离散时滞非线性系统最优控制的逐次逼近设计及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机控制是最典型的离散控制系统。近几十年来,随着科学技术的高速发展,尤其是计算机和信息学科的飞速发展,极大地推动了微处理机和微型计算机在控制系统中的应用。一方面,高效微处理器的出现使得时滞非线性控制器的应用变得简单;另一方面,现代技术要求控制系统有更严格的设计规定。因此离散系统的分析与设计已经成为控制理论的一个重要组成部分。
     时滞非线性系统的最优控制问题普遍存在于生命科学、工程科学、计算机科学及经济学等学科,它是以时滞非线性动力系统为约束的泛函优化问题,对这类问题的数值优化理论与算法的研究,不仅是非线性领域的前沿课题,也是控制论与其他学科交叉发展的前沿课题。目前该领域的主要成果集中在定性理论研究,极需实用、有效的数值优化理论与算法。
     本文首先综述了国内外非线性、时滞系统最优控制问题的研究现状。然后分别研究了离散非线性系统、离散状态时滞非线性系统以及离散控制时滞非线性系统的最优控制问题。在此基础上,针对一类参考输入信号由外系统给定的离散多时滞线性系统和离散控制时滞非线性系统,深入地研究了其最优输出跟踪问题。给出了系统控制律的存在唯一性条件及其近似设计方法,并讨论了其物理可实现问题。全文主要研究内容如下:
     1.首先研究了具有一般形式的离散非线性系统的基于二次型性能指标最优控制问题。对于非线性系统的一般形式,可以通过Maclaurin展开,将系统转化为具有线性项和非线性项的形式。其次,将系统的非线性项当作系统的附加扰动,通过引入一个伴随向量对非线性项加以补偿,可以将由极大值原理的必要条件导出的非线性两点边值问题变换为由伴随向量方程和状态方程组成的新的两点边值问题。通过逐次逼近法将此问题转化为一族解耦的线性非齐次两点边值问题序列,从而通过求解该问题序列得到系统的前馈-反馈次优控制律。证明了该线性两点边值问题的解序列一致收敛于原最优控制问题的解。通过有限次迭代,可以得到系统的近似的最优控制律。得到的组合控制律由反馈项和以非线性补偿向量的极限形式表示的前馈项组成。最后,给出并证明了无限时域情形下系统控制律的存在唯一性条件,并给出了多个仿真实例来验证效果。
     2.研究了状态变量含有时滞的离散非线性系统,提出一种次优控制律的无时滞转换设计方案。首先构造一个其解收敛于原时滞系统的无时滞离散系统序列。然后将离散时滞非系统的最优控制问题化为求解无时滞系统最优控制序列问题。采用所提出的逐次逼近法对系统进行解耦,通过截取最优控制序列解的有限项,从而得到系统的前馈-反馈次优控制律。实例仿真表明,即使对于时滞较大的离散时间系统也能取得了良好效果。
     3.研究了控制变量含有时滞及系统带有非线性项的离散非线性系统的最优控制问题,引入连续系统的Artstein模型化简方法对控制时滞进行处理,将原系统状态方程转化为无时滞的非线性系统,从而采用前述的逐次逼近法设计了该系统的近似最优控制器并通过仿真验证了该方法的有效性。
     4.解决了对于系统的参考输入信号的动态特性有外系统描述的具有多状态时滞和控制时滞的离散线性系统最优输出跟踪控制问题。利用参考输入外系统的状态来构造前馈控制作用,前馈增益可以通过求解Stein矩阵方程而精确得到,避免了利用构造增广系统的方法带来的维数增高,计算复杂的困难。同时,对前馈的参考输入外系统的状态物理不可实现问题,通过构造降维观测器加以实现。通过逐次逼近法解决了既含有时间超前项又有时间滞后项的两点边值问题的求解,给出了无限时域下系统组合最优控制律的存在唯一性条件及其证明。仿真实例证明,得到的近似最优控制律能有效地补偿时滞的影响并跟踪参考输入。
     5.研究了含有控制时滞和非线性项的离散时间系统的最优输出跟踪问题。由于系统的输出方程经过转化后具有多控制时滞项,因此通过引入时滞及非线性补偿项,来补偿系统的输出方程中存在的控制时滞以及转化的系统的中的非线性项,通过逐次逼近法解决了具有时滞项和非线性项的两点边值问题,得到了可将线性部分项与非线性部分及时滞部分相分离的非线性系统的最优输出跟踪控制律。最后通过仿真验证了该方法的有效性。
     最后部分总结了论文的主要工作,并对今后进一步的研究工作进行了展望。
It is well known that computer control is the most typical discrete-time control system. In recent years, the rapid development of computer technology has greatly facilitated the applications of microprocessors and microcomputers in control systems. On the one hand, the emergences of the high efficiency microprocessor make the application of the nonlinear time-delay controller become simple. On the other hand, the modern techniques request stricter controllers. Thus the analysis and synthesis of the discrete-time systems have become an important component in the control theory.
     The optimal control of nonlinear time-delay systems exists in life science, engineering science, computer science and economics etc. It is an optimal functional problems which subject to nonlinear time-delay dynamic systems constraints. The research of numerical optimization methods and algorithms in this field is not only the front subjects of nonlinear control, but also the leading edges of cross subjects. At present the results are mostly focus on the qualitative analysis, and it is imperious to study the numerical optimization methods and algorithms.
     The dissertation first reviews the relative studies on the optimal control and optimal output tracking control (OOTC) problem for nonlinear time-delay systems up to now in detail. The latest research tendency and the main methods are also introduced. The major results of this dissertation are summarized as follows.
     1. The optimal control problem for discrete-time nonlinear systems with a quadratic performance index is studied. A successive approximation approach (SAA) is proposed to find a solution sequence of the nonlinear two-point boundary value (TPBV) problem, which is obtained from the necessary optimality conditions. We take the nonlinear term as an additional disturbance of the system and turn the system model into an iterative form. By introducing a nonlinear compensation vector and using the SAA, we transform the nonlinear TPBV problem into a sequence of nonhomogeneous linear TPBV problems. By taking the finite iterative value, we obtain a suboptimal control law. The conditions of existence and uniqueness of the optimal control law are presented for infinite-time horizon problems. Simulation examples are employed to test the validity of the optimal control algorithm.
     2. The optimal control problem of finite-time and infinite-time nonlinear discrete systems with state delay is developed. A sequence of non-delay discrete systems is constructed, which uniformly converges to the original discrete system with time-delay. Then the optimal control for the original discrete nonlinear system is transformed into an optimal control sequence for non-delay linear systems. By truncating a finite term of the optimal sequence, a suboptimal control law is obtained. The suboptimal laws consist of linear analytic terms and a time-delay compensation term, and the time-delay compensation term is described by a limit of the solution sequence of the adjoint state vector equations. Simulations show the algorithm has lower computation complexity and can be easily implemented. Moreover, even there is large delay in the systems, the accuracy of the optimal solution and the computation speed is satisfied.
     3. Systems subject to an input delay or measurement delay are more common. The so-called“Artstein model reduction”is often involved when one considers systems with input delay. By introducing the new variable the original system is reduced to a system free-of-delay. The optimal control problem of a class of discrete-time nonliear system with input delay is considered based on the thoughts of Artstein model reduction of the continuous systems. Then the optimal controller is designed by SAA.
     4. The OOTC problem of the discrete-time system with multiple state and input delays whose reference input is generally produced by an exosystem is addressed. The state of the exosystem is introduced into the feedforward control, instead of constructing an augment system as the classical optimal control theory. Thus the tracking error can be reduced and the feedback control effort can be decreased. The SAA is then applied to the OOTC problem. The existence and uniqueness of the optimal control law in infinite-time horizon is proved and the detail design process is proposed. The obtained optimal control laws consist of linear analytic terms and time-delay compensation terms. The linear analytic terms can be found by solving a Riccati equation and a Stein equation respectively, and the time-delay compensation term is described by the limit of the solution sequence of the adjoint state vector. In this case, the OOTC law obtained contains the state variable of the Exoystem which is unrealizable in physical. In order to solve this problem, a reduced observer is introduced.
     5. The OOTC problem of the discrete-time system with input delays is addressed. Firstly the system is transformed into a nonlinear system without delay in state equations by using the model reduction in discrete-time systems. Then an adjoint vector is introduced to compensate the input delays in output equation and the nonlinear part in state equation. Using SAA, the original nonlinear TPBV problem is transformed into a sequence of nonhomogeneous linear TPBV problems without unknown time-delay terms and nonlinear terms and then an approximate OOTC law is obtained. Simulation results show that the proposed algorithm is effective and has better convergence properties at different time-delays.
     Finally, the conclusions are given, and a proposition is indicated on the research work in the future.
引文
[1]胡立生,孙优贤,等.非线性系统的鲁棒采样最优控制.控制理论与应用, 2001, 18(2): pp. 191-194.
    [2]郭剑鹰,吕恬生,赵福令.放电间隙数字自动伺服控制.制造技术与机床, 2003(5): pp. 23-25.
    [3]刘建东,张栾英,谷俊杰.数字PID控制系统的鲁棒性分析与设计.华北电力大学学报, 2003, 30(6): pp. 30-33.
    [4]江加和,喻统武.电液伺服加载系统数字控制的研究.北京航空航天大学学报, 2000, 26(3): pp. 318-320.
    [5] K. Y. Polyakov, E. N. Rosenwasser, B. P. Lampe. Optimal design of 2-DOF digital controller for sampled-data tracking systems with preview. Nassau, Bahamas: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2004. 3: pp. 2352-2357.
    [6] J. S.-H. Tsai, Y.-P. Chang, L.-S. Shieh. Multi-rate suboptimal digital redesign of a cascaded continuous-time input time-delay system. Computers and Electrical Engineering, 2000, 26(6): pp. 401-421.
    [7] D. M. Olenchikov. Global controllability of sampled-data bilinear time-delay systems. Journal of Applied Mathematics and Mechanics, 2004, 68(4): pp. 537-544.
    [8]郑刚,谭民,宋永华.混杂系统的研究进展.控制与决策, 2004, 19(1): pp. 7-11,16.
    [9] S. Janardhanan, B. Bandyopadhyay. Output feedback discrete-time sliding mode control for time delay systems. IEE Proceedings: Control Theory and Applications, 2006, 153(4): pp. 387-396.
    [10] J. Fei, S. Chen, G. Tao, S. M. Joshi. Robust adaptive control scheme for discrete-time system with actuator failures. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2005, 127(3): pp. 520-526.
    [11] G.-Y. Tang, B.-L. Zhang. Feedforward and feedback optimal control for nonlinear discrete-time systems with deterministic disturbances. Control Theory and Applications, 2006, 23(1): pp. 25-30.
    [12] M. Rachik, M. Lhous, A. Tridane. Controllability and optimal control problem for linear time-varying discrete distributed systems. Systems Analysis Modelling Simulation, 2003, 43(2): pp. 137-164.
    [13] C. Califano, S. Monaco, D. Normand-Cyrot. Non-linear non-interacting control with stability in discrete time: A dynamic solution. International Journal of Control, 2005, 78(6): pp. 443-459.
    [14] J. Huang, C.-F. Lin. Stability property and its applications to discrete-time nonlinear system control. San Antonio, TX, USA: Publ by IEEE, Piscataway, NJ, USA, 1993. 2: pp. 1797-1798.
    [15]杨宁.电阻加热炉解耦模糊Simth预估PID控制研究与仿真.系统仿真学报, 2006, 18(9): pp. 2566-2569.
    [16]陆会明,孙敬松,邓慧.电站典型大滞后过程自适应预估控制器设计及应用.南京航空航天大学学报, 2006, 38(B07): pp. 151-153.
    [17]胡赤兵,滕舟波,张继有.基于纯滞后补偿技术的加弹机温控系统.纺织学报, 2006,27(7): pp. 71-74.
    [18]席道瑛,陈运平,陶月赞,刘亚晨.岩石的非线性弹性滞后特征.岩石力学与工程学报, 2006, 25(6): pp. 1086-1093.
    [19]潘颖,王超,蔡国平.地震作用下主动减震结构的时滞离散最优控制.工程力学, 2004, 21(2): pp. 88-94.
    [20]蔡国平,黄金枝.控制存在延时的建筑结构地震作用下的最优控制方法.应用力学学报, 2001, 18(4): pp. 42-49.
    [21]计国君,宋文忠,等.水资源时延控制模型及研究.计算物理, 2001, 18(1): pp. 52-56.
    [22]张宝琳,唐功友,郑师,孙亮.含正弦扰动的离散时滞系统的次优减振控制.控制与决策, 2006(1): pp. 19-23,33.
    [23]唐功友,张宝琳,王海红.受扰线性离散时滞系统的前馈-反馈最优控制.哈尔滨工业大学学报, 2005(11): pp. 1529-1532.
    [24]吕鹏飞,唐功友,贾晓波,陶冶.非线性时滞系统次优控制的逐次逼近法.控制与决策, 2004(2): pp. 230-234.
    [25]王芳,唐功友.具有小时滞的线性系统次优控制的无滞后转换法.青岛海洋大学学报:自然科学版, 2001(2): pp. 281-286.
    [26]高存臣,张新政.时滞中立型线性系统的变结构控制.控制理论与应用, 1999(2): pp. 248-251.
    [27]郑锋,程勉.时滞系统的变结构控制及其在火箭发动机燃烧过程镇定中的应用.自动化学报, 1996(3): pp. 257-262.
    [28]褚健,陈虹.离散时滞系统最优跟踪控制及应用.自动化学报, 1995(1): pp. 25-32.
    [29] J. K. Hale. Theory of Functional Differential Equations. 3. New York: Springer- Verleg, 1977.
    [30] S. Xu, J. Lu, S. Zhou, C. Yang. Design of observers for a class of discrete-time uncertain nonlinear systems with time delay. Journal of the Franklin Institute, 2004, 341(3): pp. 295-308.
    [31] M. Boutayeb. Observers design for linear time-delay systems. Systems & Control Letters, 2001, 44(2): pp. 103-109.
    [32] K. Gu, S.-I. Niculescu. Survey on recent results in the stability and control of time-delay systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2003, 125(2): pp. 158-165.
    [33] J.-P. Richard. Time-delay systems: an overview of some recent advances and open problems. Automatica, 2003, 39(10): pp. 1667-1694.
    [34] V. B. Kolmanovskii, S.-I. Niculescu, K. Gu. Delay effects on stability: a survey. Phoenix, AZ, USA: IEEE, Piscataway, NJ, USA, 1999. 2: pp. 1993-1998.
    [35] N. Olgac, B. T. Holm-Hansen. A Novel Active Vibration Absorption Technique: Delayed Resonator. Journal of Sound and Vibration, 1994, 176(1): pp. 93-104.
    [36] K. Youcef-Toumi, S. Reddy. Stability Analysis of Time Delay Control With Application to High Speed Magnetic Bearings. MIT Laboratory for Manufacturing and Productivity, Report No. LMP-90-004, March, and ASME Winter Annual Meeting, 1990.
    [37] B. Yang, C. D. Mote, Jr. On time delay in noncolocated control of flexible mechanical systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1992, 114(3): pp. 409-415.
    [38] B. Yang. Noncolocated control of a damped string using time delay. Journal of DynamicSystems, Measurement and Control, Transactions of the ASME, 1992, 114(4): pp. 736-740.
    [39] K. Pyragas. Continuous control of chaos by self-controlling feedback. Physics Letters A, 1992, 170(6): pp. 421-428.
    [40] K. Pyragas, A. Tamasevicius. Experimental control of chaos by delayed self-controlling feedback. Physics Letters A, 1993, 180(1-2): pp. 99-102.
    [41] O. J. M. Smith. A controller to overcome dead time. ISA Journal of Instrument Society of America, 1959, 6: pp. 28-33.
    [42] Z. Artstein. Linear systems with delayed controls:A reduction. IEEE Transactions on Automatic Control, 1982, 27(4): pp. 869-879.
    [43] D. Yue, Q.-L. Han. Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 2005, 41(2): pp. 233-240.
    [44] W. Michiels, K. Engelborghs, P. Vansevenant, D. Roose. Continuous pole placement for delay equations. Automatica, 2002, 38(5): pp. 747-761.
    [45] G. Meinsma, H. Zwart. On H∞control for dead-time systems. IEEE Transactions on Automatic Control, 2000, 45(2): pp. 272-285.
    [46] Y. Ohta, A. Kojima. Formulas for Hankel singular values and vectors for a class of input delay systems. Automatica, 1999, 35(2): pp. 201-215.
    [47] K. Shujaee, B. Lehman. Vibrational feedback control of time delay systems. New Orleans, LA, USA: IEEE, Piscataway, NJ, USA, 1995. 1: pp. 936-941.
    [48] R. W. Brockett. Nonlinear Systems And Differential Geometry. Proceedings of the IEEE, 1976, 64(1): pp. 61-72.
    [49] R. W. Brockett. Global Description of Nonlinear Control Problems. Vector Bundles and Nonlinear Control Theory, 1979.
    [50] H. K. Khalil. Nonlinear System. 3: Prentice Hall, 1996.
    [51] D. Lee, P. Y. Li. Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators. IEEE Transactions on Robotics, 2005, 21(5): pp. 936-951.
    [52] M. Basili, M. De Angelis. Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices. Journal of Sound and Vibration, 2007, 301(1-2): pp. 106-125.
    [53] D. Y. Abramovitch. Lyapunov redesign of analog phase-lock loops. IEEE Transactions on Communications, 1990, 38(12): pp. 2197-2202.
    [54] D. Nesic, L. Grune. Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation. Automatica, 2005, 41(7): pp. 1143-1156.
    [55] Y. Itoh, N. Hori, H. Kamei. Digital redesign of a nonlinear state-feedback control system based on the principle of equivalent areas. Sapporo, Japan: Society of Instrument and Control Engineers (SICE), Tokyo, 113, Japan, 2004. pp. 1675-1679.
    [56] Y. Fang, M. G. Feemster, D. M. Dawson, N. Jalili. Nonlinear control techniques for the atomic force microscope system. New Orleans, LA, United States: American Society of Mechanical Engineers, New York, NY 10016-5990, United States, 2002. 71: pp. 373-380.
    [57] Y. Zhang, S. Li. Optimization design for a class of multi-input nonlinear cascade systems: Backstepping approach. Kunming, China: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2004. pp. 1723-1728.
    [58] H. Deng, M. Krstic. Stochastic nonlinear stabilization -- I: A backstepping design.Systems & Control Letters, 1997, 32(3): pp. 143-150.
    [59] Y. Zhang, S.-Y. Li. Optimization design for a class of cascade control systems: Backstepping approach. Control Theory and Applications, 2005, 22(3): pp. 481-486.
    [60] W. Li. Optimization of a fuzzy controller using neural network. Orlando, FL, USA: IEEE, Piscataway, NJ, USA, 1994. 1: pp. 223-227.
    [61] S.-J. Wu, H.-H. Chiang, H.-T. Lin, T.-T. Lee. Neural-network-based optimal fuzzy controller design for nonlinear systems. Fuzzy Sets and Systems, 2005, 154(2): pp. 182-207.
    [62] M. Abu-Khalaf, F. L. Lewis. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5): pp. 779-791.
    [63] M. McMullen, A. Jameson, J. Alonso. Demonstration of nonlinear frequency domain methods. AIAA Journal, 2006, 44(7): pp. 1428-1435.
    [64] R. D. Gudi, C. Shreesha, P. S. V. Nataraj. Frequency-domain-based, control-relevant model reduction for nonlinear plants. Industrial and Engineering Chemistry Research, 2002, 41(20): pp. 5006-5015.
    [65] C. G. McGee, M. Haroon, D. E. Adams, Y. W. Luk. A frequency domain technique for characterizing nonlinearities in a tire-vehicle suspension system. Journal of Vibration and Acoustics, Transactions of the ASME, 2005, 127(1): pp. 61-76.
    [66] Y.-F. Chang. Mixed H2/H∞optimization approach to gap control on EDM. Control Engineering Practice, 2005, 13(1): pp. 95-104.
    [67] T. W. McLain, R. W. Beard. Nonlinear robust control of an electro-hydraulic positioning system. Anaheim, CA, USA: ASME, Fairfield, NJ, USA, 1998. 5: pp. 119-125.
    [68] J. R. Cloutier, C. N. D'Souza, C. P. Mracek. Nonlinear Regulation and Nonlinear H-infinity Control Via the State-Dependent Riccati Equation Technique: Part 1. Theory. Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, 1996.
    [69]唐功友,孙亮.非线性互联大系统的最优控制:逐次逼近法.自动化学报, 2005(2): pp. 248-254.
    [70] G.-Y. Tang, N. Xie, P. Liu. Sensitivity approach to optimal control for affine nonlinear discrete-time systems. Asian Journal of Control, 2005, 7(4): pp. 448-454.
    [71] G.-Y. Tang, L. Sun. Optimal control for nonlinear interconnected large-scale systems: A successive approximation approach. Acta Automatica Sinica, 2005, 31(2): pp. 248-254.
    [72] R. Beard, G. Saridis, J. Wen. Iterative solution to the finite-time linear quadratic optimal feedback control problem. Seattle, WA, USA, 1995. 5: pp. 3921-3922.
    [73] R. W. Beard, T. W. McLain. Successive Galerkin approximation algorithms for nonlinear optimal and robust control. International Journal of Control, 1998, 71(5): pp. 717-743.
    [74] T. W. McLain, R. W. Beard. Successive Galerkin approximations to the nonlinear optimal control of an underwater robotic vehicle. Leuven, Belgium: IEEE, Piscataway, NJ, USA, 1998. 1: pp. 762-767.
    [75]冯国楠.最优控制理论与应用.北京工业大学出版社, 1991.
    [76]王翼.离散控制工程.北京:科学出版社, 1987.
    [77]郑大钟.线性系统理论(第二版).北京:清华大学出版社, 2002.
    [78] G. Kharatashvili. A maximum principle in external problems with delays, MathematicalTheory of Control. New York: Academic Press, 1961.
    [79] J. P. Lasalle. The Time Optimal Control Problem. Theory of Nonlinear Oscillations, 1961, 5: pp. 1-24.
    [80] N. N. Krasovskii. Optimal Processes in Systems with Time-Lags. Bazel, Switzerland, 1963.
    [81] M. Malek-Zavarei, M. Jamshidi. Time-Delay Systems: Analysis, Optimization and Application. New York: North-Holland, 1987.
    [82] R. T. Yanushevsky. A class of nonlinear time-delay systems and related optimal problems. Computers & Mathematics with Applications, 1999, 37(4-5): pp. 73-78.
    [83] F.-H. Hsiao, S.-D. Xu, S.-L. Wu, G.-C. Lee. LQG optimal control of discrete stochastic systems under parametric and noise uncertainties. Journal of the Franklin Institute, In Press, Corrected Proof.
    [84]潘颖,王超,蔡国平.线性时滞系统的离散最优控制.计算力学学报, 2004, 21(2): pp. 177-184.
    [85] I. V. Kolmanovsky, T. L. Maizenberg. Optimal control of continuous-time linear systems with a time-varying, random delay. Systems and Control Letters, 2001, 44(2): pp. 119-126.
    [86] M. Basin, J. Rodriguez-Gonzalez, R. Martinez-Zuniga. Optimal control for linear systems with time delay in control input. Journal of the Franklin Institute, 2004, 341(3): pp. 267-278.
    [87] D. Yue, J. Lam. Suboptimal robust mixed H2/H∞controller design for uncertain descriptor systems with distributed delays. Computers & Mathematics with Applications, 2004, 47(6-7): pp. 1041-1055.
    [88]蔡国平,黄金枝.时滞线性系统振动主动控制的最优化方法. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2002, 36(11): pp. 1596-1599.
    [89] M. Basin, J. Rodriguez-Gonzalez. Optimal control for linear systems with multiple time delays in control input. IEEE Transactions on Automatic Control, 2006, 51(1): pp. 91-97.
    [90] J. S. H. Tsai, M. S. Chen, F. C. Kung. Optimal design and optimal digital redesign for continuous-time input time-delay systems. Control - Theory and Advanced Technology, 1992, 8(2): pp. 315-340.
    [91] I. E. Sheen, J. S. H. Tsai, L. S. Shieh. Optimal digital redesign of continuous-time systems with input time delay and/or asynchronous sampling. Journal of the Franklin Institute, 1998, 335B(4): pp. 605-616.
    [92] J. S.-H. Tsai, Y.-P. Chang, L.-S. Shieh. Optimal digital redesign of a cascaded continuous-time system with input time delays. JSME International Journal, Series C, 1998, 41(3): pp. 421-429.
    [93] S. O. R. Moheimani, I. R. Petersen. Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems. IEE Proceedings: Control Theory and Applications, 1997, 144(2): pp. 183-188.
    [94] G.-Y. Tang, Z.-H. Sun. Delay dependent guaranteed cost control for linear systems with time-delay. Hangzhou, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004. 1: pp. 910-914.
    [95] L. Yu, F. Gao. Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delays. Journal of the Franklin Institute, 2001, 338(1): pp. 101-110.
    [96] P. Shi, E.-K. Boukas, Y. Shi, R. K. Agarwal. Optimal guaranteed cost control of uncertain discrete time-delay systems. Journal of Computational and Applied Mathematics, 2003, 157(2): pp. 435-451.
    [97] S. H. Esfahani, I. R. Petersen. LMI approach to the output-feedback guaranteed cost control for uncertain time-delay systems. Proceedings of the IEEE Conference on Decision and Control, 1998, 2: pp. 1358-1363.
    [98] G. Cai, J. Huang. Optimal control method with time delay in control. Journal of Sound and Vibration, 2002, 251(3): pp. 383-394.
    [99] G.-P. Cai, S. X. Yang. A discrete optimal control method for a flexible cantilever beam with time delay. JVC/Journal of Vibration and Control, 2006, 12(5): pp. 509-526.
    [100] N. Xie, G.-Y. Tang, P. Liu. Optimal guaranteed cost control for nonlinear discrete-time uncertain systems with state delay. Hangzhou, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, United States, 2004. 1: pp. 893-896.
    [101] G. Y. Tang, H. H. Wang. Successive approximation approach of optimal control for nonlinear discrete-time systems. International Journal of Systems Science, 2005, 36(3): pp. 153-161.
    [102]唐功友.具有小时滞的线性大系统的次优控制.控制理论与应用, 2003(1): pp. 121-124.
    [103]刘永清,唐功友.大型动力系统的理论与应用:滞后、稳定与控制.广州:华南理工大学出版社, 1992.
    [104] R. T. Yanushevsky. Lyapunov's approach to analysis, synthesis and robustness of nonlinear systems with delays. Nonlinear Analysis, 1997, 30(3): pp. 1469-1478.
    [105] D. Chen, C. Sun. Robust controller design for the uncertain system with time-delay. Shanghai, China: Institute of Electrical and Electronics Engineers Inc., 2002. 3: pp. 1714-1717.
    [106]唐功友,赵艳东,陈显利.带正弦干扰的线性时滞系统的次优控制.控制与决策, 2004, 19(5): pp. 529-533.
    [107]张宝琳,唐功友,郑师,孙亮.含正弦扰动的离散时滞系统的近似最优减振控制.控制与决策, 2006, 21(1): pp. 19-23.
    [108] G.-Y. Tang, H.-H. Wang. Suboptimal control for discrete linear systems with time-delay: A successive approximation approach. Acta Automatica Sinica, 2005, 31(3): pp. 419-426.
    [109]唐功友,王海红.离散线性时滞系统的次优控制:逐次逼近法.自动化学报, 2005(3): pp. 419-426.
    [110] X.-H. Zhao, G.-Y. Tang. Suboptimal control of linear discrete large-scale systems with state time-delay. Montreal, Que., Canada: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2003. pp. 404-408.
    [111] J. S. H. Tsai, C. S. Shieh, Y. Y. Sun. Observer-based hybrid control of sampled-data uncertain system with input time delay. International Journal of General Systems, 1999, 28(4-5): pp. 315-349.
    [112] G.-Y. Tang, X.-B. Jia, Y. Tao, P.-F. Lu. Multi-step predictive control based on state predictive observer for discrete-time systems with time-delay. Advances in Modelling and Analysis C, 2004, 59(3-4): pp. 31-40.
    [113] C. M. Huang, J. S. H. Tsai, R. S. Provence, L. S. Shieh. The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays.Optimal Control Applications and Methods, 2003, 24(4): pp. 197-236.
    [114] H. R. Marzban, M. Razzaghi. Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials. Journal of the Franklin Institute, 2004, 341(3): pp. 279-293.
    [115] S.-C. Tsay, I. L. Wu, T.-T. Lee. Optimal Control of Linear Time-Delay Systems via General Orthogonal Polynomials. International Journal of Systems Science, 1988, 19(2): pp. 365-376.
    [116] T. Singh, S. R. Vadali. Robust time-optimal control: frequency domain approach. Journal of Guidance, Control, and Dynamics, 1994, 17(2): pp. 346-353.
    [117] J. R. Cloutier, D. T. Stansbery. Control of a continuously stirred tank reactor using an asymmetric solution of the state-dependent Riccati equation. IEEE Conference on Control Applications - Proceedings, 1999, 2: pp. 893-898.
    [118] J. R. Cloutier. State-dependent Riccati equation techniques: An overview. Albuquerque, NM, USA: IEEE, Piscataway, NJ, USA, 1997. 2: pp. 932-936.
    [119] S. P. Banks, K. J. Mhana. Optimal control and stabilization for nonlinear systems. IMA Journal of Mathematical Control and Information 1992, 9(2): pp. 179-196.
    [120] Y. Huang, W.-M. Lu. Nonlinear optimal control: Alternatives to Hamilton-Jacobi equation. Kobe, Jpn, 1996. 4: pp. 3942-3947.
    [121] W.-M. Lu, J. C. Doyle. H∞control of nonlinear systems: a convex characterization. IEEE Transactions on Automatic Control, 1995, 40(9): pp. 1668-1675.
    [122] B. Chanane. Optimal control of nonlinear systems: A recursive approach. Computers & Mathematics with Applications, 1998, 35(3): pp. 29-33.
    [123] W. L. Garrard, D. F. Enns, S. A. Snell. Nonlinear feedback control of highly manoeuvrable aircraft. International Journal of Control, 1992, 56: pp. 799-812.
    [124]唐功友,曲海鹏,高延铭.一类非线性系统次优控制的灵敏度法.青岛海洋大学学报:自然科学版, 2002, 32(4): pp. 615-620.
    [125] Y. nishikawa, N. Sannomiya, H. Itakura. A method for suboptimal design of nonlinear feedback systems. Automatica, 1971, 7(6): pp. 703-712.
    [126] W. L. Garrard. Suboptimal feedback control for nonlinear systems. Automatica, 1972, 8: pp. 219-221.
    [127] J. Georige, J. Valasek. Selection of longitudinal desired dynamics for dynamic inversion controlled re-entry vehicles. Proceedings of the AIAA Guidance, Navigation, and Control Conference, Montreal, Canada, 2001.
    [128] A. Wernli, G. Cook. Suboptimal Control for the Nonlinear Quadratic Regulator Problem. Automatica, 1975, 11: pp. 75-84.
    [129] C. J. Goh. On the nonlinear optimal regulator problem. Automatica, 1993, 29(3): pp. 751-756.
    [130] N. J. Krikelis, K. L. Kiriakidis. Optimal feedback control of non-linear systems. International Journal of Systems Science, 1992, 23: pp. 312-329.
    [131]唐功友,刘毅敏.基于灵敏度法的时滞离散系统最优跟踪控制.控制与决策, 2005, 20(11): pp. 1279-1282.
    [132] G. N. Saridis, C. S. G. Lee. An approximation theory of optimal control for trainable manipulators. IEEE Transaction on System, Man Cybernectics, 1979, 9: pp. 152-159.
    [133] R. W. Beard, G. N. Saridis, J. T. Wen. Galerkin approximations of the generalizedHamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12): pp. 2159-2177.
    [134] T. W. Mclain, C. A. Bailey, R. W. Beard. Synthesis and experimental testing of a nonlinear optimal tracking controller. Proceedings of the American Control Conference, San Diego, CA, USA, 1999: pp. 2847-2851.
    [135] W. E. Bosarge, O. G. Johnson, R. S. McKnight, W. P. Timlake The Ritz-Galerkin procedure for nonlinear control problems. SIAM Journal of Numerical Analysis, 1973, 10(1): pp. 94-110.
    [136] D. Mahayana, R. J. Widodo. Optimal tracking of time varying linear systems via general orthogonal polynomials. Kobe, Jpn: Publ by IEEE, Los Alamitos, CA, USA, 1991. 3: pp. 2188-2192.
    [137]吴斌,程鹏.广义正交多项式在时变系统跟踪问题中的应用.北京航空航天大学学报, 1999(4): pp. 414-417.
    [138] J.-H. Chou, C.-H. Hsieh, J.-H. Sun. On-line optimal tracking control of continuous-time systems. Mechatronics, 2004, 14(5): pp. 587-597.
    [139] Y. F. Chang, T. T. Lee. Application of general orthogonal polynomials to the optimal control of linear systems. International Journal of Control, 1986, 43(4): pp. 1283-1304.
    [140] T. T. Lee, Y. F. Chang. Analysis of Time-Varying Scaled Systems via General Orthogonal Polynomials. IEEE Transactions on Automatic Control, 1987, AC-32(7): pp. 645-648.
    [141] J. D. Pearson. Approximation methods in optimal control. Journal of Electronics and Control, 1962, 13: pp. 453-465.
    [142] H. Khaloozadeh, A. Abdollahi. An iterative procedure for optimal nonlinear tracking problem. Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, ICARCV 2002, Singapore, 2002: pp. 1508-1512.
    [143] J. R. Cloutier, P. H. Zipfel. Hypersonic guidance via the State-Dependent Riccati Equation control method. IEEE Conference on Control Applications - Proceedings, 1999, 1: pp. 219-224.
    [144] J. R. Cloutier, D. T. Stansbery. Nonlinear Hybrid Bank-to-Turn/Skid-to-Turn Missile Autopilot Design. Montreal, Canada, 2001.
    [145] C. P. Mracek, J. R. Cloutier. Missile longitudinal autopilot design using the state-dependent Riccati equation method. Daytona Beach, FL., 1996.
    [146] R. R. Harman, I. Y. Bar-Itzhack. Pseudolinear and state-dependent Riccati equation filters for angular rate estimation. Journal of Guidance, Control, and Dynamics, 1999, 22(5): pp. 723-725.
    [147] A. Bogdanov, E. Wan. State-dependent riccati equation control for small autonomous helicopters. Journal of Guidance, Control, and Dynamics, 2007, 30(1): pp. 47-60.
    [148] D. T. Stansbery, J. R. Cloutier. Position and attitude control of a spacecraft using the state-dependent Riccati equation technique. Chicago, IL, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 2000. 3: pp. 1867-1871.
    [149] E. B. Erdem, A. G. Alleyne. Experimental real-time SDRE control of an underactuated robot. Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 2001. 3: pp. 2986-2991.
    [150] S. P. Banks, D. McCaffrey. Lie algebras, structure of nonlinear systems and chaotic motion. International Journal of Bifurcation and Chaos, 1998, 8(7): pp. 1437-1462.
    [151] S. P. Banks. Exact boundary controllability and optimal control for a generalisedKorteweg de Vries equation. Nonlinear Analysis, Theory, Methods and Applications, 2001, 47(8): pp. 5537-5546.
    [152] S. P. Banks, K. Dinesh. Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems. Annals of Operations Researc, 2000, 98: pp. 19-44.
    [153] T. Cimen, S. P. Banks. Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems & Control Letters, 2004, 53(5): pp. 327-346.
    [154] A. P. Afanas’Ev, S. M. Dzyuba, S. M. Lobanov, A. V. Tyutyunnik. Successive Approximation And Suboptimal Control Of The Systems With Separated Linear Part. 2003, 2(1): pp. 48-56.
    [155] G.-Y. Tang, H.-H. Wang. Optimal control for nonlinear discrete-time systems: A successive approximation approach. Kunming, China: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2004. pp. 344-349.
    [156] G.-Y. Tang, Y.-D. Zhao, B.-L. Zhang. Optimal output tracking control for nonlinear systems via successive approximation approach. Nonlinear Analysis, 2007, 66(6): pp. 1365-1377.
    [157] G.-Y. Tang. Suboptimal control for nonlinear systems: a successive approximation approach. Systems & Control Letters, 2005, 54(5): pp. 429-434.
    [158] Z. Aganovic, Z. Gajic. The successive approximation procedure for finite-time optimal control of bilinear systems. IEEE Transaction on Automatic Control, 1994, 29: pp. 1932-1935.
    [159] C. J. Goh, N. J. Edwards. Approximate output feedback optimal control of higher-order dynamical systems. Optimal Control Applications & Methods, 1997, 18(2): pp. 123-137.
    [160] C. S. Huang, S. Wang, K. L. Teo. Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics. Nonlinear Analysis, Theory, Methods and Applications, 2000, 40(1-8): pp. 279-293.
    [161] J. Markman, I. N. Katz. An Iterative Algorithm For Solving Hamilton-Jacobi Type Equations. SIAM Journal on Scientific Computing, 2000, 22: pp. 312-329.
    [162] O. Rosen, R. Luus. Global optimization approach to nonlinear optimal control. Journal of Optimization Theory and Applications, 1992, 73(3): pp. 547-562.
    [163] S. Kim, C. Park. Optimal tracking controller for an autonomous wheeled mobile robot using fuzzy-genetic algorithm. Chongging, China: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2005. 6042 I: pp. 60422.
    [164] V. Costanza, C. E. Neuman. Flexible operation through optimal tracking in nonlinear processes. Chemical Engineering Science, 2000, 55(16): pp. 3113-3122.
    [165] T. Cimen. Nonlinear optimal feedback control design: Strategies charaterized by algebraic Riccati equations. WSEAS Transactions on Mathematics, 2006, 5(7): pp. 864-871.
    [166] H. Khaloozadeh, A. Abdollahi. An iterative procedure for optimal nonlinear tracking problem. Marine Mandarin, Singapore: Nanyang Technological University, Singapore, 639873, Singapore, 2002. 1: pp. 1508-1512.
    [167] J. Huang, G.-Q. Hu. Control design for the nonlinear benchmark problem via the output regulation method. Control Theory and Applications, 2004(1): pp. 11-19.
    [168] A. Isidori, C. I. Byrnes. Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 1990, 35(2): pp. 131-140.
    [169] T. Cimen, S. P. Banks. Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica, 2004, 40(11): pp. 1845-1863.
    [170] J. Chu. Application of a discrete optimal tracking controller to an industrial electric heater with pure delays. Journal of Process Control, 1995, 5(1): pp. 3-8.
    [171]佘焱,张嗣瀛.一类时滞非线性控制系统的输出调节.控制理论与应用, 2001(1): pp. 102-104.
    [172] V. Manousiouthakis, D. J. Chmielewski. On constrained infinite-time nonlinear optimal control. Chemical Engineering Science, 2002, 57(1): pp. 105-114.
    [173] Y. Chen, T. Edgar, V. Manousiouthakis. On infinite-time nonlinear quadratic optimal control. Systems & Control Letters, 2004, 51(3-4): pp. 259-268.
    [174] W. L. Garrard, J. M. Jordan. Design of Nonlinear Automatic Flight Control Systems. Automatica, 1977, 13(5): pp. 497-505.
    [175] V. Rehbock, K. L. Teo, L. S. Jennings. Optimal and suboptimal feedback controls for a class of nonlinear systems. Computers and Mathematics with Applications, 1996, 31(6): pp. 71-86.
    [176] T.-L. Chien, C.-C. Chen, C.-Y. Hsuc. Tracking control of nonlinear automobile idle-speed time-delay system via differential geometry approach. Journal of the Franklin Institute, 2005, 342: pp. 760-775.