基于电压水平约束的负荷安全域研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的电压稳定问题是非常复杂的。此前提出了许多电压稳定性指标,但由于系统非常复杂且状态量之间的耦合性,使这些指标在线应用的效果并不理想,如常用的线路局部信息电压稳定指标L_P、L_q、F_(VSI)、L_(PN)、L_(QN)、L_(PP)和L_(QP)等,实际运行表明,指标结果与P - V曲线不相符。这些指标的推导,都是将功率方程进行多种形式的变换后,基于二次型方程有解的条件而得到的。通过对这些指标数学推导过程的分析,发现二次型功率方程中状态变量与系数是相互耦合的,不满足维达定理中方程系数与变量无关的前提条件。因此,这些指标在从数学理论推导上是不够严密的,指标结果与实际的电压稳定状态是有出入的。目前,在静态电压稳定的负荷裕度研究方面,一般都是基于状态量解耦的思路。但实际系统状态量之间是耦合的,所以对应稳定临界点的负荷区域的精确求解是非常困难的。
     在正常运行状态下,系统一般能够承受偶然事故而不超出约束条件;当系统安全水平降低,进入警戒状态后,在偶然事故下发生电压失稳的可能性才较大。因此,求取对应电压警戒状态的负荷功率区域则更具有实际意义。本文基于戴维南等值模型,在给定的电压水平约束下,提出了对应的视在功率安全域边界的算法,得到了正常运行状态下的负荷功率安全域。采用3机9节点系统的算例仿真表明,若负荷在安全域内,电压就能保持在约束水平以上,且离安全域边界越远,电压水平则越高;若负荷在安全域以外,电压就低于约束水平,且离安全域边界越远,电压水平则越低。该方法简单实用,物理意义清晰,便于运行人员进行负荷控制并保持系统良好的运行状态。
The Voltage stability in power system is very complex. Before then there are many literatures writing about the voltage stability indices, but due to the complexity of the power system and the coupling between the state variables, the application effect of the voltage stability indices are undesirability in the practical operation, for example the voltage stability index based on local information of the line LP、Lq、FV SI、LP N、LQ N、LP P and LQ P, the actual operation shows that the result of those indexes are not match with the P ? Vcharacteristic curve. The derivation of those indexes are depended on the various forms of change of the power equation and the quadratic equation has solution. The analysis of the mathematical derivation of those indexes discover that the state variables of the quadratic power equation is intercoupling with the coefficient, it not meet the prerequisite of the Ouida theorem, that is to say the variable is unrelated with the coefficient of the equation. So the indexes which are derived from the derivation of mathematics theory are not rigorous enough, the result of the index is discriminating with the practical state of voltage stability.
     At present, the study about the load margin of the static voltage stability is based on the idea of decoupling of the state variables. But the relation of the state variables in practical system is intercoupling. So it is difficult to exactly solve the load margin of the stability critical point.
     Generally, the power system could bear the incidents. But when the system security level is weak and entering alert status, it will possibility cause voltage instability under the incidents. So, it has more practical significance to estimate the load margin of the voltage alert condition. This paper which is based on the Thevenin equivalence theorem proposes the security domain boundary of the load apparent power algorithm and solves load power stability domain of the current operating condition under the same voltage level. This paper adopted 3 machine 9 bus systems’simulation example to illustrate that if the load power is within the range of stable interval, the load node voltage will above the constraint level, the more the distance between the operating point and the boundary of Security domain, the higher the voltage level. If the load power is out of the range of Security domain, the load node voltage will below the constraint level, the more the distance between the operating point and the boundary of Security domain, the lower the voltage level. This method is simple and the physical meaning is clear, and provides a reference for the operating personnel.
引文
[1] Carson W.Taylor.Power System Voltage Stability.New York:Mc Graw-Hill, 1994:12-18
    [2]周双喜,朱凌志.电力系统电压稳定性及其控制.北京:中国电力出版社,2001,7-26
    [3]刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社,2007:1-15
    [4] Richard T.Byerly,E.W.Kimbark.Stability of Large Electric Power System.IEEE Press,1974 :43-88
    [5] IEEE Task Force on Terms and Definitions.Proposed Terms and Definitions for Power System Stability.IEEE Trans,1982,101(6):41-66
    [6] IEEE/CIGER Joint.Task Force on Stability Terms and Definitions.Definition and Classification of Power System Stability.IEEE Trans.On Power System. 2004,19(3):36-55
    [7] Charles Concordia.Voltage Instability Definition and Concepts.Venice, Florida,1987
    [8] P.Kunder.Power System Stability and Control.New York:Mc Graw-Hill,Inc.,1994:14-17
    [9]国家电力调度通信中心,中国电力科学研究院.DL 755-2001电力系统安全稳定导则:2001.
    [10]苏永春,程时杰,文劲宇,等.电力系统电压稳定性及其研究现状(一).电力自动化设备,2006,26 (6):97-101
    [11] Thierry Van Cutsem,Costas Vournas,王奔(译).Voltage Stability of Electric Power System.北京:电子工业出版社,2008:13-16
    [12]李连伟.基于戴维南等值的静态电压稳定极限快速计算方法研究.湖南:湖南大学,2009:1-8
    [13]段献忠,何仰赞,陈德树.电压崩溃机理探讨.电力系统及其自动化学报,1991,02 (001)
    [14] Ohtsuki H, Yokoyama A,Sekine Y. Reverse action of on-load tap changer in association with voltage collapse. IEEE Transactions on Power Systems,1991,6 (1) :300-306
    [15] Huang G,Zhang H. Dynamic voltage stability reserve studies for deregulated environment. Proceedings of IEEE Power Engineering Society Summer Meeting,2001,301-306
    [16]刘永强,严正,倪以信,等.基于电路模型的电压崩溃机理.电力系统自动化,2002,26 (20) :6-10
    [17]陈为化,江全元,曹一家,等.电力系统电压崩溃的风险评估,电网技术,2005,19(29):6-11
    [18]张靖,文劲宇,程时杰.基于向量场正规形方法的功角和电压稳定特征分析.电力系统自动化,2006,30(12):12-16
    [19]廖其龙,刘欢.电力系统电压崩溃机理问题的研究现状与评述.攀枝花学院学报,2004,21(4):98-99
    [20]陈林森.基于分叉理论的电力系统电压稳定性分析.中国科技信息,2009, 15(11):17-19
    [21]周念成,钟岷秀,徐国禹,等.基于电压相量的电力系统电压稳定性指标.电力系统自动化,1997,17(6):425-428
    [22]文学鸿,袁越,鞠平.静态电压稳定负荷裕度分析方法比较.电力自动化设备,2008,28 (5):59-62
    [23]袁骏,段献忠,何仰赞,等.电力系统电压稳定灵敏度分析方法综述.电网技术,1997,21(9) :7-10
    [24]吴政球,李日波,钟浩,等.电力系统静态电压稳定极限及裕度计算综述.电力系统及其自动化学报,2010,22(1):126-132
    [25]陈敏,张步涵,段献忠,等.基于最小奇异值灵敏度的电压稳定薄弱节点研究.电网技术,2006,30(24):36-55
    [26]郭琦,赵晋泉,张伯明.基于OMIB的孤立稳定域现象研究.电力系统自动化,2005,29(19):14-18
    [27]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002,65-91
    [28]周双喜,姜勇,朱凌志.电力系统电压稳定性指标述评.电网技术,Vol.25,No.1,Jan.2001
    [29]姜彤,艾琳,杨以涵.基于负荷裕度的在线电压稳定性指标.电力自动化设备, 2009,29 (10):39-42
    [30]吴开贵,吴中福.基于敏感度分析的电网可靠性算法.中国电机工程学报,2003,23(4):53-56
    [31]郭建,韩肖清,王智宏.电压稳定灵敏度分析计算方法.山西电力,2005,2(125):34-36
    [32]姜勇,周双喜,朱凌志.电力系统电压静稳分析中的二阶指标.清华大学学报,2002,42(9):1165-1168
    [33]傅旭,王锡凡,杜正春.电力系统电压稳定性研究现状极其展望.电力自动化设备,2005,25(2):1-9
    [34]邱晓燕,邱红兵.基于潮流计算的电压稳定性指标的比较研究.四川大学学报[J],2002,34(6):95-98
    [35]余贻鑫,李国庆,戴宏伟.电力系统电压稳定性的基本理论与方法(二).电力系统自动化,1996,20(7):61-64
    [36]程浩忠,吴浩.电力系统无功和电压稳定性.北京:中国电力出版社,2004:3-5.
    [37]余贻鑫,宿吉锋,贾宏杰.电力大系统电压稳定可行域可视化初探.电力系统自动化,2001,22(1):1-5
    [38]万秋兰,单渊达.对应用暂态能量函数法分析电力系统暂态稳定性的评价.电力系统自动化,2001,6(17):57-59
    [39]罗华伟,吴政球,戴庆华.电网戴维南等值参数的快速计算.中国电机工程学报,2009,29(1):35-39
    [40]包黎昕,张步涵,段献忠,等.电压稳定裕度指标分析方法综述.电力系统自动化,1999,23(8):52-55
    [41] Moghavvemi M,Faruque M O. Technique for assessment of voltage stability in ill-conditioned radial distribution network. IEEE Power Engineering Review,2001,21 (1):58-60
    [42]刘道伟,谢小荣,穆刚,等.基于同步相量测量的电力系统在线电压稳定性指标.中国电机工程学报,2005,25 (1):13-17.
    [43]孙晓钟,段献忠,何仰赞.负荷节点电压稳定性就地安全指标研究.电力系统自动化,1998,22(9):61-64
    [44] Yu Juan,Li Wenyuan,Yan Wei. A new line loadability index for radial distribution systems. Electric Power Components and Systems,2008,36 (11):1245-1252
    [45]余娟,李文沅,颜伟.对几个基于线路局部信息的电压稳定性指标有效性的质疑.中国电机工程学报,2009,29(19):27-35.
    [46]任保瑞,蔡兴国.基于相量测量的电压稳定裕度在线评估.电网技术,2009,33 (3):12-18
    [47]王芝茗,王漪,徐敬有,等.关键负荷节点集合电网测戴维南参数预估.中国电机工程学报,2002,22 (2):16-20
    [48]李娟,刘修宽,曹国臣,等.一种面向节点的电网等值参数跟踪估计方法的研究.中国电机工程学报,2003,23(3):30-33
    [49]廖国栋,王晓茹.电力系统戴维南等值参数辨识的不确定性模型.中国电机工程学报,2008,26(10):74-79
    [50]汤涌,孙华东,易俊,等.基于全微分的戴维南等值参数跟踪算法.中国电机工程学报,2009,29 (13):48-53