI algorithms and path planning,tracking control of mobile robot are expatiated.The current research situations of two typical SI algorithms are detailed introduced,which are Ant Colony Optimization(ACO) algorithm and PSO algorithm.An introduction of design of path planning and tracking control of mobile robot is presented.Research methods and ideas in the work are proposed.
     (2) In order to maintain the diversity of the population and enhance global search ability of the quantum-behaved particle swarm optimization,an improved QPSO algorithm with the best individual of random selection is proposed to avoid the swarm diversity getting into a low level.The improved algorithm shows preferable ability in solving the multi-modal problems.
     (3) Decision-making rights are different according to the individuals' fitness values by the analysis of SI decision-making mechanism.Improvements of QPSO algorithm are proposed to improve searching efficiency and optimal performance by introducing linear weighted operator and elitist selection operator into algorithm.Two improved QPSO algorithms show good performance by tested them on the benchmark functions and the QPSO algorithm with linear weighted operator is better.
     (4) The thought of BQPSO is discussed and evolution equations are given which are completely different from the QPSO algorithm.The convergence of BQPSO algorithm is analyzed through functional analysis and stochastic process method,and conclusion of global convergence is drawn.BQPSO algorithm shows better performance than BPSO algorithm in solving test functions.
     (5) The parameter of an algorithm is the key issue that affects the algorithm's performance and efficiency.The methods for taking value of control coefficient in BQPSO algorithm are analyzed systemically.Three strategies are proposed,including:setting the parameter as a fixed value,making the parameter take value linearly of nonlinearly according to the iteration,and letting the value adaptively according to the evolution results.Some guiding conclusions are summarized.An improvement on BQPSO algorithm is proposed to avoid the swarm diversity getting a low level based on diversity measure,the improvement is realized by resetting average best value of all particles and mutating the swarm's global best particle.
     (6) Path planning method of robot that is combined BQPSO algorithm and grids technologies is proposed by base on the analysis of different path planning technologies.The design result of this method is validated by a number of design examples.Simulation results show that collision-free paths can be planned by this method in robot working space.
     (7) Two controller design methods of robots trajectory tracking are analyzed.Trajectory tracking controller is designed according to back-stepping approach.The basic tenet of sliding mode is analyzed and new sliding mode control law is designed by combining index reaching law and power reaching law.The parameters in back stepping tracking controller and sliding mode tracking controller are optimized through PSO algorithm,QPSO algorithm and improved QPSO algorithm.The design result of optimal tracking controller is validated by a number of design examples.It shows that two tracking controllers can control robot to track planned trajectory.Simulation results show that QPSO algorithm and its improvement can get better effect in optimizing parameters of controllers.
     (8) An integrated example shows that the BQPSO algorithm applied in path planning and improved QPSO algorithm applied in design of tracking controller is effective and feasible.It proposes a new method for the design of integrated system with path planner and tracking controller.
     The main contributions in this work are summarized at last and further research considerations and put forward.
引文
1.张燕,康琦,汪镭,等.群体智能[J].冶金自动化.2005,(2):1-4
    2.高尚,杨靖宇.群体智能算法及其应用[M]:中国水利出版社,2006
    3.汪镭,康琦,吴启迪.群体智能算法总体模式的形式化研究[J].信息与控制.2004,06:694-697+702
    4.Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].Proceeding of 1st European Conference Artificial Life,Parris,France:Elsevier,1991:134-142
    5.Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm[C].Proceeding of Parallel Problem Solving from Nature(PPSN),France:Elsvier,1992:509-520
    6.Dorigo M,Luea M.A study of some properties of ant-Q[C].Proceeding of 4th International Conference on Parallel Problem Solving Problem from Nature(PPSN):Springer-Verlag,1996:656-665
    7.Luca M,Carnbardella,Dorigo M.Ant-Q:a reinforcement learning approach to the traveling sales man problem[C].Proceeding of 12th Machine Learning Conference,France,1995:252-260
    8.Dorigo M,Gambardella.Ant colony system:a cooperative learning approach to the traveling salesman problem[R].IEEE Transactions on Evolutionary Compu6hg,1997,1(1):53-56
    9.Costa D,Hertz A.Ant can color graphs[J].Journal of the Operational Research Society.1997,48(3):295-305
    10.丁建立,陈增强,袁著祉.基于自适应蚂蚁算法的动态最优路由选择[J].控制与决策.2003,18(6):751-753
    11.Chu C H,Gu J,Hou X.A heuristic ant algorithm for solving QoS multicast routing problem[C].Proceeding of the 2002 Congress on Evolutionary Computation,Honolulu,2002:1630-1635
    12.Li Y J,Wu T J.A nested ant colony algorithm for hybrid production scheduling[C].Proceeding of the American Control Conference,Anchorage,2002:1123-1128
    13.Li Y J,Wu T J.A nested hybrid ant colony algorithm for hybrid production scheduling problems[J].Acta Automatica Sinica.2003,29(1):95-101
    14.Colomi A,Dorigo M,Maniezzo V,etc.Ant system for job-shops scheduling[J].Belgian Journal of Operations Research,Statistics and Computer Science.1994,34(1):39-53
    15.Israel A W,Michael L,Alfred M B.Distributed covering by ant-robot using evaporating traces[J].IEEE Transactions on Robotics and Automation.1999,15(5):918-933
    16.Hoar R,Penner J,Jacob C.Ant trails-An example for robots to follow[C].Proceeding of the 2002Congress on Evolutionary Computation,Honolulu,2002:1910-1915
    17.金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人.2003,24(6):526-529
    18.樊晓平,罗熊,易晟.复杂环境下基于蚁群优化算法的及其人路径规划[J】.控制与决策.2004,19(2):166-170
    19.Russell R A.Ant trails-An example for robots to follow[C].Proceeding of the 1999 IEEE International Conference on Robotics and Automation,Detroit,1999:2698-2703
    20.Michael J B K,Jean-Bernard B,Laurent K.Ant-like task and recruitment in cooperative robots[J].Nature.2000,406(31):992-995
    21.Ando S,Iba H.Ant algorithm for construction of evolutionary tree[C].Proceeding of the Genetic and Evolutionary Computation Conference,New York,2002:1552-1557
    22.Gambardella,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonic[A].Proceeding of the IEEE Conference On Evolutionary Computation[C].1996:622-627
    23.Gambardena,Dorigo M.Ant—Q:A reinforcement learning approach to the traveling salesman problem[R].Proceedings of ML-95.The 12th International Conference on Machine Learning.Morgan Kaufmann:IEEE Press,1995:252-260
    24.Stutzle T,Hhoos H.Max-min ant system and local search for combinational optimization problems[C].Proceeding of 2nd International Conference on Met heuristics,Wien:Springer-Verlag,1997
    25.Stutzle T,Hoos H.The Max-Min ant system and local search for the traveling salesman problem[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,1997:309-314
    26.张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用.2000,17(1):1-3
    27.魏平,熊伟清.一种求解函数优化的蚁群算法[J].计算机科学,2002,29(9):227-229
    28.Kennedy J,Eberhart R C.Particle swarm optimization[C].Proceedings of IEEE International Conference on Neural Networks,1995:1942-1948
    29.Heppner F,Grenander U.A stochastic Nonlinear Model for Coordinated Bird Flocks[M]:AAAS Publications,1990
    30.Bergh F V d.An Analysis of Particle Swarm Optimizers[D]:University of Pretoria,2001
    31.Emara H M,Fattah H A A.Continuous swarm optimization technique with stability analysis[C].Proceedings of American Control Conference,Boston,MA,2004,3:2811-2817
    32.Kadirkamanathan V,Selvarajah K,Fleming P J.Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer[J].IEEE Transactions on Evolutionary Computation.2006,10(3):245-255
    33.Ozcan E,Mohan C.Particle swarm optimization:Surfing the waves[C].Proceedings of 1999 Congress on Evolutionary Computation,1999:1939-1943
    34.Clerc M,Kennedy J.The Particle Swarm:Explosion,Stability and Convergence in a Multi-Dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation.2002,6:58-73
    35.Jiang M,Luo Y P,Yang S Y.Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J].Information Processing Letters.2007,102:8-16
    36.潘峰,陈杰,甘明刚,等.粒子群优化算法模型分析[J].自动化学报.2006,03:368-377
    37.Suganthan P N.Particle swarm optimizer with neighborhood operator[C].Proceedings of the 1999Congress on Evolutionary Computation,1999,3:1962
    38.Kennedy J.Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[C].Proceedings of the 1999 Congress on Evolutionary Computation,1999,3:1938
    39.Kennedy J,Eberhart R C.A Discrete Version of the Particle Swarm Algorithm[C].Proceedings of the 1997 Conference on System,Man and Cybernetics,Piscataway,NJ:IEEE Service Center,1997:4104-4109
    40.Shi Y,Eberhart R C.A modified particle swarm optimizer[C].Proceedings of the IEEE International Conference on Evolutionary Computation,Piscataway,NJ:IEEE Press,1998:69-73
    41.Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C].Proceedings of the 1999 Congress on Evolutionary Computation,1999,3:1957
    42.Angeline P J.Using selection to improve particle swarm optimization[A].IEEE International Conference on Evolutionary Compution[C].Anchorage,Alaska,1998:84-89
    43.Lovbjerg M,Rasussen T K,Krink T.Hybrid Particle Swarm Optimizer with Breeding and Subpopulations[C].Proceedings of the third Genetic and Evolutionary Computation Conferences,San Francisco,2001:469-476
    44.Meng H J,Zhang P,Wu R Y.A hybrid particle swarm algorithm with embedded chaotic search[A].IEEE Conference on Cybernetics and Intelligent Systems[C],2004:367-371
    45.高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用.2004,41(6):4-6
    46.Chia F J.A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [J].Systems,Man and Cybernetics,Part B,IEEE Transactions on.2004,34(2):997-1006
    47.Abido M A.Optimal design of power-system stabilizers using particle swarm optimization[J].IEEE Transaction on Energy Conversion.2002,17(3):406-413
    48.Rui X,Wunsch D C,Ⅱ.Gene regulatory networks inference with recurrent neural network models[C].IEEE International Joint Conference on Neural Networks,2005,1:286-291
    49.Khemka N,Jacob C,Cole G.Making soccer kicks better:a study in particle swarm optimization and evolution strategies[C].IEEE Congress on Evolutionary Computation,2005,1:735-742
    50.Lope H S,Coelho L S.Particle Swarm Optimization with Fast Local Search for the Blind Traveling Salesman Problem[C].Fifth International Conference on Hybrid Intelligent Systems,2005:245-250
    51.Xiaohui H,Eberhart R C,Yuhui S.Swarm intelligence for permutation optimization:a case study of n-queens problem[C].Proceedings of IEEE Swarm Intelligence Symposium,2003:243-246
    52.Zwe-Lee G.A particle swarm optimization approach for optimum design of PID controller in AVR system[J].IEEE Transaction on Energy Conversion.2004,19(2):384-391
    53.Jih-Gau J,Bo-Shian L,Kuo-Chih C.Automatic landing control using particle swarm optimization[C].IEEE International Conference on Mechatronics,2005:721-726
    54.Baskar S,Alphones A,Suganthan P N,etc.Design of Yagi-Uda antennas using comprehensive learning particle swarm optimization[C].IEE Proceedings-Microwaves,Antennas and Propagation,2005,152:340-346
    55.Wen W,Yilong L,Fu J S,etc.Particle swarm optimization and finite-element based approach for microwave filter design[J].IEEE Transactions on Magnetics.2005,41(5):1800-1803
    56.Chandrasekaran S,Ponnambalam S G,Suresh R K,etc.A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems[C].IEEE Conference on Cybernetics and Intelligent Systems,2006:1-6
    57.Senaratne R,Halgamuge S.Optimized landmark model matching for face recognition[C].International Conference on Automatic Face and Gesture Recognition,2006:120-125
    58.Fu-yuan H,Rong-jun L,Han-xia L,etc.A Modified Particle Swarm Algorithm Combined with Fuzzy Neural Network with Application to Financial Risk Early Warning[C].IEEE Asia-Pacific Conference on Services Computing,2006:168-173
    59.Nenortaite J,Simutis R.Adapting particle swarm optimization to stock markets[C].Proceedings 5th International Conference on Intelligent Systems Design and Applications,2005:520-525
    60.奚茂龙,孙俊,须文波.基于PSO的证券市场ARCH模型实证研究[J].计算机工程,2006,32(7):204-206
    61.张毅,罗元,郑太雄.移动机器人技术及其应用[M】.北京:电子工业出版社,2007.2-4
    62.徐国华,谭民.移动机器人的发展现状及其趋势[J】.机器人技术与应用,2001,3.2-4
    63.卢韶芳.自主式移动机器人导航研究现状及其相关技术[J].农业机械学报,2002,33(2):112-116
    64.向静波.移动机器人的路径规划与控制研究[D]:[硕士学位论文].天津:西北工业大学,2004
    65.向静波.移动机器人路径规划及轨迹跟踪问题研究[D]:[博士学位论文】.天津:西北工业大学, 2006
    66.国家863计划智能机器人专家组.机器人博览[M】.北京:中国科学技术出版社,2001
    67.Bruce A,Nourbakhsh I,Simmons R.The role of expressiveness and attention in human-robot interaction[C].Proceedings of International Conference on Robotics and Automation,Washington,2002:4138-4142
    68.Dukett T,Nehmzow U.Mobile robot self-location and measurement of performance in middle-scale environments[J].Robotics and Automation System,1998,24:117-129
    69.杨国胜.基于多传感器融合的移动机器人定位与导航研究[R].中国科学院自动化研究所博士后出站报告,2004
    70.Thrun S,Bennewita M,Burgard W.MINERVA:a second generation mobile tour-guide robot[C].Proceedings of International Conference on Robotics and Automation,1999:1999-2005
    71.Simmons R,Fernandez J L,Goodwin R.Lessons learned from xaiver[J].IEEE Robotics and Automation Magazine,2000,7(2):33-39
    72.张毅,罗元,郑太雄.移动机器人技术及其应用[M】.北京:电子工业出版社,2007.208
    73.Lazano-Perez T.Automatic planning of transfer movements[J].IEEE Trans on Systems,Man,and Cybernetics,1981,11(10):681-689
    74.李磊.移动机器人技术研究现状与未来[J].机器人.2002,24(5):475-480
    75.Metea M B.Planning for intelligence autonomous land vehicles using hierarchical terrain representation[C].Proceedings of IEEE International Conference on Robotics and Automation,1987:1947-1952
    76.Weber h.A motion planning and execution system for mobile robots driven by stepping motors.Robotics and Autonomous Systems,2000,33(4):207-221
    77.艾海舟,张钹.基于拓扑的路径规划问题的图形算法[J].机器人,1990,12(5):20-24
    78.Khatib O.Real-time obstacle avoidance for manipulators and mobile robots[J].Robotics Research,1986,5(1):90-98
    79.孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究[J].西北工业大学学报,1998,16(1):79-83
    80.Sugibara K,Smith J.Genetic algorithms for adaptive motion planning of art autonomous mobile robots[C].Problems IEEE Trans SMC[C].USA:SIM,1997
    81.Ssurmann H,Huaer J,Wehking J.Path planning for a fuzzy controlled autonomous mobile robot[A].Fifth IEEE International Conference On Fuzzy Systems Fuzz-IEEE' 96[C].UAS:New Orleans,1996
    82.刘成良,张凯,付庄等.神经网络在机器人路径规划中的应用研究[J].机器人,2001,23(7):605-608
    83.武彬,吴耿锋,马飞等.基于免疫算法的移动机器人路径规划系统[J].计算机工程,2004,30(12):122-123
    84.宋道金,李宏涛,李彩,等.基于混沌控制的移动机器人的路径规划[J].计算机应用研究,2004,2:34-36
    85.吴峰光,奚宏生.一种新的基于切线的路径规划方法[J].机器人,2004,26(3):193-197
    86.Guldner J,Utkin V I.Sliding Mode Control for Gradient Tracking and Robot Navigation Using Artificial Potential Fields[J].IEEE Transaction Automat Control.1995,(11):247-254
    87.Su C-Y,Stepanenko Y.Robust Motion/Force Control of Mechanical Systems with Classical Nonholonomic Constraints[J].IEEE Transaction Automat Control,1994,(39):609-614
    88.Shim H-S,Kim J-H,Koh K.Variable Structure Control of Nonholonomic Wheeled Mobile Robots.IEEE International Conference on Robotics and Automation.1995,(2):1694-1699
    89.Li C K,Chao H M.Output Tracking of Uncertain Robot Systems via High Order Sliding Mode Technique[J].Electronics Letters,2002,(38):487-489
    90.闫茂德,吴青云,贺昱濯.非完整移动机器人的自适应滑模轨迹跟踪控制[J].系统仿真学报.2007,19(3):579-584
    91.程俊林,赵东风.轮式移动机器人滑模轨迹跟踪控制[J].云南大学学报.2007,29(S1):64-67
    92.王敏,杜克林,黄心汉.机器人滑模轨迹跟踪控制研究[J].机器人.2001,23(3):217-221
    93.Dong W,Huo W,Tso S K,Xu W L.Tracking Control of Uncertain Dynamics Nonholonomic System and Its Application to Wheeled Mobile Robots[J].IEEE Transaction on Robotics and Automation,2000,(6):870-874
    94.Jiang Z P.Iterative Design of Time-varying Stabilizers for Multi-input Systems in Chained Form[J].Systems and Control Letters,1996,(28):255-262
    95.徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究[J].中国科学技术大学学报.2004,34(3):326-331
    96.吴卫国,陈辉堂,王月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报.2001,27(3):376-380
    97.王仲民,马苏常,岳宏.非完整轮式移动机器人轨迹跟踪控制[J].合肥工业大学学报.2005,28(12):1493-1495
    98.D'Andrea-Novel B,Camnion G,Bastin G.Control of nonholonomic wheeled mobile robots by state feedback linearization[J].International Journal of Robotics Research,1995,14(6):543-559
    99.高兴泉,陈虹.基于T-S模型的轮式移动机器人轨迹跟踪控制[J].控制理论与应用.2007, 26(6):873-878
    100.吴忻生,任华瑛.非完整移动机器人轨迹跟踪的最优模糊控制[J].华南理工大学学报.2004,32(3):44-49
    101.牛玉刚,杨成梧,邹云.不确定机器人轨迹跟踪的自适应神经网络控制[J].电工技术学报.2001,16(3):35-38
    102.Sun J,Feng B,Xu W.Particle swarm optimization with particles having quantum behavior[C].IEEE Congress on Evolutionary Computation,2004:325-331.
    103.Sun J,Feng B,Xu W.A global search strategy of quantum-behaved particle swarm optimization[C].Cybernetics and Intelligent Systems Proceedings of the 2004 IEEE Conference,2004:111-116.
    104.Riget J,Vesterstroem J.A diversity-guided particle swarm optimizer-the ARPSO:department of computer science[R].University of Aarhus,2002
    105.方伟.群体智能算法及其在数字滤波器优化设计中的研究[D]:[博士学位论文].无锡:江南大学信息工程学院,2007
    106.Fang W,Sun J,Xu W.Design IIR digital filters using quantum-behaved particle swarm optimization[C].International Conference on Natural Computation(2) 2006:637-64
    107.Sun J,Xu W,Fang W.Solving multi-period financial planning problem via quantum-behaved particle swarm algorithm[C].International Conference on Intelligent Computing(2) 2006:1158-1169
    108.Sun J,Xu W,Liu J.Training RBF neural network via quantum-behaved particle swarm optimization[C].International Conference on Neural Information Processing(2) 2006:1156-1163
    109.Xi M,Sun J,Xu W.Quantum-behaved particle swarm optimization for designing H-infinity structured specified controllers[C].DCABES 2006 PROCEEDINGS,2006(2):42-46
    110.Sun J,Xu W,Liu J.Parameter selection of quantum-behaved particle swarm optimization[C].International Conference on Natural Computation(3) 2005:543-552
    111.Sun J,Xu W,Feng B.Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C].International Conference on Intelligent Computing(1) 2005:420-428
    112.Sun J,Xu W,Fang W.Quantum-behaved particle swarm optimization algorithm with controlled diversity[C].International Conference on Computational Science(3) 2006:847-854
    113.Ursem R K.Diversity-guided evolutionary algorithms[C].Proceedings of Parallel Problem Solving from Nature Ⅶ(PPSN-2002):Spinger Verlag,2002:462-471
    114.Sun J,Xu W,Fang W.A diversity-guided quantum-behaved particle swarm optimization algorithm[C].Simulated Evolution and Learning 2006:497-504
    115.Liu J,Sun J,Xu W.Quantum-behaved particle swarm optimization with mutation operator[C].International Conference on Tools with Artificial Intelligence 2005:237-240
    116.Liu J,Sun J,Xu W.Improving Quantum-Behaved Particle Swarm Optimization by Simulated Annealing[C].International Conference on Intelligent Computing(3) 2006:130-136
    117.Liu J,Sun J,Xu W.Quantum-Behaved Particle Swarm Optimization with Adaptive Mutation Operator[C].International Conference on Natural Computation(1) 2006:959-967
    118.http://www.aic.nrl.navy.mil/~spears/functs.dejong.html
    119.王凌.智能优化算法及其应用[M],北京:清华大学出版社,2001
    120.Tsutsui S,Fujimoto Y,Ghosh A.Forking genetic algorithms:Gas with search space division schemes [J].Evolutionary Computation.1997,5:61-80
    121.Shimodaira H.A diversity control oriented genetic algorithm(DCGA):development and experimental results[C].Proceedings of the Genetic and Evolutionary Computation Conference,1999,1:603-611
    122.王忠民,姚立卿,张寒松.基于神经网络的移动机器人路径规划研究[J].天津职业技术师范学院学报,2003,13(1):10-12
    123.趁秀宁.机械优化设计.浙江:浙江大学出版社,2000
    124.Leon J L.Automatic path planning for a mobile robot among obstacle of arbitrary shape[J].IEEE Transactions on Systems,Man,and Cybernetics,1998,28(3):467-471
    125.胡跃明,周其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10
    126.Fukao T,Nakagawa H,Adachi N.Adaptive tracking control of a nonhohonomic mobile robot[J].IEEE Transaction on Robotics and Automation,2000,16(5),609-615
    127.高为炳.变结构控制理论及设计方法[M].北京:科学技术出版社,1996