Ghrelin抗动脉粥样硬化的基础与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分不同动脉粥样硬化相关人群外周血ghrelin水平变化及意义
     背景Ghrelin与其受体结合后具有广泛生物学效应。已知ghrelin受体mRNA在心血管组织分布广泛,已有的研究显示ghrelin可通过抑制炎症、抗凋亡、调节脂质代谢等不同途径对心血管起到保护作用,然而其不同动脉粥样硬化相关人群外周血ghrelin水平变化如何,其变化是否与疾病相关等方面的研究尚未见报道。
     目的通过检测不同人群外周血ghrelin水平,初步探讨ghrelin水平变化情况及其临床意义。
     方法及结果将不同年龄、冠心病、肥胖、糖尿病患者纳入研究对象,进行对照研究。通过酶联免疫吸附试验检测入选者外周血ghrelin水平,并同时抽血送检入选者一般生化指标如TC、TG、HDLc等,搜集临床资料,分析一般临床特征包括:年龄、性别、吸烟、BMI、高血压等。检测发现,与青年组ghrelin水平(2.51±0.77)ng/ml相比,老年组ghrelin水平(1.43±0.64)ng/ml显著降低,p=0.009;老年组与中年组ghrelin水平(2.24±0.32)ng/ml相比,ghrelin降低程度亦呈现显著统计学差异,p=0.036,随着年龄增长,外周血ghrelin水平显著降低,两者之间显著相关,r_p=-0.564,p=0.015;经校正后,冠心病组外周血ghrelin水平为(1.82±0.34)ng/ml,与对照组(3.00±0.29)ng/ml相比,p=0.025,具有显著统计学差异;肥胖组(BMI≥28Kg/m~2)外周血ghrelin浓度(1.87±0.89)ng/ml显著低于对照组(2.77±1.49)ng/ml,p=0.047;糖尿病患者外周血ghrelin水平(2.41±0.74)ng/ml显著低于对照组(3.35±13.02)mg/ml,p=0.013。
     结论由上可知,随着年龄增加,外周血ghrelin水平呈现降低趋势;冠心病、肥胖、糖尿病均可导致外周血ghrelin水平进一步降低。为今后进一步阐明ghrelin的功能奠定了一定基础。
     第二部分Ghrelin可通过抑制Th17细胞促炎作用延缓动脉粥样硬化进展
     背景Th17细胞是近年来发现的一种CD4~+效应T细胞,可特异性产生IL-17,在炎症性疾病中起着重要调节作用。已知,IL-17可促进单核巨噬细胞分泌炎症因子TNF-α,IL-6并与其发挥协同作用,加强炎症反应。由于AS是一种慢性炎症性疾病,且与其密切相关的IL-17、IL-6及TNFα在厌食-恶液质综合症发病中起着重要作用,ghrelin作为重要的食欲调节激素与上述炎症因子的关系如何及其对AS的影响是否与上述炎症因子有关尚未见报道。
     目的通过检测颈动脉粥样硬化患者外周血ghrelin及Th17细胞含量的变化及观察应用ghrelin干预患者PBMCs后上述炎症因子的表达变化,初步探讨ghrelin延缓AS的病理机制。
     方法经颈动脉超声检查将入选对象分为两组,即AS组37例和对照组31例(以颈动脉内-中膜厚度-IMT≥1.2mm为标准分组)。采用流式细胞分析法,检测各组患者外周血Th17细胞占CD4~+T细胞百分比;应用酶联免疫吸附法(ELISA)检测患者外周血Ghrelin含量,同时检测患者外周血浆Th17相关因子:白介素(IL)-17、IL-6、肿瘤坏死因子(TNF)-α水平;体外培养AS组患者外周血单个核细胞,经Ghrelin干预后观察上述炎症因子水平变化。
     结果AS组患者外周血Th17/CD4~+T细胞百分比为(1.92±0.52)%,明显高于对照组(0.59±0.32)%,P<0.05;外周血Ghrelin浓度分别为(2.19±0.84)ng/ml、(3.54±1.04)ng/ml,差异具有显著性,P<0.05;Th17相关炎症细胞因子(IL-17、IL-6、TNF-α)水平在AS组分别为(101.29±25.00)pg/ml、(7.67±3.58)pg/ml和(17.98±3.16)pg/ml,显著高于对照组(76.97±27.64)pg/ml、(3.89±3.50)pg/ml、(6.38±1.27)pg/ml,具有显著统计学意义,P<0.05;应用Ghrelin干预患者PBMCs后发现,上述炎症因子分泌明显受抑,且呈浓度依赖性,组间相比差异具有显著性,P<0.05;患者血浆Ghrelin浓度与颈动脉内膜厚度呈显著负相关(r=-0.498,P<0.05),与Th17相关炎症因子(IL-17、IL-6、TNF-α)水平呈负相关(相关系数分别为r=-0.544、-0.363、-0.565,P<0.05)。
     结论Ghrelin通过抑制Th17相关炎症因子表达延缓动脉粥样硬化进展。
     第三部分Ghrelin对THP-1源性巨噬细胞泡沫化过程中酰基辅酶A:胆固醇酰基转移酶1表达的影响
     背景目前关于动脉粥样硬化的发病机制存在着诸多学说,如损伤-反应学说、炎症学说等。然而,我们注意到,所有学说最终都归结为泡沫细胞形成,因此,研究泡沫细胞形成机制,对于有效预防动脉粥样硬化的发生、发展具有重要意义。人酰基辅酶A:胆固醇酰基转移酶1(Acyl-CoA:cholesterol acyltransferases,ACAT-1)催化细胞内游离胆固醇形成胆固醇酯,进而形成泡沫细胞,在泡沫细胞形成过程中起着重要作用,抑制巨噬细胞内ACAT1功能将有助于减少泡沫细胞形成,起到抗AS作用。我们在前期实验中发现ghrelin本身可通过上调膜转运蛋白ATP结合盒转运子A1促进泡沫细胞内游离胆固醇流出,抑制泡沫细胞形成。因此,如果ghrelin同时具有下调ACAT1的功能,抑制游离胆固醇的酯化过程,将有助于我们进一步明确ghrelin延缓AS进展的机制。此方面的研究尚未见报道。
     目的研究单核/巨噬细胞分化成为泡沫细胞过程中Ghrelin对人酰基辅酶A:胆固醇酰基转移酶1(ACAT-1)表达以及细胞内胆固醇酯的影响。
     方法体外培养人源单核细胞系(THP-1),由佛波酯(PMA)作用将其诱导分化为巨噬细胞,后者可在氧化低密度脂蛋白(Ox-LDL)存在条件下进一步转变为泡沫细胞。实验分为对照组(Ox-LDL)、不同浓度ghrelin干预组(10~(-5)、10~(-6)、10~(-7) mol/L)以及不同时间干预组(Ghrelin 10-5 mol/L+Ox-LDL100mg/L)。巨噬细胞加入不同浓度的Ghrelin预孵两小时后再加入Ox-LDL(100mg/L),作用24h;换液,各组均加入10mg/L的apoA-I,并在含有0.3%BSA的RPMI1640培养基、CO_2培养箱中孵育12h,采用酶法,通过荧光分光光度计检测细胞内胆固醇酯含量化,采用油红O染色法观察细胞内脂滴含量,运用RT-PCR法检测ACAT-1 mRNA水平,Western-blot法检测ACAT-1蛋白表达。
     结果Ghrelin可明显减少THP-1源性泡沫细胞内脂滴的形成;Ghrelin可显著降低细胞内胆固醇酯含量,随着Ghrelin浓度升高,胞内胆固醇酯含量分别降低了(14.6±0.5)%,(28.3±1.5)%和(45.4±1.0)%,组间相比差异显著,且胞内胆固醇含量与ACAT-1蛋白及mRNA表达明显相关,相关系数r分别为0.968、0.943;Ghrelin能显著降低单核/巨噬细胞泡沫化过程中ACAT-1 mRNA水平和蛋白表达,组间相比具有显著统计学差异,且此干预作用呈浓度依赖性;Ghrelin不同时间干预组之间油红O染色结果显示脂滴变化不明显,ACAT1表达无明显差异,p>0.05。
     结论Ghrelin可在转录及翻译水平通过下调ACAT-1表达,减少胞内胆固醇蓄积,抑制泡沫细胞形成;Ghrelin对ACAT1的抑制效应呈现浓度依赖性,无时间依赖性。
PartⅠSignificance of serum ghrelin level in differentpeople with atherosclerosis
     Background Many different biological effects could be found following the binding ofghrelin with its receptor.The receptor mRNA of ghrelin is widely distributed incardiovascular tissue.From the foregone documents of ghrelin,we found that ghrelin act tosafeguard the function of cardiovascular tissue via inhibiting inflammation,anti-apoptotic,regulating lipid metabolism and so on.However,the exactly serum level of ghrelin indifferent people with atherosclerosis have not been clarified,and whether a correlation existbetween the different concentration of ghrelin and CAD or DM etc.is still unknown.Objective Investigating the serum level of ghrelin in different people and observing therelationship between the variation of ghrelin and diseases.
     Methods and results A comparative study was performed in patients with different age,obesity,coronary artery disease (CAD) and diabetes mellitus (DM).Enzyme linkedimmunosorbent assay was used to detect plasma levels of ghrelin,at the same time,generally selected biochemical parameters such as total cholesterol (TC),triglyceride (TG),high density lipoprotein cholesterol (HDLc),etc.were detected with submitted blood,collecting clinical data,analyzing the general clinical feature:age,sex,smoking,body massindex (BMI),hypertension and so on.We found that,compared with young people,serumlevel of ghrelin in older age-group reduced from (2.51±0.77)ng/ml to (1.43±0.64)ng/ml, p=0.009.Compared with middle-aged people (2.24_0.32)ng/ml,p=0.036,showedstatistically significant differences.The serum level of ghrelin decreased significantly withage.Further analysis indicated the positive linear correlation between ghrelin level and age,rp=-0.564,p=0.015.Compared with control group,serum level of ghrelin in obesity people(BMI≧28Kg/m~2) reduced from (2.77±1.49)ng/ml to (1.87±0.89)ng/ml,and there aresignificant difference,p=0.047.After correction of age,serum level of ghrelin in CADpeople reduced from (3.00±0.29)ng/ml to (1.82±0.34)ng/ml,p=0.025,the differencebetween them was significant in statistics.Compared with control group,serum level ofghrelin in DM people reduced from (3.35±13.02)ng/ml to (2.41±0.74)ng/ml,and thedifference is significant,p=0.013.
     Conclusions Peripheral blood serum level of ghrelin show a tendency of decline with age.Serum level of ghrelin in people with obesity,CAD and DM would lead to further decrease.The data provide the natural phenomenon of ghrelin,which may be the basis of furtherstudy about the function of ghrelin.
     PartⅡThe progression of atherosclerosis could be retarded byghrelin via inhibiting the proinflammatory function of Th17 cells
     Background Recently,Th17 cell has been described as one neotype CD4+ T cell,which could produce interleukin-17 (IL-17) especially and serve as the important regulatorsof inflammatory diseases.IL-17 could promote the secretion of TNF-α,IL-6 frommononuclear macrophages;and by combining these two inflammatory factors,IL-17 couldenhance the inflammatory reaction.It's well known that atherosclerosis is a chronicinflammatory disease,IL-17,TNF-αand IL-6,which close related with atherosclerosis,play an important role in the onset of Anorexia-Cachexia Syndrome.However,what is therelationship between ghrelin,the important appetite regulation hormone,and theinflammatory factors described above? Whether the protective effect of ghrelin on the progress of atherosclerosis is concerned with these inflammatory factors? Few documentshave described it.
     Objective To investigating the serum level of ghrelin and Th17 cells content and toobserve the changing of the inflammatory factors described above in the PBMCs afterbeing interfered by ghrelin.Study the mechanism of Ghrelin on retarding the developmentof atherosclerosis.
     Methods The objectives were divided into two groups after detecting the intima-mediathickness (IMT),i.e.atherosclerosis (AS) group,including 37 patients (IMT≧1.2mm)and control group,including 31 patients (IMT<1.2mm).Flow cytometry was used to detectthe percentage of Th17 in CD4+T cells;Plasma concentrations of Ghrelin and Th17-relatedcytokines (IL-17、IL-6、TNF-α) were measured by enzyme-linked immunosorbentassay(ELISA).Peripheral blood mononuclear cells (PBMCs) of patients with AS werecultured in vitro,and the concentration of inflammation factors,above-mentioned,weredetected after being interfered by Ghrelin.
     Results The percentage of Th17/CD4~+ T was found to be significantly higher in AS group[(1.92±0.52)%] than that in control group [(0.59±0.32)%](P<0.05).The concentration ofGhrelin markedly decreased in AS group [(2.19±0.84)ng/ml] (P<0.05);and Th17-relatedcytokines (IL-17、IL-6、TNF-α) markedly increased in AS group [(101.29±25.00)pg/ml,(7.67±3.58)pg/ml,(17.98±3.16)pg/ml] compared with control group [(76.97±27.64)pg/ml,(3.89±3.50)pg/ml,(6.38±1.27)pg/ml] (P<0.05);Ghrelin could inhibit the expression of thecytokines,and this inhibiting effect was in a dose-dependent manner (P<0.05).Therelationship between Ghrelin and IMT,cytokines were negative.The correlation coefficientbetween Ghrelin and IMT,IL-17、IL-6 TNF-αwere r=-0.498,-0.544,-0.363 and -0.565,respectively (P<0.05).
     Conclusion Ghrelin retards the development of AS via inhibiting the expression ofTh17-related cytokines.
     PartⅢEffects of Ghrelin on the Expression ofAcyl Coenzyme A:Cholesterol Acyltransferases-1 during Foam Cells Formation
     Background Acyl-CoA:cholesterol acyltransferases (ACAT-1) could catalysis freecholesterol into cholesterol ester,and then form the foam cells.The foam cells formationwould be inhibited via down-regulating the expression of ACAT1.As we all know,ghrelincould inhibit the formation of foam cells via promoting the efflux of free cholesterol fromfoam cells by up-regulating the expression of ATP-binding cassette transporter A1.Therefore,if ghrelin has both functions about up-regulating ABCA1 and down-regulatingACAT1,the formation of foam cells would be inhibited.The further mechanism of ghrelinanti-atherosclerosis would be clarified.The data in this field has not been reported.
     Objective To investigate the effects of ghrelin on the expression of ACAT-1 and thecholesterol content of foam cells during the formation of foam cells.
     Methods The human monocytic leukemia cell line (THP-1) was chosen in our study.Thedifferentiation of THP-1 cells into macrophages was induced by phorbol 12-myristate13-acetate (PMA).Macrophages were incubated with oxidized LDL (Ox-LDL) to generatefoam cells.The cells were divided into four groups to carry out control study:control group(Ox-LDL),different concentration group of ghrelin (10~(-5)、10~(-6)、10~(-7) mol/L).Ghrelin ofdifferent concentrations were treated for 2 hours before Ox-LDL(100mg/L) were added in.After being incubated for 24 hours,the cells medium were changed,and then apoA-Ⅰ(10mg/L) were added in with 0.3%BSA.After 12 hours incubation,the cells were collectedfor detection.The effect of variance of cholesterol content was measured by zymochemistryvia-fluorospectrophotometer,the lipid droplet content were observed by Oil red stainingmethod,the ACAT-1 protein and mRNA levels were detected by Western blotting andRT-PCR.
     Results Ghrelin could reduce the formation of lipid droplet of foam cells derived fromTHP-1 macrophages;Ghrelin reduced the content of cholesterol ester in foam cellsobviously,the cholesterol ester content of foam cells decreased (14.6±0.5)%,(28.3±1.5)%and (45.4±1.0)%,separately with increasing concentration of ghrelin.Further analysisindicated the positive linear correlation between the protein and mRNA expression of ACAT1 and cholesterol content,r=0.942,0.935,separately.ACAT-1 protein and mRNAlevels were also decreased.Ghrelin could reduce ACAT-1 protein mass and mRNA level ina dose-dependent manner.Not change was observed about the amount of lipid dropletstained by Oil Red O as time prolonging.The changing about the expression of ACAT1 wasnot significant,p>0.05.
     Conclusion Ghrelin might retard the formation of atherosclerosis via down-regulating theexpression of ACAT-1.The inhibiting effect of ghrelin on the expression of ACAT1 was ina dose-dependent,not a time-dependent manner.
引文
1. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach [J]. Nature, 1999, 402(6762):656-60.
    2. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature, 2001, 409(6817): 194-98.
    3. Tschop M, Smiley DL, Heiman ML, et al. Ghrelin induces adiposity in rodents. Nature , 2000, 407(6806): 908-13.
    4. Korbonits M, Goldstone AP, Gueorguiev M, et al. Ghrelin-a hormone with multiple functions. Front Neuroendocrinol, 2004, 25(1): 27-68.
    5. Van LA, Tschop M, Heiman ML, et al. Biological, physiological, pathophysiological,and pharmacological aspects of ghrelin. Endocr Rev, 2004, 25(3): 426-57.
    6. Smith RG, Jiang H, Sun Y, et al. Developments in ghrelin biology and potential clinical relevance. Trends Endocrinol Metab, 2005,16(9): 436-42.
    7. Ghigo E, Broglio F, Arvat E, et al. Ghrelin: more than a natural GH secretagogue and/or an orexigenic factor. Clin Endocrinol (Oxf), 2005, 62(1): 1-17.
    8. Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev, 2005, 85(2) 495-522.
    9. Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr, 2005,135(5): 1320-25.
    10. Zhang JV, Ren PG, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science, 2005, 310(5750):996-99.
    11. Gualillo O, Lago F, Casanueva FF, et al. One ancestor, several peptides post-translational modifications of preproghrelin generate several peptides with antithetical effects. Mol Cell Endocrinol, 2006, 256(1-2): 1-8.
    12. Zhu X, Cao Y, Voogd K, et al. On the processing of proghrelin to ghrelin. J Biol Chem,2006, 281(50): 38867-70.
    13. Gnanapavan S, Kola B, Bustin SA, et al.The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans (J) J Clin Endoerinol Metab, 2002, 87(6):2988-91.
    14. Frascarelli S, Ghelardoni S, Ronca-Testone S, et al. Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart [J]. Basic Res Cardiol,2003, 98(6):401-05.
    15. Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers [J]. AM J Physiol Regul Integr Comp Physiol, 2001,280(5):R1483-37.
    16. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure[J].Circulation, 2001, 104(12):1430-35.
    17. Li WG, Gavrila D, Liu X, et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappa B activation in human endothelial cells. [J] Circulation, 2004,109(18):2221-26.
    18. Chung H, Kim E, Lee DH, et al. Ghrelin Inhibits Apoptosis in Hypothalamic Neuronal Cells During Oxygen-Glucose Deprivation [J].Endocrinology, 2007, 148(1):148-59.
    19. Granata R, Settanni F, Trovato L, et al. Unacylated as well as acylated ghrelin promotes cell survival and inhibit apoptosis in HIT-T15 pancreatic beta-cells [J]. J Endocrinol Invest, 2006, 29(9):RC19-22.
    20. Iantorno M, Chen H, Kim JA, et al. Ghrelin has novel vascular actions that mimic Pl3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells [J]. Am J Physiol Endocrinol Metab, 2007, 292(3):E756-64.
    21. Iglesias MJ, Pineiro R, Blanco M, et al. Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovasc Res, 2004, 62(3):481-88.
    22. Shimizu Y, Nagaya N, Teranishi Y, et al. Ghrelin improves endothelial dysfunction through growth hormone-independent mechanisms in rats. Biochem Biophys Res Commun, 2003, 310(3): 830-35.
    23. Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation, 2005,112(19): 2986-92.
    24. Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol, 2002,159(6): 1029-37.
    25. Wiley KE, Davenport AP. Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1. Br J Pharmacol,2002,136(8): 1146-52.
    26. Benso A, Broglio F, Marafetti L, et al. Ghrelin and synthetic growth hormone secretagogues are cardioactive molecules with identities and differences. Semin Vasc Med, 2004, 4(2): 107-14.
    27. Pettersson I, Muccioli G, Granata R, et al. Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol,2002,175(1): 201-09.
    28. Barazzoni R, Bosutti A, Stebel M, et al. Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab, 2005, 288(1): 228-35
    29. Purnell JQ, Weigle DS, Breen P, et al. Ghrelin levels correlate with insulin levels,insulin resistance, and high-density lipoprotein cholesterol, but not with gender,menopausal status, or cortisol levels in humans. J Clin Endocrinol Metab, 2003, 88(12):5747-52.
    30. Langenberg C, Bergstrom J, Laughlin GA, et al. Ghrelin and the metabolic syndrome in older adults. J Clin Endocrinol Metab, 2005, 90(12): 6448-53.
    31. Avallone R, Demers A, Rodrigue-Way A, et al. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway [J]. Mol Endocrinol, 2006, 20(12):3165-78.
    32. Kaul D, Anand PK, Khanna A. Functional genomics of PPAR-gamma in human immunomodulatory cells. Mol Cell Biochem. 2006; 290(1-2):211-15.
    33. Jin-Bo Yang, Zhi-Jun Duan, Wei Yao, Onel Lee, Li Yang, Xin-Ying Yang, Xia Sun,Catherine C.Y. Chang, Ta-Yuan Chang and Bo-Liang Li. Synergistic transcriptional activation of human.ACAT1 gene by IFN-gamma and ATRA in THP-1 cells.J Biol Chem.2001;276:20989-98.
    34.柯丽,成蓓,余其振,何平,白智峰。干扰素-γ对单核巨噬细胞源性泡沫细胞ACATT-1表达的影响。山东医药,2005,45(10):14-15.
    35.Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med,1999,340(2):115-26
    36.Savoia C,Schiffrin EL.Inflammation in hypertension.Curr Opin Nephrol Hypertens,2006,15(2):152-58.
    37.Li JJ.Inflammation in hypertension:primary evidence.Chin Med J(Engl),2006,119(14):1215-21
    38.Petersen JW,Felker GM.Inflammatory biomarkers in heart failure.Congest Heart Fail,2006,12(6):324-28.
    39.Yndestad A,Damas JK,Oie E,et al.Systemic inflammation in heart failure-the whys and wherefores.Heart Fail Rev,2006,11(1):83-92
    40.Dixit VD,Taub DD.Ghrelin and immunity:a young player in an old field.Exp Gerontol,2005,40(11):900-10.
    41.Xia Q,Pang W,Pan H,et al.Effects of ghrelin on the proliferation and secretion of splenic T lymphocytes in mice.Regul Pept,2004,122(3):173-78.
    42.Granado M,Priego T,Martin AI,et al.Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2(GHRP-2)in arthritic rats.Am J Physiol Endocrinol Metab,2005,288(3):486-92.
    43.Chabaud M,Durand J.M,Buchs N,Fossiez F,Page G,Frappart L,Miossec P.Human inerleukin-17:A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium.Arthritis Rheum,1999;42(5):963-70.
    44.Yen D,Cheun G J,Scheerens H,Poulet F,McClanahan T,Mckenzie B,Kleinschek MA,Owyang A,Mattson J,Blumenschein W,Murphy E,Sathe M,Cua D J,Kastelein RA,Rennick D.IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6.J Clin Invest,2006;116(5):1310-16.
    45.Langrish CL,Chen Y,Blumenschein WM,Mattson J,Basham B,Sedgwick JD,McClanahan T,Kastelein RA,Cua DJ.IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.J Exp Med,2005;201(2):233-40.
    46. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato. C, Yoshimura A,Hennighausen L, O'Shea JJ. Selective regulatory function of Socs3 in the formation of IL-17 secreting T cells. Proc Natl Acad Sci, 2006; 103(21):8137-42.
    47. Sutton C, Brereton C, Keogh B, H.GMills K, C. Lavelle E. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med, 2006; 203(7):1685-91.
    48. Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, Okuno T, Fujiyama Y,Bamba T. IL-17 stimulates inflammatory responses via NF-kappa B and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gsatrointest Liver Physiol,2002; 282(6):G1035-44.
    49. McCarty, M.F. Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down regulation with essential fatty acids, ethanol, and pentoxifylline. Med. Hypotheses, 1999; 52(5):465-77.
    50. Libby P, Ridker P.M, Maseri A. Inflammation and atherosclerosis. Circulation, 2002;105(9): 1135-43.
    51. Inui, A. Cancer Anorexia-Cachexia Syndrome: Are Neuropeptides the key? Cancer Res,1999; 59:4493-501.
    1.Gnanapavan S,Kola B,Bustin SA,et al.The tissue distribution of the mRNA of ghrelin and subtypes of its receptor,GHS-R,in humans[J].J Clin EndoerinoI Metab,2002,87(6):2988-91.
    2.Li WG,Gavrila D,Liu X,et al.Ghrelin inhibits proinflammatory responses and nuclear factor-kappa B activation in human endothelial cells.[J]Circulation,2004,109(18):2221-26.
    3.Shimizu Y,Nagaya N,Teranishi Y,et al.Ghrelin improves endothelial dysfunction through growth hormone-independent mechanisms in rats.Biochem Biophys Res Commun,2003,310(3):830-35.
    4.Tesauro M,Schinzari F,Iantorno M,et al.Ghrelin improves endothelial function in patients with metabolic syndrome.Circulation,2005,112(19):2986-92.
    5.Barazzoni R,Bosutti A,Stebel M,et al.Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle.Am J Physiol Endocrinol Metab,2005,288(1):228-35.
    6.Purnell JQ,Weigle DS,Breen P,et al.Ghrelin levels correlate with insulin levels,insulin resistance,and high-density lipoprotein cholesterol,but not with gender,menopausal status,or cortisol levels in humans.J Clin Endocrinol Metab,2003,88(12):5747-52.
    7.Langenberg C,Bergstrom J,Laughlin GA,et al.Ghrelin and the metabolic syndrome.in older adults.J Clin Endocrinol Metab,2005,90(12):6448-53.
    8.中华人民共和国卫生部疾病控制司. 中国成人超重和肥胖症预防控制指南.北京:人民卫生出版社,2006。
    9.Pemberton C,Wimalasena P,Yandle T,et al.C-terminal pro-ghrelin peptides are present in the human circulation.Biochem Biophys Res Commun,2003,310(2):567-73.
    10.Kotani K,Sakane N,Saiga K,et al.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome.Arch Med Res,2006,37(7):903-06.
    11. Poykko SM, Kellokoski E, Ukkola O, et al. Plasma ghrelin concentrations are positively associated with carotid artery atherosclerosis in males. J Intern Med, 2006,260(1): 43-52.
    12. Torsello A, Bresciani E, Rossoni G, et al. Ghrelin plays a minor role in the physiological control of cardiac function in the rat. Endocrinology, 2003, 144(5):1787-92.
    13. Pemberton CJ, Tokola H, Bagi Z, et al. Ghrelin induces vasoconstriction in the rat coronary vasculature without altering cardiac peptide secretion. Am J Physiol Heart Circ Physiol, 2004, 287(4): 1522-29.
    14. Conconi MT, Nico B, Guidolin D, et al. Ghrelin inhibits FGF-2-mediated angiogenesis in vitro and in vivo. Peptides, 2004, 25(12): 2179-85.
    15. Baiguera S, Conconi MT, Guidolin D, et al. Ghrelin inhibits in vitro angiogenic activity of rat brain microvascular endothelial cells. Int J Mol Med, 2004,14(5): 849-54.
    16. Skilton MR, Nakhla S, Sieveking DP, et al. Pathophysiological levels of the obesity related peptides resistin and ghrelin increase adhesion molecule expression on human vascular endothelial cells. Clin Exp Pharmacol Physiol, 2005, 32(10): 839-44.
    17. Rossi F, Bertone C, Petricca S, et al. Ghrelin inhibits angiotensin H-induced migration of human aortic endothelial cells. Atherosclerosis, 2007; 192(2):291-7.
    18. Grossini E, Molinari C, Mary DA, et al. Intracoronary ghrelin infusion decreases coronary blood flow in anesthetized pigs. Endocrinology, 2007,148(2): 806-812.
    19. Benso A, Broglio F, Marafetti L, et al. Ghrelin and synthetic growth hormone secretagogues are cardioactive molecules with identities and differences. Semin Vasc Med, 2004, 4(2): 107-14.
    20. Sharma V, McNeill JH. The emerging roles of leptin and ghrelin in cardiovascular physiology and pathophysiology. Curr Vase Pharmacol, 2005, 3(2): 169-80.
    21. Isgaard J, Johansson I. Ghrelin and GHS on cardiovascular applications/functions. J Endocrinol Invest, 2005, 28(9): 838-42.
    22. Garcia EA, Korbonits M. Ghrelin and cardiovascular health. Curr Opin Pharmacol,2006, 6(2): 142-47.
    23. Wiley KE, Davenport AP. Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1. Br J Pharmacol,2002,136(8): 1146-52.
    24. Kleinz MJ, Maguire JJ, Skepper JN, et al. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res, 2006, 69(1): 227-35.
    25. Frascarelli S, Ghelardoni S, Ronca-Testoni S, et al. Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart. Basic Res Cardiol,2003, 98(6): 401-05.
    26. Chang L, Ren Y, Liu X, et al. Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J Cardiovasc Pharmacol, 2004, 43(2): 165-70.
    27. Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acy1 ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol, 2002,159(6): 1029-37.
    28. Pettersson I, Muccioli G, Granata R, et al. Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol,2002,175(1): 201-09.
    29. Chang L, Zhao J, Li GZ, et al. Ghrelin protects myocardium from isoproterenol induced injury in rats. Acta Pharmacol Sin, 2004, 25(9): 1131-37.
    30. Li L, Zhang LK, Pang YZ, et al. Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats. Acta Pharmacol Sin,2006, 27(5): 527-35.
    31. Kola B, Hubina E, Tucci SA, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem, 2005, 280(26): 25196-201.
    32. Li GZ, Jiang W, Zhao J, et al. Ghrelin blunted vascular calcification in vivo and in vitro in rats. Regul Pept, 2005,129(1-3): 167-76.
    33. Nagaya N, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure. Regul Pept, 2003,114(2-3): 71-77.
    34. Nagaya N, Kangawa K. Therapeutic potential of ghrelin in the treatment of heart failure. Drugs, 2006, 66(4): 439-48.
    35. Nagaya N, Uematsu M, Kojima M, et al. Chronic dministration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation, 2001,104(12): 1430-35.
    36. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation, 2004,110(24): 3674-79.
    1.Kotanik K,Sakane N,Saiga K,Adachi S,Mu H,Kurozawa Y,Kawano M.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome.Arch Med Res,2006;37(7):903-6.
    2.Chabaud M,Durand J.M,Buchs N,Fossiez F,Page G,Frappart L,Miossec P.Human inerleukin-17:A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium.Arthritis Rheum,1999;42(5):963-70.
    3.Sutton C,Brereton C,Keogh B,H.G.Mills K,C.Lavelle E.A crucial role for interleukin(IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis.J Exp Med,2006;203(7):1685-91.
    4.Hata K,Andoh A,Shimada M,Fujino S,Bamba S,Araki Y,Okuno T,Fujiyama Y,Bamba T.IL-17 stimulates inflammatory responses via NF-kappa B and MAP kinase pathways in human colonic myofibroblasts.Am.J Physiol Gsatrointest Liver Physiol,2002;282(6):G1035-44.
    5.McCarty,M.F.Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation,smoking,diabetes,and visceral obesity:down regulation with essential fatty acids,ethanol,and pentoxifylline.Med.Hypotheses,1999;52(5):465-77.
    6.Libby P,Ridker P.M,Maseri A.Inflammation and atherosclerosis.Circulation,2002;105(9):1135-43.
    7.Inui,A.Cancer Anorexia-Cachexia Syndrome:Are Neuropeptides the key? Cancer Res,1999;59:4493-4501.
    8.张梅,张运,高月花,张园园,李秀昌,葛志明,季小平。颈动脉及股动脉内膜—中膜层厚度正常值的对比研究。中国医学影像技术,2002,181(1):32-33.
    9.Gnanapavan S,Kola B,Bustin SA,Morris DG,McGee P,Fairclough P,Bhattacharya S,Carpenter R,Grossman AB,Korbonits M.The tissue distribution of the mRNA of ghrelin and subtypes of its receptor,GHS-R,in humans.J Clin Endocrinol Metab,2002;87(6):2988-91.
    10.Ukkola,Poykko SM,Antero KY.Low plasma ghrelin concentration is an indicator of the metabolic syndrome. Ann Med, 2006; 38(4):274-9.
    11. Tesauro M, Schinzari F, Iantorno M, Rizza S, Melina D, Lauro D, Cardillo C. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation, 2005;112(19):2986-92.
    12. V.D. Dixit, E.M. Schaffer, R.S. Pyle, G.D. Collins, S.K. Sakthivel and R. Palaniappan et al., Ghrelin inhibits leptin- and activation induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest, 2004; 114(1):57-66.
    13. Yen D, Cheun GJ, Scheerens H, Poulet F, McClanahan T, Mckenzie B, Kleinschek MA,Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA,Rennick D. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest, 2006; 116(5):1310-16.
    14. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD,McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005; 201(2):233-40.
    15. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, Yoshimura A,Hennighausen L, O'Shea JJ. Selective regulatory function of Socs3 in the formation of IL-17 secreting T cells. Proc Natl Acad Sci, 2006; 103(21):8137-42.
    1.Chang TY,Chang CC,Lin S,et al.Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2[J].Curr Opin Lipidol,2001,12(3):289-296.
    2.Kotanik K,Sakane N,Saiga K,et al.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome[J].Arch Med Res,2006,37(7):903-906.
    3.Tsuchiya S,Kobayashi Y,Goto Y,et al.Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester.Cancer Res 1982 42:1530-1536.
    4.Hartree EF.Determination of protein:a modification of the Lowry method that gives a linear photometric response.Anal Biochem.1972,Aug;48(2):422--427.
    5.王淳本,宗义强,吴万生, 等.两步超速离心法快速分离血浆大量极低密度脂蛋白极低密度脂蛋白[J].同济医科大学学报,1995,24(3):169-171.
    6.Kritharides L,Jessup W,Gifford J,et al.A method for defining the stages of LDL oxidation by the separation of cholesterol and cholesteryl ester oxidation products by HPLC.Anal Biochem.1993,213:79-89.
    7.陈志坚,王彦富,廖玉华,等.血管紧张素Ⅱ对THP-1源性泡沫细胞ATP结合盒转运子A1的影响[J].中国病理生理杂志,2007,23(2):316-320.
    8.Lowry OH,Rosebrough NJ,Farr AL,et al.Protein measurement with the folinphenol reagent.J Biol Chem,1951,193:265.
    9.Patricia G,Yancey and W,Gray Jerome,et al.Lysosomal sequestration of free and esterified cholesterol from oxidized low density lipoprotein in macrophages of different species.J.Lipid Res.1998,39:1349-1361.
    10.Gamble W,Vaughan M,Kruth H.S,et al.Procedure for determination of free and total cholesterol in micro-or nanogram amounts suitable for studies with cultured ceils.J.Lipid Res,1978,19:1068-1070.
    11.Martha K,Cathcart.Regulation of superoxide anion productionby NAPDH oxidase in monocytes/macrophages:conributions to atherosclerosis[J].Arterioscler Thromb Vasc Biol,2004,24(1):23-28.
    12.Chang C,Dong R,Miyazaki A,et al.Human acyl-CoA:cholesterol acyltransferase (ACAT)and its potential as a target for pharmaceutical intervention against atherosclerosis[J].Acta Biochim Biophys Sin(shanghai),2006,38(3):151-156.
    13. Chang TY, Chang CCY, Cheng D. Acyl-coenzyme A: Cholesterol acyltransferase.Annu Rev Biochem 1997; 66:613-38.
    14. KojimaM, HosodaH, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach [J]. Nature, 1999, 402(6762):656-60.
    15. Granata R, Settanni F, Trovato L, et al. Unacylated as well as acylated ghrelin promotes cell survival and inhibit apoptosis in HIT-T15 pancreatic beta-cells [J]. J Endocrinol Invest, 2006, 29(9):RC19-22.
    16. Ukkola, Poykko SM, Antero KY. Low plasma ghrelin concentration is an indicator of the metabolic syndrome[J]. Ann Med, 2006, 38(4):274-279.
    17. Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome[J]. Circulation, 2005,112(19):2986-2992.
    18. Yancey PG, Bortnick AE, Weibel GK, et al. Importance of different pathways of cellular cholesterol efflux [J]. Arthenosclerosis, Thrombosis and Vascular Biology, 2003, 23:712 - 719.
    19. Oram , J F. HDL apolipoproteins and ABCA1 partners in the removal of excess cellular cholesterol.Arterioscler Thromb Vase Biol, 2003, 23: 720-727.
    20. Avallone R, Demers A, Rodrigue-Way A, et al. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway [J]. Mol Endocrinol, 2006,20(12):3165-3178.
    21. Tiwari RL, Singh V, Barthwal MK. Macrophages :an elusive yet emerging therapeutic target of atherosclerosis [J]. Med Res Rev, 2008, 28(4):483-544.
    1. Chang TY, C.C., Cheng D, Acyl-coenzyme A: Cholesterol acyltransferase. Annu Rev Biochem, 1997. 66: p. 613-638.
    2. Hamilton JA, S.D., Solubilization and localiza tion of cholesteryl oleate in egg phosphatidylcholine vesicles. A carbon 13 NMR study., 1982. 257: p. 7318-7321.
    3. Warner GJ, S.G., Bamberger M, et al., Cell toxicity induced by inhibition of acy1 coenzyme Axholes terol acyltransferase and accumulation of unesterified cholesterol. J Biol Chem, 1995. 270: p. 5772-5778.
    4. Miyazaki, A., et al., Acyl-coenzyme Axholesterol acyltransferase inhibitors for controlling hypercholesterolemia and atherosclerosis. Curr Opin Investig Drugs, 2003.4(9): p. 1095-9.
    5. Doolittle GM, C.T., Solubilization, partial purification, and reconstitution in phosphatidylcholine-cholesterol liposomes of acyl- Co A: cholesterol acyltransferase. .Biochemistry, 1982. 21: p. 674-679.
    6. Cadigan KM, H.J., Chang T-Y, Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A: cholesterol acyltransferase activity. . J Biol Chem, 1988. 263: p. 274-282.
    7. Chang CCY, H.H., Cadigan KM, Chang TY, Molecular cloning and functional expression of human acyl-coenzyme Axholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells.. J Biol Chem, 1993. 268: p. 20747-20755.
    8. Meiner V, T.C., Gunn MD, et al. :, Tissue expression studies on the mouse acyl-CoA:cholesterol acyltrans ferase gene (Acact): findings supporting the existence of multiple cholesterol esterification enzymes in mice. J Lipid Res, 1997. 38: p. 1928-1933.
    9. Yang H, B.M., Bruner DA, et al., Sterol esterification in yeast: a two-gene process. .Science, 1996. 272: p. 1353-1356.
    10. Cases S, S.S., Zheng YW, et al., Identification of a gene encoding an acyl CoA:diacylglycerol acyltrans ferase, a key enzyme in triacylglycerol synthesis. . Proc Natl Acad Sci USA, 1998. 95: p. 13018-23.
    11. Anderson RA, J.C., Davis M, et al., Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. . J Biol Chem, 1998.273: p. 26747-54.
    12. Cases S, N.S., Zheng Y-W, et al., ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. ..J Biol Chem, 1998. 273: p.26755-64.
    13. Oelkers P, B.A., Cromley D, et al., Characterization of two human genes encoding acyl coenzyme Axholesterol acyltransferaserelated enzymes. . J Biol Chem, 1998. 273: p.26765-71.
    14. Buhman KF, A.M., Farese RV Jr., Mammalian acyl-CoA: cholesterol acyltransferases..Biochim Biophys Acta Mol Cell Biol Lipids, 2000.1529: p. 142-54.
    15. Li BL, L.X., Duan ZJ, Lee O, et al., Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem 1999. 274: p. 11060-71.
    16. Katsuren K, T.T., Arashiro R, et al. , Structure of the human acyl-CoA:cholesterol acyltransferase-2 (ACAT-2) gene and its relation to dyslipidemia.. Biochim Biophys Acta Mol Cell Biol Lipids 2001.1531: p. 230-40.
    17. Song BL, Q.W., Yang XY, et al. , Organization of human ACAT-2 gene and its cell-type-specific promoter activity. . Biochem Biophys Res Commun, 2001. 282: p.580-8.
    18. Song BL, Q.W., Wang CH, et al., Preparation of an anti-Cdx-2 antibody for analysis of different species Cdx-2 binding to acat2 promoter. Biochim Biophys Acta Sinica, 2003.35: p. 6-12.
    19. Wang CS, M.W., Kloer HU, et al. , Modulation of lipoprotein lipase activity by apolipoproteins: effect of apolipoprotein C-Ⅲ.. J Clin Invest, 1984. 75: p. 384-90.
    20. von Kap-herr C, C.T., Rudel L, et al., Assignment of acyl-CoA:cholesterol acyltransferase 1 and 2 ((S)AT1, SOAT2)) and diacylglycerol O-acyltransferase 1 (DGAT1) to M. fascicularis chromosome band 1p32, 12q13, 8qter; C. aethiops sabaeus 13q22, 3ql2,1qter; S. sciureus 19q22, 15q21, 16qter by in situ hybridization. . Gytogenet Genome Res 2003.103.
    21. Guo ZM, C.D., Billheimer JT, et al., Identification of potential substrate-binding sites in yeast and human acy1-CoA sterol acyltransferases by mutagenesis of conserved sequences.. J Lipid Res, 2001. 42: p. 1282-91.
    22. Das, A., M.A. Davis, and L.L. Rudel, Identification of putative active site residues of ACAT enzymes. J Lipid Res, 2008. 49(8): p. 1770-81.
    23. Joyce CW, S.G., Davis MA, et al., ACAT1 and ACAT 2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell, 2000.11: p. 3675-87.
    24. Lin S, L.X., Chang CCY, et al., Human acyl-coenzyme A:cholesterol acyltransferase expressed in Chinese hamster ovary cells: membrane topology and active site location.Mol Biol Cell, 2003.14: p. 2447-60.
    25. Heymann JA, S.S., Integration of deletion mutants of bovine rhodopsin into the membrane of the endoplasmic reticulum.. Mol Membr Biol, 2000.17: p. 165-74.
    26. Manoil C, T.B., Insertion of in-frame sequence tags into proteins using transposons. .Methods, 2000.20: p. 55-61.
    27. Kida, Y, et al., Function of positive charges following signal-anchor sequences during translocation of the N-terminal domain. J Biol Chem, 2006. 281(2): p. 1152-8.
    28. Erickson SK, L.S., McCreery MJ., Functional sizes of hepatic enzymes of cholesteryl ester metabolism determined by radiation inactivation. J Lipid Res, 1994. 35: p. 763-69.
    29. Lee RQ W.M., Davis MA, et al. , Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. . J Lipid Res, 2000. 41: p. 1991-2001.
    30. Yu CJ, C.J., Lin S, et al. , Human acyl-CoA:cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro. . J Biol Chem, 1999. 274: p.36139-45.
    31. Chang CCY, S.N., Ornvold K, et al. , Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem, 2000. 275: p.28083-92.
    32. Yu CJ, Z.Y., Lu XH, et al. , Role of the N-terminal hydrophilic domain of acyl-coenzyme A:cholesterol acyltransferase I on the enzyme's quaternary structure and catalytic efficiency.. Biochemistry, 2002. 41: p. 3762-9.
    33. Meiner VL, W.C., Cases S, et al. , Adrenocortical lipid depletion gene (ald) in AKR mice is associated with an acyl-CoAxholesterol acyltransferase (ACAT) mutation. . J Biol Chem, 1998. 273: p. 1064-9.
    34. Zager RA, K.T., Changes in free and esterified cholesterol. Am J Pathol 2000. 157: p.1007-16.
    35. Alexander CA, H.R., Havel RJ. , Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol 1983. 69: p. 241-63.
    36. Sakashita N, M.A., Takeya M, et al. , Localization of human acy1-coenzyme A:cholesterol acyltrans ferase-1 (ACAT-1) in macrophages and in various tissues. . Am J Pathol, 2000.156: p. 227-36.
    37. Parini P, D.M., Lada AT, et al. , ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver.. Circulation 2004.110: p. 2017-23.
    38. Lada AT, D.M., Kent C, et al., Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescent assay: individual ACAT unique ness. J Lipid Res 2004. 45: p. 378-86.
    39. Smith JL, R.K., Simpson R, et al., Quantitative analysis of expression of ACAT genes in human tissues by real-time PCR. J Lipid Res 2004. 45: p. 686-96.
    40. Horton JD, G.J., Brown MS. , SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 2002.109: p. 1125-31.
    41. Edwards PA, K.H., Anisfeld AM. , BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis.. J Lipid Res 2002. 43: p. 2-12.
    42. Janowski BA, W.P., Devi TR, et al. , An oxysterol signaling pathway mediated by the nuclear receptor LXR(?).. Nature 1996. 383: p. 728-31.
    43. Yang JB, D.Z., Yao W, et al. , Synergistic transcriptional activation of human acyl-coenzyme A:cholesterol acyltransterase-1 gene by interferon-gamma and all-trans-retinoic acid THP-1 cells.. J Biol Chem, 2001. 276: p. 20989-98.
    44. Panousis CG, Z.S., Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-gamma.. J Lipid Res, 2000. 41: p. 75-83.
    45. Wilcox LJ, B.N., de Dreu LE, et al. , The secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP.. J Lipid Res, 2001. 42: p. 725-34.
    46. Botham KM, Z.X., Napolitano M, et al., The effects of dietary n-3 polyunsaturated fatty acids delivered in chylomicron remnants on the transcription of genes regulating synthesis and secretion of very-low density lipoprotein by the liver: modulation by cellular oxidative state.. Exp Biol Med, 2003. 228: p. 143-51.
    47. Rudel LL, D.M., Sawyer J, et al. , Primates highly responsive to dietary cholesterol upregulate hepatic ACAT2 while less responsive primates do not. . J Biol Chem, 2002.277: p. 31401-6.
    48. Chang CCY, L.C.-Y, Chang ET, et al. , Recombinant acyl-CoAxholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem, 1998. 273: p.35132-41.
    49. Cheng D, C.C., Qu X, et al., Activation of acyl-coenzyme Axholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system.. J Biol Chem, 1995. 270: p. 685-95.
    50. Rudel LL, M.M., Felts JM. , The transport of exogenous cholesterol in the rabbit. I.Role of cholesterol ester of lymph chylomicron and lymph very low density Iipoproteins in absorption.. J Clin Invest, 1972. 51: p. 2686-92.
    51. Haugen R, N.K., Coenzyme-A-dependent esterification of cholesterol in rat intestinal mucosa. Scand J Gastroenterol, 1976.11: p. 615-21.
    52. Miettinen TA, G.H., Cholesterol absorption efficiency and sterol metabolism in obesity.. Atherosclerosis, 2000.153: p. 241-8.
    53. Rudel L, D.C., Wilson M, et al. , Dietary cholesterol and down regulation of cholesterol 7 hydroxylase and cholesterol absorption in African green monkeys. . J Clin Invest, 1994. 93: p. 2463-72.
    54. Martirosyan, D.M., et al., Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis, 2007. 6: p. 1.
    55. Sliskovic DR, P.J., Krause BR., ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. . Prog Medicinal Chem, 2002. 39:p. 121-71.
    56. Wrenn SM Jr, P.J., Immermann FW, et al. , inhibitors CL 283,546 and CL 283,796 reduce LDL cholesterol without affecting cholesterol absorption in African green monkeys.. J Lipid Res, 1995. 36: p. 1199-210.
    57. Schwarz M, D.D., Russell DW., Genetic analysis of intestinal cholesterol absorption in inbred mice.. J Lipid Res, 2001. 42: p. 1801-11.
    58. Buhman KK, A.M., Novak S, et al. , Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice.. Nature Med, 2000. 6: p. 1341-7.
    59. Altmann SW, D.H.J., Zhu L, et al., Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 2004. 303: p. 1201-4.
    60. DS., G, The metabolism of chylomicron cholesteryl ester in the rat. J Clin Invest, 1962. 41: p. 1886-96.
    61. Bruckert E, G.P., Tellier P., Perspectives in cholesterol-lowering therapy - The role of ezetimibe, a new selective inhibitor of intestinal cholesterol absorption. Circulation, 2003.107: p. 3124-8.
    62. Temel RE, G.A., Parks JS, et al., Compared with acyI-CoA:choIesterol O-acyltransferase (ACAT)1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem 2003. 278: p.47594-601.
    63. Yu LQ, H.R., Li-Hawkins J, et al. , Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. . Proc Natl Acad Sci USA 2002. 99: p.16237-42.
    64. Yu L, L.-H.J., Hammer RE, et al., Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. . J Clin Invest, 2002.110: p. 671-80.
    65. Lee MH, L.K., Patel SB. , Genetic basis of sitos terolemia. . Curr Opin Lipidol, 2001.12: p. 141-9.
    66. Sniderman AD, Z.Z., Genest J, et al. , Effects on apoB-100 secretion and bile acid synthesis by redirecting cholesterol efflux from HepG2 cells. . J Lipid Res, 2003. 44: p.527-32.
    67. Wilcox LJ, B.P., Newton RS, et al., ApoBlOO secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011 - an effect associated with enhanced intracellular degradation of ApoB. Arterioscler Thromb Vasc Biol 1999.19: p. 939-49.
    68. Zhang ZJ, C.K., Sniderman AD. , Role of cholesterol ester mass in regulation of secretion of ApoB 100 lipoprotein particles by hamster hepatocytes and effects of statins on that relationship. Arterioscler Thromb Vasc Biol 1999.19: p. 743-52.
    69. Huff MW, T.D., Barrett PHR, et al., Inhibition of hepatic ACAT decreases apoB secretion in miniature pigs fed a cholesterol-free diet. . Arterioscler Thromb Vasc Biol,1994.14: p. 1498-508.
    70. Carr TP, H.R.J., Rudel LL. , ACAT inhibitors decrease secretion of cholesteryl esters and apolipoprotein B by perfused livers of African green monkeys. J Lipid Res 1995. 36:p. 25-36.
    71. Rudel LL, H.J., Sawyer JK, et al., Hepatic origin of cholesteryl oleate in coronary artery atherosclerosis in African green monkeys. Enrichment by dietary monounsaturated fat.. J Clin Invest, 1997.100: p. 74-83.
    72. Lada AT, R.L., St Clair RW., Effects of LDL enriched with different dietary fatty acids on cholesteryl ester accumulation and turnover in THP-1 macrophages. . J Lipid Res,2003. 44: p. 770-9.
    73. Logan RL, T.M., Riemersma RA, et al., Risk factors for ischaemic heart-disease in normal men aged 40. Lancet 1978. i: p. 949-55.
    74. Kingsbury KJ, M.D., Stovold R, et al. , Polyunsaturated fatty acids and myocardial infarction. Follow-up of patients with aortoiliac and femoropopliteal atherosclerosis.Lancet 1969. ii: p. 1325-9.
    75. EB., S., The relationship between plasma and tissue lipids in human atherosclerosis. .Adv Lipid Res, 1974.12: p. 1-49.
    76. Mahlberg FH, G.J., Jerome WG, et al., Metabolism of cholesteryl ester lipid droplets in a J774 macrophage foam cell model.. Biochim Biophys Acta Mol Cell Biol Lipids, 1990.1045: p. 291-8.
    77. Jerome, W.G., et al., Lysosomal cholesterol accumulation inhibits subsequent hydrolysis of lipoprotein cholesteryl ester. Microsc Microanal, 2008.14(2): p. 138-49.
    78. Sakashita N, M.A., Chang CCY, et al., Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is induced in monocyte-derived macrophages: in vivo and in vitro studies. Lab Invest, 2003. 83: p. 1569-81.
    79. Khelef N, S.T., Quehenberger O, et al. , Enrichment of acyl coenzyme A:cholesterol o-acyltransferase near trans-Golgi network and endocytic recycling compartment.Arterioscler Thromb Vase Biol, 2000. 20: p. 1769-76.
    80. Meiner VL, C.S., Myers HM, et al., Disruption of the acylCoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals.. Proc Natl Acad Sci USA, 1996. 93: p. 14041-14046.
    81. Accad M, S.S., Newland DL, et al., Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acylCoA:cholesterol acyltransferase 1. J Clin Invest 2000.105: p. 711-19.
    82. Yagyu H, K.T., Osuga J, et al., Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. . J Biol Chem, 2000. 275: p. 21324-30.
    83. Fazio S, L.L., Major AS, et al., Accelerated atherosclerosis in LDL receptor null mice reconstituted with ACAT negative macrophage.. Circulation, 1999.100: p. 1-613.
    84. Kellner-Weibel G, J.W., Small DM, et al. , Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler Thromb Vase Biol 1998.18: p. 423-31.
    85. Maccarrone M, B.L., Melino G, et al. , Cholesterol, but not its esters, triggers programmed cell death in human erythroleukemia K562 cells. . Eur J Biochem, 1998.253: p. 107-13.
    86. Fazio S, M.A., Swift LL, et al. , Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages.. J Clin Invest 2001.107: p. 163-71.
    87. Willner EL, T.B., Buhman KK, et al., Deficiency of acyl Co A: cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. . Proc Natl Acad Sci USA, 2003.100: p. 1262-7.
    88. Lee RG, K.K., Sawyer JK, et al. , Plasma cholesteryl esters provided by lecithinxholesterol acyltransferase and acyl-Coenzyme A:cholesterol acyltransferase 2 have opposite atherogenic potential. Circ Res 2004. 95: p. 998-1004.