高超声速进气道内激波/边界层干扰及射流式涡流发生器的流动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一套适用于超声速壁面湍流流动的数值模拟方法,建设了一座自由射流实验系统,采用上述数值模拟方法对高超声速进气道中的激波/湍流边界层干扰现象和射流式涡流发生器对边界层分离区的控制作用进行了研究,并在自由射流实验系统上进行了实验验证。
     构造了一种基于低扩散通量分裂方法的WENO格式,通过对Riemann问题的求解发现该格式对激波和膨胀波的分辨率高于传统的、基于Lax-Fridrichs分裂的WENO格式。
     建立了用于超声速壁面湍流计算的混合大涡/雷诺平均Navier-Stokes(混合LES/RANS)模拟方法并对其进行了理论分析,通过对高雷诺数超声速湍流边界的计算研究了空间维数、混合函数的过渡特性和网格分辨率的影响。发现二维计算会使入口边界层的平均参数发生不合理的漂移;RANS区域和LES区域的转换位置应当设置在对数层和尾迹层过渡区,且转换区域应当尽量窄;流向及展向的网格尺度和Escudier混合长相当时就能够获取精度较好的雷诺应力。
     建立了用于生成可压缩壁面湍流入口脉动边界条件的“回收/调节”方法,通过对超声速湍流边界层的计算分析了展向宽度、回收距离、网格分辨率和Klebanoff间歇函数的影响。发现展向宽度太小会导致入口边界层的平均参数发生漂移;回收距离过短会使流场中出现不合理的周期性涡结构和流向速度条带结构;在足够的网格分辨率下,“回收/调节”方法能够获得精度较高的雷诺应力;Klebanoff间歇函数可以合理地抑制边界层外层的脉动,提高雷诺应力的计算精度。
     建立了两种超声速湍流边界层混合LES/RANS模拟的初始化方法,一种是基于湍流边界层理论的相似变换方法,另一种是合成湍流方法,通过对超声速湍流边界层的计算发现相似变换方法构造的初场和N-S方程的相容性更好,从初场计算过渡至充分发展的湍流流场的时间大大短于合成湍流方法。
     对高超声速进气道中的流动问题进行了简化和计算,包括二维进气道的不启动流场和两种构型的交叉激波/湍流边界层干扰问题,发现在所研究的三个流动问题中分离区和分离激波存在大时空尺度的低频运动,其主频和理论值吻合;二维进气道可能在启动与不启动之间出现间歇性的转换,隔离段的流动呈现与分离区一致的低频特性;在交叉激波/湍流边界层干扰中,随着干扰强度的增大,分离区和分离激波的运动幅度会显著增大。
     对超声速边界层和射流涡流发生器的相互作用进行了研究,获取了精细的流场结构,包括不对称的弓形激波、桶状激波和流向涡对结构。射流倾斜一侧的流向涡生成较早,涡核离壁面较近,持续距离较短,搅拌作用较强,另一侧流向涡生成较晚,涡核离壁面较远,持续距离较长,搅拌作用较弱。射流可以增大边界层内层的能量。研究了射流对二维边界层分离区的控制作用,结果表明增大喷注压力可以减小分离区,但并不是越大越好,而是存在一个最佳值;俯仰角为45°时效果较好,偏航角影响较小,射流和分离区之间的距离应当足够长。对双孔射流阵和超声速边界层的相互作用进行了研究,发现两个射流孔的间距对下游的流场影响很大,间距较小会使得两股射流产生的流向涡结构相互挤压,导致耗散加快,带来不利影响。研究了双孔射流对二维边界层分离区的控制作用,发现同向喷射的效果优于反向喷射。
A set of numerical simulation method for supersonic wall-bounded turbulent flowswere studied and a freejet experimental facility was built in the present work.Shock/boundary layer interactions and the control of boundary-layer separation withvortex generator jets in hypersonic inlets were investigated and experimental validationswere performed.
     A WENO scheme based on low diffusion flux splitting method was constructedand used in the calculation of Riemann problem. The results showed it has betterresolution than the traditional WENO scheme based on Lax-Fridrichs splitting.
     A hybrid Large-Eddy/Reynolds-Averaged Navier-Stokes(hybrid LES/RANS)method for supersonic wall-bounded turbulent flows was established and analyzedtheoretically. In the calculation of a high Reynolds-number supersonic turbulentboundary-layer, geometric dimensions, grid resolution and the transition characteristicsof the blending function were considered. The results showed that the mean parametersof the inflow boundary-layer shifted unreasonably in two-dimensional calculation. TheRANS to LES transition zone should be placed in the interface region of logarithmiclayer and wake layer and the transition zone should be narrow. Acceptable predictionsof Reynolds stress can be obtained if streamwise and spanwise grid spacings are scaledaccording to the Escudier mixing length.
     A recycling/rescaling method for generating turbulent inflow flucutations wasestablished. The effects of spanwise width, recycling distance and grid resolution werestudied in the calculation of a supersonic turbulent boundary-layer. The results showedthat inadequate spanwise width led to shift of the mean inflow parameters.Unreasonable periodic vortex structures and streaks of streamwise velocity appearedwith inadequate recycling distance. Good predictions of Reynolds stress could beobtained by the recycling/rescaling method with enough grid resolution. Klebanoffintermittency function helped attenuate fluctuations in the outer layer of theboundary-layer and thus improved the calculation of Reynolds stress.
     Flow fileds in hypesonic inlets were simplified and calculated, including anunstarted flow field in a two-dimensional inlet and two crossing-shock/boundary-layerinteraction(CSBLI) cases. The results showed that the shock systems and separationzones in all three cases exhibited low-frequency motions in large scale of time andspace and their main frequencies were close to theoretic values. In the two-dimensionalinlet case, the flow field might be switch between start and unstart intermittently, andthe flow in the isolator exhibited similar low-frequency characteristic in the separationregion. In the two CSBLI cases, the motion of the shock system and separation regionexhibited in larger scale when interaction strength increased.
     The interaction of between vortex generator jet and supersonic boundary-layer wasinvestigated. The flow field includes asymmetric bow shock, barrel shock andstreamwise vortex pairs. The streamwise vortex on the side which the jet inclined to wasstronger, closer to the wall, generated earlier and existed with shorter duration than itscounterparts on the other side of the jet. The control effect of a two-dimensionalboundary-layer separation zone with a vortex generator was validated. The resultsshowed that increasing pressure of the jet makes the separation zone become smaller.An optimal pitch angle is close to45degrees and the change of yaw angle seemsineffective to the flow field. The distance from the jet to the separation region should belong enough for the streamwise vortexes to play a role on the separation. Double jetswith inadequate distance of each other promoted the interaction of the streamwisevortexes and make them dissipate fastser. Co-direction jets did a better job thancounter-direction jet in the control of the separation zone.
引文
[1]刘陵.超音速燃烧与超音速燃烧冲压发动机.西北工业大学出版社,1993.
    [2] Waltrup P J, White M E, Zarlingo F. History of U.S Navy Ramjet, Scramjet, andMix-Cycle Propulsion Development. Journal of Propulsion and Power,2002,18(1):14-17.
    [3]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案.飞航导弹,1997,8:29-37.
    [4]盛德林.反舰导弹的发展趋势.飞航导弹,2000,1:9-14.
    [5]王永寿.弹用吸气式发动机现状与发展动向.飞航导弹,2003,1:47-53.
    [6] Murthy S, Curran E T. High-speed flight propulsion systems. Progress inastronautics and aeronautics,1991,137.
    [7] Mcclinton C R, Rausch V L, Nguyen L T. Preliminary X-43flight test results.Acta Astronautica,2005,57:266.
    [8] Mehta U B, Bowles J V. Two-Stage-to-Orbit Spaceplane Concept with GrowthPotential. Journal of Propulsion and Power,2001,17(6):1147-1161.
    [9] Curran E T. Sramjet engines: The first forty years. Journal of Propulsion andPower,2001,17(6):1138-1148.
    [10] Ferri A, Libby P A, Zakkay V. Theoretical and experimental investigations ofsupersonic combustion. Proceedings of the international council of theaeronautical science,1964.
    [11] Weber R J, Mackay J S. Analysis of ramjet engines using supersonic combustion.1958.
    [12] Curran E T. Scramjet Engines: The First Forty Years. Journal of Propulsion andPower,2001,17(6).
    [13] Andrews E. H., Mackley E. A. Review of NASA's Hypersonic Engine Project.AIAA93-2323.1993.
    [14] Rubert K. F., Lopez H. J. The NASA Hypersonic Research Engine Program.N92-21521.1992.
    [15] Rogers R C, Capriotti D P, Guy R W. Supersonic combustion research at NASALangley. AIAA1998-2506.1998.
    [16] Waltrup P J. Liquid-fueled supersonic combustion ramjets: a researchperspective. Journal of Propulsion and Power,1987,3(6):515-524.
    [17] Kazmar R R. Hypersonic propulsion at Pratt&Whitney-overview. AIAA2005-3256.2005.
    [18] Billig F S. Supersonic combustion ramhet missle. Journal of Propulsion andPower,1995,11(6):1139-1146.
    [19]占云.高超声速技术计划.飞航导弹,2003,3:43-49.
    [20] Nelson H F, Hillstorm D G. Aerodynamic interference for hypersonic missiles atlow angle of attack. Journal of Spacecraft and Rockets,1998,35(6):749-754.
    [21]蔡国飙,李惠峰,徐大军.高超声速飞行器技术发展战略研究.2002.
    [22] Cockrell C E, Auslender a H, Guy R W. Technology roadmap for dual-modescramjet propulsion to support space-access vision vehicle development. AIAA2002-5188.2002.
    [23] Mccliton C R, Hunt J L, Ricketts R H. Airbreathing hypersonic technologyvision vehicles and development dreams. AIAA1999-4978.1999.
    [24] Hunt J L, Rausch V L. Airbreathing hypersonic systems focus at NASA LangelyResearch Center. AIAA1998-1641.1998.
    [25] Rausch V L, Mcclinton C R, Crawford J L. Hyper-X: Flight validation ofhypersonic airbreathing technology. ISABE1997-7024.1997.
    [26] Rausch V L, Mcclinton C R. Hyper-X program overview. ISABE1999-7213.1999.
    [27] Mcclintion C R, Rausch V L. Hyper-X program status. AIAA2001-1910.2001.
    [28] Voland R T, Rock K E, Huebner L D. Hyper-X engine design and ground testprogram. AIAA1998-1566.1998.
    [29] Waltrup P J, White M E, Zarlingo F. History of U.S. Navy Ramjet, Scramjet andMixed-Cycle Propulsion development. Journal of Propulsion and Power,2002,18(1):14-27.
    [30] Mercier R A, Ronald T M. Hypersonic technology program overview. AIAA1998-1566.1998.
    [31] Boudreau a H. Status of the U.S Air Force Hytech program. AIAA2003-6947.2003.
    [32] Norris R B. Freejet test of the AFRL HySET scramjet engine model at Mach6.5and4.5. AIAA2001-3196.200.
    [33] Boudreau a H. Hypersonic air-breathing propulsion efforts in the air forceresearch laboratory. AIAA2005-3255.2005.
    [34] Kandebo S W. Landmark tests boost scramjet's future. Aviation week and spacetechnology,2001:58-59.
    [35] Hughes D. Scramjet tests set stage for AF hypersonic flights. Aerospcade dailyand defense report,2007,6.
    [36] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjetengineflightdemonstration program. AIAA2008-2540. AIAA2008-2540.
    [37] Walker S H. Falcon hypersonic technology overview. AIAA2005-3253.2005.
    [38] Walker S H, Tang M, Hamilton B A. Falcon HTV-3X-A reusable hypersonictest bed. AIAA2008-2540.2008.
    [39] Tang M, Hamilton B A. The quest for hypersonic flight with air-breathingpropulsion. AIAA2008-2546.2008.
    [40] Roudakov A, Schickhman Y, Semenov V. Flight testing an axisymmetricscramjet: Russian recent advances. IAF93-S.4.485.1993.
    [41] Bouchez M, Roudakov a S, Kopchenov V I. French-Russian analysis of Kholoddual-mode ramjet flight experiment. AIAA2005-3320.2005.
    [42] Roudakov a S, Semenov V L, Hicks J W. Recent flight test results of the joinCIAM-NASA Mach6.5scramjet flight program.1998.
    [43] Tvoland R, Auslender a H, Ksmart M. CIAM/NASAMach6.5scramjet flightand ground test. AIAA2001-1807.1999.
    [44] Sacher P W, Zellner B. Flight testing objectives for small hypersonic flight testvehicles featuring a ramjet engine. AIAA1995-6014.1995.
    [45] Berens T M, Bissnger N C. Forebody precompression performance ofhypersonic flight test vehicles. AIAA1998-1574.1998.
    [46] Gurijanov E P, Harsha P T. AJAX: New direction in hypersonic technology.AIAA1996-4609.1996.
    [47] Bityurin V A, Lineberry J T, Potebnia V G. Assessment of hypersonic MHDconcepts. AIAA1997-2393.1997.
    [48] Sneider M N, Macheret S O. Modeling plasma and MHD effects in hypersonicpropulsion flowpath. AIAA2005-5051.2005.
    [49] Kaminaga S, Tomioka S, Yamasaki H. Feasibility study in MHD energy bypassscramjet engine. AIAA2005-3226.2005.
    [50] Tang J, Bao W, Yu D R. The influence of energy-bypass on the performance ofAJAX. AIAA2006-1376.2006.
    [51] Boyce R R, Paull A. Scramjet intake and exhaust CFD studies for the HyShotscramjet flight experiment. AIAA2001-1891.2001.
    [52] Paull A, Alesi H, Anderson S. The HyShot programms and how it wasdeveloped. AIAA2002-4939.2002.
    [53] Gardner a D, Hannemann K, Steelant J. Gound testing of the HyShot supersoniccombustion flight experiment in HEG and comparison with flight data. AIAA2004-335.2004.
    [54] Neuenhahn T, Olivier H, Paull A. Development of the HyShot stabilitydemonstrator. AIAA2006-2960.2006.
    [55] Walker S H, Rodgers F C, Esposita a L. Hypersonic collaborativeAustralia/United States experiment(HYCAUSE). AIAA2005-3254.2005.
    [56] Walker S H, Rodgers F C, Paul A. HyCAUSE flight test program. AIAA2008-2580.2008.
    [57] Novelli W, Faphar K A. Ajoint ONERA-DLR research project for high-speedairbreathing propulsion. ISABE1999-7091.1999.
    [58] Dessorners, Scherrer, Novelli. Tests of the JAPHAR dual mode ramjet engine.AIAA2001-1886.2001.
    [59] Serre L, Minard J P. French potential for semi-free jet test of an experimentaldual model ramjet in Mach4-8conditions. AIAA2002-5448.2002.
    [60] Falempin F, Serre L. The french PROMETHEE program status in2000. AIAA2000-3341.2000.
    [61] Falempin F, Serre L. PROMETHEE: The french military hypersonic propulsionprogram. AIAA2003-6950,2003,
    [62] Heitmeir F., Lederer R., Herrmann O. German Hypersonic TechnologyProgramme Airbreathing Propulsion Activities. AIAA92-5057.1992.
    [63] Kuczera Heribert, Hauck Helmuth, Krammer Paul. The German HypersonicsTechnology Programme-Status1993and Perspectives. AIAA93-5159.1993.
    [64] Weingertner S. S ENGER-The Reference Concept of the German HypersonicsTechnology Program. AIAA93-5161.1993.
    [65] Kania P. The German Hypersonics Technology Program-Overview. AIAA95-6005.1995.
    [66] Heitmeir F. J., Bissinger N. C. Development and Test of an AirbreathingPropulsion System for Hypersonic Speeds. AIAA1995-6027.1995.
    [67] Voss N. H. Ram Combustor Development within the German HypersonicsTechnology Program. AIAA95-6030.1995.
    [68] Chinzei Nobuo. Progress in Scramjet Engine Tests at NAL-KRC. AIAA2001-1883.2001.
    [69] Hiraiwa T, Tmitani, Kanda T. Experiments on a scramjet engine withramp-compression inlet at Mach8condition. AIAA2002-4129.2002.
    [70] Kanda T, Hiraiwa T, Izumikawa M. Measurement of mass capture ratio ofscramjet inlet models. AIAA2003-0011.2003.
    [71] Arai T, Masuda S, Sakima F. Intake fuel injection and shock inducedcombustion in a scramjet engine mode. AIAA2003-6910.2003.
    [72] Kanda T, Kudo K. A conceptual study of a combined cycle engine for anaerospace plane. AIAA2002-5146.2002.
    [73] Kato K, Kanda T, Kudo K. Experiomental study of combined cycle enginecombustor in scramjet-mode. AIAA2005-3316.2005.
    [74]梁德旺.二元高超声速进气道设计体系及优化.2005年高超声速进气道技术交流会.南京,2005.
    [75]郭荣伟.超声速进气道启动设计与实践中的若干感悟.2005年高超声速进气道交流会.南京,2005.
    [76]陈兵,徐旭,王元光.定几何混压式轴对称高超声速进气道设计及性能计算.航空动力学报,2005,20(3):373-379.
    [77]徐旭,蔡国飙.超燃冲压发动机二维进气道优化设计方法研究.推进技术,2001,22(6):468-472.
    [78]罗世斌,罗文彩,丁猛.超燃冲压发动机二维进气道多级多目标优化设计方法研究.国防科技大学学报,2004,26(3):1-6.
    [79]黎明,宋文艳,贺伟.高超声速二维混压式前体/进气道设计方法研究.航空动力学报,2004,19(4).
    [80]宋道军,胥继斌.高超声速二维前体进气道一体化优化设计研究.空气动力学学报,2004,19(4).
    [81]金志光,张堃元.二维非常规压缩型面超/高超声速进气道的设计概念.推进技术,2004,25(3):226-229.
    [82]张堃元,萧旭东,徐辉.高超声速侧压式进气道参数分析及试验研究.推进技术,1995,16(6):20-25.
    [83]张堃元,萧旭东,徐辉.非均匀流等溢流角设计高超侧压式进气道.推进技术,1998,19(1):20-24.
    [84]张堃元,马燕荣,徐辉.非均匀流等压比变后掠角高超侧压式进气道研究.推进技术,1999,20(3):40-44.
    [85]范晓樯,李桦,易仕和.侧压式进气道与飞行器机体一体化设计及实验.推进技术,2004,25(6):499-502.
    [86]李桦,范晓樯.高超声速进气道数值模拟与实验研究.2005年高超声速进气道技术交流会.南京,2005.
    [87]梁剑寒,刘卫东,王振国.高超声速侧压式进气道试验研究.2005年高超声速进气道技术交流会.南京,2005.
    [88]丁猛,梁剑寒,刘卫东.碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究.航空学报,2005,26(1):27-31.
    [89] Chen F, Chen L, Chang X. Three-dimensional sidewall-compression scramjetinlet CFD simulation and experimental comparison AIAA2003-4741.2003.
    [90]孙波,张堃元. Busemann进气道风洞实验及数值研究.推进技术,2006,27(1):58-60.
    [91]孙波,张堃元. Busemann进气道起动问题初步研究.推进技术,2006,27(2):128-131.
    [92]孙波,张堃元,金志光.流线追踪Busemann进气道设计参数的选择.推进技术,2007,28(1):55-59.
    [93]尤延铖,梁德旺,黄国平.一种新型内乘波式进气道初步研究.推进技术,2006,27(3):252-256.
    [94] Dolling D S. Fifty years of shock-wave/bounary-layer interaction research: whatnext? AIAA Journal,2001,38(9):1517-1531.
    [95] Ferri A. Experimental results with airlfoil tested in the high speed tunnel atGuidonia.1940.
    [96] Ackeret J, Feldmann F, Rott N. Inveitigation of compression shocks andboundary layers in gases moving at high speed.1947.
    [97] Liepmann H W. The interaction between boundary layers and shock waves intransonic flow. Journal of Aerospace Sciences,1946,13(12):623-638.
    [98] Donaldson C D. Effects of interaction normal shock and boundary layer.1944.
    [99] Liepmann H W, Roshko A, Dhawan S. On reflection of shock waves fromboundary layers.1952.
    [100] Barry F W, Shapiro a H, Neumann E P. The interaction of shock waves withboundary layers on a flat surface. Journal of Aerospace Sciences,1951,42(324):229-238.
    [101] Bardsley O, Mair W A. The interaction between an oblique shock waves with aturbulent boundary layer. Philosophical Magazine,1951,42(324):29-36.
    [102] Gadd G E, Holder D W. The interaction of an oblique shock wave with theboundary layer on a flat plate. Part I-results for M=2.1952.
    [103] Gadd G E, Holder D W, Regan J D. The interaction of an oblique shock wavewith the boundary layer ona flat plate. Part II-Interim note on the results forM=1.5,2,3and4.1953.
    [104] Bogdonoff S M, Solarski a H. A preliminary inveitigation of a shock waveturbulent boundary layer interaction.1951.
    [105] Johannesen N H. Experiments on two-dimensional supersonic flow in cornersand over concave surfaces.1952.
    [106] Beastall D, Eggink H. Some experiments on break-away in supersonic flow. Pt.1.1950.
    [107] Beastall D, Eggink H. Some experiments on break-away in supersonic flow. Pt.1.1950.
    [108] Lee J D. The influence of high adverse pressure gradients on boundary layers insupsersonic flow.1952.
    [109] Donaldson C D, Lange R H. Study of the pressure rise across shock wavesrequired to separated laminar and turbulent boundary layers.1955.
    [110] Holder D W, Pearcy H H, Gadd G E. The interaction between shock waves andboundary layers.1955.
    [111] Charpman D R, Kuehn D M, Larson H K. Investigation of separated flows insupersonic and subsonic streams with emphasis on the effect of transition.1958.
    [112] Kistler a L. Fluctuating wall pressure under a separated supersonic flow. Journalof the Aeronautical Society of America,1964,36(3):543-550.
    [113] Zheltovodov A. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. AIAA Paper96-1977.1996.
    [114] Zheltovodov A, Schulein E, Yakovlev V. Development of turbulent boudarylayer under conditions of mixed interaction with shock and expansion waves.Novosibirsk: USSR Academy of Sciences, Siberian Branch,1983.
    [115] Zheltovodov A, Yakovlev V. Stages of development, flowfield structure andturbulence characteristics of compressible separated flows in thr vicinity of2-D obstacles.1986.
    [116] Zheltovodov A, Trofimov V, Schulein E. An experimental documentation ofsupersonic turbulent flows in thr vicinity of forward-and backward-facingramps.1990.
    [117] Urbin G, Knight D, Zheltovodov A. Compressible large eddy simulation usingunstructured grid: supersonic boundary layer in compression corner. AIAAPaper99-0427.1999.
    [118] Yan H, Urbin G, Knight D. Compressible large eddy simulation usingunstructured grid: supersonic boundary layer and compression corner.International conference on thr methods of aerophysical research-Part1.2000.
    [119] El-Askary W. Large eddy simulation of subsonic and supersonic wall-boundedflows.2003, pp12-27.
    [120] Kannepalli C, Arunajatestan S, Dash S M. RANS/LES methodology forsupersoni ctransverse jet interactions with approach flow. AIAA2002-1139.2002.
    [121] Hostman C, Zheltovodov A. Numerical simulation of shock wav/expansionfans-turbulent boundary layer interaction. International conference on themethods of aerophysical research-Part2. Novosibirsk,1994.
    [122] Borisov A, Zheltovodov A, Maksimov a I. Verification of turbulence models andcomputational methods of supersonic separated flows. International conferenceon thr methods of aerophysical resaerch-Part1. Russia, Novosibirsk,1996.
    [123] Borisov A, Zheltovodov A, Maksimov a I. Experimental and numerical study ofsupersonic turbulent separated flows in the neighborhood of two-dimensionalobstacles. Mekhanika Zhidkosti i Gaza(Fluid Dyn)[in Russia],1999,(2):26-37.
    [124] Stolz S, Adams N, Kleiser L. The approximate deconvolution models for LESofcompressible flows and its application to shock-turbulent-boundary-layerinteraction. Phys of Fluids,2001,13:2985-3001.
    [125] Loginov M, Adams N, Zhelovodov A. Large eddy simulation of turbulentboundary layer interaction with successive shock and expansion waves.International conference on the methods of aerophysical research-Part1. Russia,Novosibirsk,2004.
    [126] Loginov M, Zhelovodov A. LES of shock wave/turbulent boundary layerinteraction. High performance computing in science and engineering04,2005,pp177-188.
    [127] Loginov M, Adams N, Zhelovodov A. LES of shock wave/turbulent boundarylayer interaction. High performance computing in science and engineering05,2006, pp221-234.
    [128] Adams N. Direction simulation of the turbulent boundary layer along acompression ramp at M=3and Re=1685. Journal of Fluid Mechanics,2000,420:47-83.
    [129] Yan H, Knight D, Zheltovodov A. Large eddy simulation of supersoniccompression corner using ENO scheme. Third AFOSR international conferenceon DNS and LES. Arlington,2001.
    [130] Knight D, Yan H, Panaras A. RTO WG10: CFD Validation for shock waveturbulent boundary layer interactions. AIAA Paper2002-0437.2002.
    [131] Knight D, Yan H, Panaras A. Advances in CFD prediction of shocl waveturbulent boundary interactions. Progress in Aerospace Sciences,2003,39:121-184.
    [132] Zheltovodov A. Advances and problems in modeling of shock wave turbulentboundary interactions. International conference on the methods of aerophysicalresearch-Part1. Novosibirsk,2004.
    [133] Zheltovodov A, Schuleinn E. The peculiarities of turbulent separationdevelopment in disturbedboundary layers. Modeling in Mechanics,1988,2(19):53-58.
    [134] Zheltovodov A, Schuleinn E, Hostmann C. Development of separation in theregion where a shock interacts with a turbulent boundary layer perturbed byrarefaction waves. Journal of Applied Mech and Techn Phys,1993,34(3):346-354.
    [135] Adams N. Direct numerical simulation of turbulent supersonic boundary layerflow.1st AFSOR Int Conf on DNS and LES.1997.
    [136] Rizzetta D, Visbal M. Large eddy simulation of supersonic compression rampflow. AIAA2001-2858.2001.
    [137] Wu M, Taylor E, Martin M. Assessment of STBLI DNS data and comparisonagainst experiment. AIAA2005-4895.2005.
    [138] Zheltovodov A, Borisov A, Knight D. The possibilities of numerical simulationof shock waves/boundary layer interaction in supersonic and hypersonic flows.International conference on the methods of aerophysical research-Part1.Novosibirsk, Russia,1992.
    [139] Zheltovodov A, Horstman C. Experimental and numerical investigation of2-Dexpansion/shock-wave-turbulent boundary layer interactions.1993.
    [140] Zheltovodov A, Borisov A, Knight D. The possibilities of numerical simulationof shock waves/boundary layer interaction in supersonic and hypersonic flows.International conference on the methods of aerophysical research-Part1.Novosibirsk, Russia,1992.
    [141] Bedarev I, Zheltovodov A, Fedorova N. Supersonic turbulent separated flowsnumerical model verification. International conference on the methods ofaerophysical research-Part1. Russia, Novosibirsk,1998.
    [142] Bedarev I, Fedorova N. Computation of the gas dynamic parameters and heatexchange in supersonic turbulent separated flows in the vicinity ofbackward-facing steps. Appl Mech and Tech Phys [in Russia],2001,42(1):56-64.
    [143] Zheltovodov A. Some advances in research of shock wave turbulent boundarylayer interactions. AIAA2006-496. Reno, Neveda,2006.
    [144] Zheltovodov A. Regimes and properties of three-dimensional separation flowsinitiated by skewed compression shocks. J.Appl.Mech.Tech.Phys,1982,23(2):413-418.
    [145] Zheltovodov A, Maksimov A, Schulein E. Development of turbulent separatedflows in the vicinity of swept shock waves. The interactions of complex3-Dflows.1987.
    [146] Schulein E, Zheltovodov A. Development of experimental methods for thehypersonic flows studies in Ludwieg tube. Internaltional conference on themethods of aerophysical research-Part1. Russia, Novosibirsk,1998.
    [147] Schulein E, Zheltovodov A. Documentation of experimental data for hypersonic3-D shock waves/turbulent boundary layer interaction flows.2001.
    [148] Thivet F, Knight D, Zheltovodov A. Importtance of limiting the turbulencestresses to predict3D shock wave boundary layer interactions.23rd InternationalSymposium on Shock Waves-2761. Ft.Worth,TX,2001.
    [149] Durbin P. On the k-e stagnatin point anomaly. Int J.Heat Fluid Flow,1996,17(1):89-90.
    [150] Zheltovodov A. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. AIAA96-1977.1996.
    [151] Knight D, Degrez G. Shock wave boundary layer interactions in high Machnumber flows-a critical survey of current CFD prediction capabilities.1998.
    [152] Panaras A. Review of the physics of swept-shock/boundary-layer interactions.Progress in Aerospace Sciences,1996,32(2/3):173-244.
    [153] Knight D. Numerical simulation of compressible turbulent flows using theReynolds-averaged Navier-Stokes Equations.1997.
    [154] Zheltovodov A, Maksimov A, Shevchenko A. Topology of three-dimensionalseparation under the conditions of symmetric interaction of crossing shocksand expansion waves with turbulent boundary layer. Thermophysics andAeromechanics,1998,5(3):293-312.
    [155] Zheltovodov A, Maksimov A, Shevchenko A. Topology of three-dimensionalseparation under the conditions of asymmetrical interaction of crossing shocksand expansion waves with turbulent boundary layer. Thermophysics andAeromechanics,1998,5(4):483-503.
    [156] Zheltovodov A, Maksimov A, Schulein E. Verification ofcrossing-shock-wave/boundary layer interaction computations with the k-eturbulence model. International conference on the method of aerophysicalresearch-Part1. Russia, Novosibirsk,2000.
    [157] Zheltovodov A, Maksimov A, Gaitonde D. Experimental and numerical study ofsymmetric interaction of crossing shocks and expansion waves with a turbulentboundary layer. Thermophysics and Aeromechanics,2000,7(2):155-171.
    [158] Thivet F, Knight D, Zheltovodov A. Computation ofcrossing-shock-wave/boundary-layer interactions with realizable two-equationturbulence models. International conference on the methods of AerophysicalResearch-Part1. Russia, Novosibirsk,2000.
    [159] Thivet F, Knight D, Zheltovodov A. Some insights in turbulence modeling forcrossing-shock-wave/boundary-layer interaction. AIAA2000-0131.2000.
    [160] Thivet F, Knight D, Zheltovodov A. Numerical prediction of heat-transfer insupersonic inlets. European Congress on Computational Methods in AppliedSciences and Engineering(ECCOMAS2000). Barcelona,11-14Sep,2000.
    [161] Thivet F, Knight D, Zheltovodov A. Insights in turbulence modeling forcrossing-shock-wave/boundary-layer interactions. AIAA Journal,2001,39(7):985-995.
    [162] Schmisseur J, Gaitonde D, Zheltovodov A. Exploration of3-D shock turbulentboundary layer interactions through combined experimental/computationalanalysis. AIAA2000-2378,2000,11.
    [163] Gaitonde D, Shang J, Garrison T. Three-dimesnional turbulent interactionscaused by asymmetric crossing-shock configurations. AIAA Journal,1999,37(12):1602-1608.
    [164] Gaitonde D, Shang J, Visbal M. Structure of a double-fin interaction at highspeed. AIAA Journal,1995,33(2):193-200.
    [165] Gaitonde D, Shang J. Structure of a turbulent double-fin interaction at Mach4.AIAA Journal,1995,33(12):2250-2558.
    [166] Thivet F, Knight D, Zheltovodov A. Analysis of observed and computedcrossing-shock-wave/turbulent boundary layer interactions. Aerospace SCi. andTech,2002,6:3-17.
    [167] Moore J F, Moore J. Realizability in two-equation turbulence models. AIAAPaper99-3779.1999.
    [168] Zheltovodov A, Maksimov A, Schulein E. Experimental and computationalstudies of crossing shock-wave/turbulent boundary-layer interactions.Proceedings of the international conference RDAMM-2001,2001,96:10.
    [169] Schmisseur J, Gaitonde D. Numerical investigation of strong crossing shockwave/turbulent boundary layer interactions. AIAA Journal,2001,39(9):1742-1749.
    [170] Panaras A. Cauculation of flows characterized by extensive cross flowseparation. AIAA Journal,2004,42(12):2474-2481.
    [171] Smith a N, Holden H A, Babinsky H. Control of normal shock wave/turbulentboundary layer interactions using streamwise grooves. AIAA2002-14151.2002.
    [172] Smith a N, Babinsky H, Dhanasekaran P C. Computational investigation ofgroove controlled shock wave/boundary layer interaction. AIAA2003-0446.2003.
    [173] Atik H, Walker J D A. Boundary-layer separation control using local suction andinjection. AIAA2005-4937.2005.
    [174] Adam R, Hans H G, Alexander F V. Experiments on passive hypervelocityboundary layer control using a porous surface. AIAA2001-16184.2001.
    [175] Ahmad K A, Watterson J K, Cole Js. Sub-boundary layer vortex generatorcontrol of a separated diffuser flow. AIAA2005-4650.2005.
    [176] Adam J. Development and application of design strategy for design of vortexgenerator flow control in inlets. AIAA2006-1050.2006.
    [177] Berry S A, Nowak R J, Horvath T J. Boundary layer control for hypersonicairbreathing vehicle. AIAA2004-2246.2004.
    [178] Fan X Q, Li H, Jia D. Forced boundary-layer transition of axisymmetric inlet inMach8gun wind tunnel and its numerical verification. AIAA2005-3551.2005.
    [179] Hamed A, Shih S H, Yeuan J J. A parametric study of bleed in shock boundarylayer interactions. AIAA1993-0294.1993.
    [180] Bur R, Corbel B. Experimental study of transonic interaction with shock andboundary-layer control. AIAA2000-2610.2000.
    [181] Delery J M. Shock wave/boundary layer interaction and its control. Progress inAerospace and Sciences,1985,22(4):209-280.
    [182] Tindell R H, Willis V P. Experimental investigation of blowing for controllingoblique shock/boundary layer interactions. AIAA1997-2642.1997.
    [183]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展,2005,35(2):221-234.
    [184] Zheng X, Hou A, Zhou S. Control of unsteady seprated flow inside axiacompressor by synthetic jets. AIAA2005-870.2005.
    [185] Bityurin V A, Bocharov a N, Baranov D S. Experimental and theoretical study ofMHD interaction in hypersonic ionized air over a wedge. AIAA2004-1194.2004.
    [186] Bobashev S V, Erofeev a V, Lapushkina T A. On the reflection characteristic ofthe attached shocks at flow decelerating in magnetic and electrica fields. AIAA2006-1003.2006.
    [187] Adelgren R G, Elliott G S, Knight D D. Energy deposition in supersinic flows.AIAA2001-0885.2001.
    [188] Yan H, Adelgren R, Elliott G. Laser energy deposition in intersecting shocks.AIAA2002-514.2002.
    [189]范晓樯.高超声速进气道设计、计算与实验研究[博士学位论文].国防科技大学,2006.
    [190] White M E, Lee R E, Thompson M W. Tangential mass addition forshock/boundary layer interaction control in scramjet inlets. Journal of Propulsionand Power,1991,7(6):1023-1029.
    [191] Schulte D, Henckels A, Wepler U. Reduction of shock induced boundary layerseparation in hypersonic inlets using bleed. Aerospace Science and Technology,1998,4:131-139.
    [192] Schulte D, Henckels A, Neubacher R. Manipulation of shock boundary-layerinteraction in hypersonic inlets. Journal of Propulsion and Power,2001,17(3):585-590.
    [193] Haberle J, Gulhan A. Investigation of the performance of a scramjet inlet atMach6with boundary layer bleed. AIAA2006-8139.2006.
    [194] Tam C-J, Eklund D, Behdadnia R. Investigation of buondary layer bleed forimproving scramjet isolator. AIAA2005-3286.2005.
    [195] Wie D M Van, Nedungadi A. Plasma Aerodynamics flow control of the effect ofreverse sweep on a scramjet inlet performance. AIAA2004-4129.2004.
    [196] Wallis R A. The use o fair jets for bounadry layer control.1952.
    [197] Wallis R A, Stuart C M. On the control of shock-induced boundary-layerseparatio with discrete jets. Current Paper.1958.
    [198] Wallis R A. A preliminary note in a modified type of air jet for boundary layercontrol. Current Paper.1960.
    [199] Ball W H. Test of wall blowing comcepts for diffuser boundary layer control.AIAA Paper1984-1276. June11-13,1984.
    [200] Johnston J P, Nishi M. Vortex generator jets-a means for passive and activecontrol of boundary layer separation. AIAA Paper1989-0564.1989.
    [201] Lin J C, Selby G V. Exploratory study of vortex generating devices for turbulentflow separation control. AIAA Paper1991-0042.1991.
    [202] Compton D A, Johnston J P. Streamwise vortex production by pitched andskewed jets in a turbulent boundary layer. AIAA Journal,1992,30(3):640-647.
    [203] Henry F S, Pearcey H H. Numerical model of boundary-layer control usingair-jet generated vortices. AIAA Journal,1994,32(12):2415-2425.
    [204] Gross A, Fasel H F. Numerical investigation of low-pressure turbine bladeseparation control. AIAA Journal,2005,43(12):2514-2525.
    [205] Rizzetta D P, Visbal M R. Numerical simulation of separation control fortransitional highly loaded low-pressure turbines. AIAA Journal,2005,43(9):1958-1967.
    [206] Reimann D, Bloxham M, Crapo K L. Influence of jet-induced transition onseparating low-pressure turbuine boundary layers. Journal of Propulsion andPower,2007,23(5):996-1006.
    [207] Evans S, Hodson H, Hynes T. Controlling separation on a simulated compressorblade using vortex-generator jets. Journal of Propulsion and Power,2010,26(4):819-827.
    [208] Evans S, Hodson H, Hynes T. Flow control in a compressor cascade at highincidence. Journal of Propulsion and Power,2010,26(4):828-836.
    [209] Gross A, Fasel H F. Numerical simulatin of low-pressure turbine bladeseparation control. AIAA Journal,2010,48(8):1582-1601.
    [210] Gross A, Fasel H F. Avtive flow control for NACA6-Series airfoil at Re=64200.AIAA Journal,2010,48(9):1882-1902.
    [211] Magill J, Bachmann M, Rixon G. Dynamic stall control using a model-basedobersver. Journal of Aircraft,2003,40(2):355-362.
    [212] Magill J C, Mcmanus K R. Exploring the feasibility of pulsed jet separationcontrol for aircraft configurations. Journal of Aircraft,2001,38(1):48-56.
    [213] Prince S A, Khodagolian V, Singh C. Aerodynamic stall syppression on airfoilsections using passive air-jet vortex generators. AIAA Journal,2009,47(9):2232-2242.
    [214] Scholz P, Casper M, Ortmanns J. Leading-edge separation control by means ofpulsed vortex generator jets. AIAA Journal,2008,46(4):837-846.
    [215] Senseney M B, Buter T A, Bowersox R D W. Flow structure and performancecharacterization of an offset diffuser with and without vortex generator jets.AIAA Paper1995-2884.1995.
    [216] Senseney M B, Buter T A, Bowersox R D W. Performance charactristion of ahighly offset diffuser with vortex generator jets. Journal of Propulsion andPower,1996,12(2):237-244.
    [217] Raghunathan S, Watterson J K, Cooper R K. Short wide angle diffuser withpulse jet control. AIAA Paper1999-0280.1999.
    [218] Pradeep a M, Sullery R K. Secondary flow control in a circular S-duct diffuserusing vortex generator jets. AIAA Paper2004-2615.2004.
    [219] Sullerey R K, Mangat V S, Padhi A. Flow control in serpentine inlet usingvortex generator jets. AIAA Paper2006-3499.2006.
    [220] Kumar V, Alvi F S. Use of high-speed microjets for active separation control indiffusers. AIAA Journal,2006,44(2):273-281.
    [221] Quinn D, Waterson J K, Crawford a B. Blown jet vortex generator control of aseparated diffuser flow. AIAA Paper2006-841.2006.
    [222] Valdivia A, Yuceil K B, Wagner J L. Active control of supersonic inlet unstartusing vortex generator jets. AIAA Paper2009-4022.2009.
    [223] Srikant S, Wagner J L, Valdivia A. Unstart detection in a simplified-geometryhypersonic inlet-isolator flow. Journal of Propulsion and Power,2010,25(5):1059-1071.
    [224] Do H, Im S, Mungal M G. Unstart of a supersonic model inlet/isolator flowinduced by mass injection. AIAA Paper2011-68.2011.
    [225] Young D D, Jenkins S A. An investigation of active flowfield control for inletshock/boundary layer interaction. AIAA Paper2005-4020.2005.
    [226] Mcmanus K R, Legner H H, Davis. S J. Pulsed vortex generator jets for activecontrol of flow separation. AIAA Paper1994-2218.1994.
    [227] Mcmanus K, Magill J. Separation control in incompressible and compressibleflows using pulsed jets. AIAA Paper1996-1948.1996.
    [228] Raghunathan S, Watterson J K. Passive vortex control jets for shock boundarylayer interactions. AIAA Paper1999-3196.1999.
    [229] Johari H, Rixon. G S. Evolution of a pulsed vortex generator jet in a turbulentboundary layer. AIAA Paper2002-2834.2002.
    [230] Moore K, Wolff M. A PIV study of pusled vortex generator jets. AIAAPaper2004-3927.2004
    [231] Bueno P C, Wagner J L, Searcy J A. Experiments in Unsteady Forcing of Mach2Shock Wave-Boundary Layer Interactions. AIAA Paper2006-878.2006.
    [232] Valdivia A, Yuceil K B, Wagner J L. Active control of supersonic inlet unstartusing vortex generator jets. AIAA2009-4022.2009.
    [233] Chapman D. R. Computational Aerodynamics Development and Outlook. AIAAJournal,1979,17:1293-1313.
    [234] Deardorff J.W. A Numerical Study of Three-Dimensional Turbulent ChannelFlow at Large Reynolds Numbers. Journal of Fluid Mechanics,1970,41:453-480.
    [235] Schumann U. Subgrid scale model for finite difference simulations of turbulentflows in plane channels and annuli. Journal of Computational Physics,1975,18:376-404.
    [236] Piomelli U., Moin P., Ferziger J. H. New Approximate Boundary Conditions forLarge-Eddy Simulations of Wall-Bounded Flows. Physics of Fluids A,1989,1:1061-1068.
    [237] Balaras E., Benocci C. Subgrid-Scale Models in Finite-Difference Simulationsof Complex Wallbounded Flows. AGARD CP551.1994.
    [238] Balaras E., Benocci C., Piomelli U. Two-Layer Approximate BoundaryConditions for Large-Eddy Simulations. AIAA journal,1996,34:1111-1119.
    [239] Speziale C. G. Turbulence Modeling for Time Dependent RANS and VLES: AReview. AIAA Journal,1998,36(2):173-184.
    [240] Batten P., Goldberg U., Chakravarthy S. Sub-Grid Turbulence Modeling forUnsteady Flow with Acoustic Resonance. AIAA Paper2000-0473.2000.
    [241] Spalart P.R. Comments on the feasibility of LES for wings and on a hybridRANS/LES approach1st Air Force Office of Scientific Research InternationalConf on DNS/LES. Aug,1997.
    [242] Strelets M. Detached EddySimulation of MassivelySeparated Flows. AIAAPaper2001-0879.2001.
    [243] Won Su Hee, Jeung in Seuck, Choi Jeong Yeol. DES Study of Transverse JetInjection into Supersonic Cross Flows. AIAA paper2006-1227.2006.
    [244] Menter F.R. Two equation eddy viscosity turbulence models for engineeringapplications. AIAA Journal,1994,32(8):1589-1605.
    [245] Fan T. C., Tian M., Edwards J. R. Validation of a hybrid Reynolds-averaged/Large eddy simulation method for simulating cavity flameholder configurations.AIAA paper2001-2929.2001.
    [246] Spalart P. R., Deck S., Shur M. L. A new version of detached-eddy simulation,resistant to ambiguous grid densities. Theory Computation Fluid Dynamics,2006,20(1):181-195.
    [247] Xiao Xudong, Edwards J. R., Hassan H. A. Inflow Boundary Conditions forHybrid Large Eddy/Reynolds Averaged Navier-Stokes Simulations. AIAAJournal,2003,41(8):1481-1489.
    [248] Fan Thomas C., Xiao Xu D., Edwards Jack R. Hybrid LES/RANS Simulationof a Shock Wave/Boundary Layer Interaction. AIAA paper2002-0431.2002.
    [249] Baurle R. A., Tam C.J., Edwards J. R. Hybrid Simulation Approach for CavityFlows: Blending,Algorithm, and Boundary Treatment Issues. AIAA Journal,2003,41(8):1463-1484.
    [250] Nichols R. H., Nelson C. C. Application of hybrid RANS/LES turbulence model.AIAA paper2003-0083.2003.
    [251] Strelets M. Detached eddy simulation of massively separated flows. AIAA Paper2001-0879.2001.
    [252] Fan T C, Xiao X D, Edwards J R. Hybrid LES/RANS simulation of a Mach3shock wave/boundary layer interaction. AIAA-2003-80.2003.
    [253] Xiao X D, Edwards J R, Hassan H A. Inflow boundary conditions forLES/RANS simulations with applications to shock wave/boundary layerinteractions. AIAA-2003-79.2003.
    [254]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[博士].国防科学技术大学,2008.
    [255] Frohlich Jochen, Terzi Dominic Von. Hybrid LES/RANS methods for thesimulation of turbulent flows. Progress in Aerospace Sciences,2008,44:349-377.
    [256] Stanley S, Sarkar S. Influence of nozzle conditions and discrete forcing onturbulent planar jets. AIAA Journal,2000,38:1615-1623.
    [257] Klein M, Sadiki A, Janicka J. Influence of the boundary conditions on thedirect numerical simulation of a plane turbulent jet. in: TSFP2,2nd InternationalSymposium on Turbulence and Shear Flow Phenomena. Stockholm,2001.
    [258] Klein M, Sadiki A, Janicka J. Influence of the inflow conditions of primarybreakup of liquid jets. in: ILASS-Europe, Annual Conference on LiquidAtomization and Spray system. Zurich,2001.
    [259] Lund T S, Wu X H, Squires K D. Generation of turbulent inflow data forspatially-developing boundary layer simulations. Journal of ComputationalPhysics,1998,140:233-258.
    [260] Pirozzoli S, Grasso F. Direct numerical simulation of imping shockwave/turbulent boundary layer interaction at M=2.25. Physics of Fluids,2006,18(6):065113.
    [261]李新亮,傅德薰,马延文.压缩折角-激波湍流边界层干扰直接数值模拟.中国科学,物理学,力学,天文学,2010,40(6):791-799.
    [262] Otero E. Synthetic inlfow ocndition for large eddy simulation(synthetic eddymethod)[Master]. Royal Institute of Technology,2009.
    [263] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data forspatially developting direct numerical or large eddy simulations. Journal ofComputationa Physics,2003,186:652-665.
    [264] Batten P, Goldberg U, Chakravarthy S. Intercacing statistical turbulence closureswith large-eddy simulation. AIAA Journal,2004,42(3):485-492.
    [265] Spille-Kohoff A, Kaltenbach H-J. Generation of turbulent inflow data with aprescribed shear-stress profile.3rd AFSORinternational conference onDNS/LES. Arlington,2001.
    [266] Keating A, Piomelli U. Synethetic generatin of inflow velocities for large-edddysimulation. AIAA2004-2547.2004.
    [267] Druault P, Lardeau S, Bonnet J P. Generation of three-dimensional turbulentinlet conditions for large-eddy simulation. AIAA Journal,2004,42(3):447-456.
    [268] Kraichnan R H. Diffusion by a random velocity field. Physics of Fluids,1969.
    [269] Rogallo R S. Numerical experiments in homogeneous turbulence.1981.
    [270] Lee S, Lele S K, Moin P. Simulation of spatially evolving turbulence andapplicability of Taylor's hypothesis in compressible flow. Physics of Fluids A,1992,4:1521.
    [271] Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over abackward-facing step. Journal of Fluid Mechnics,1997:330:349.
    [272] Davidson L. Using isotropic synthetic fluctuations as inlet boundary conditionsfor unsteady simulations. Advances and Allpications in Fluid Mechanics,2007.
    [273] Akselvoll K, Moin P. Large eddy simulation of turbulent confined coannular jetsand turbulent flow over a backward facing step.1995.
    [274] Kaltenbach H-J. Large eddy simulation of flow in a plane asymmetric diffuser.1993.
    [275] Friedrich R, Arnal M. Analysing turbulent backward-facing step flow with thelowpass-filter Navier-Stokes equation. Journal of Wind Engineering and itsApplications,1990.
    [276] Schluter J U, Pitsch H, Moin P. Large eddy simulation inflow conditions forcoupling with Reynolds-averaged flow solvers. AIAA Journal,2004,42(3):478-484.
    [277] Spalart P R, Leonard A. Direfct numerical simulation of equilibrium turbulentbounday layers. Proceedings of the fifth symposium on turbulent shear flows,1985,
    [278] Urbin G, Knight D. Large-eddy simulation of a supersonic boundary layer usingan unstructured grid. AIAA Journal,2001,39(7):1288-1295.
    [279] Stolz S, Adams N. Large eddy simulation of high Reynolds number supersonicboundary layer using the approximate deconvolution model and a rescalingand recycling technique. Physics of Fluids,2003,15(8):2398-2412.
    [280] Xu S, Martin P. Assessment of inflow boundary conditions for compressibleturbulent boudnary layers. Physics of Fluids,2007,16(7):2623-2639.
    [281] Xu S, Martin M P. Inflow boundary conditions for compressible turbulentboundary layers. AIAA Paper2003-3963.2003.
    [282] Boles J A, Choi J I, Edwards J R. Multi-wall recycling/rescaling method forinflow turbulence generation AIAA-2010-1099.2010.
    [283] Aider J-L, Danet A. Large eddy simulation study of upstream boundaryconditions influence upon a backward-facing step flow. Comptes RendusMecanique,2006.
    [284] Wang M, Moin P. Computation of trailing-edge flow and noise using large-eddysimulation. AIAA Journal,2000.
    [285] Edwards J R, Choi J I, Boles J A. Large-eddy/Reynolds-averaged Navier-StokesSimulation of a Mach5Compression-corner interaction. AIAA Journal,2008,46.
    [286] Choi J I, Edwards J R, Baurle R A. Compressible boundary-layer predictions athigh Reynolds number using hybrid LES/RANS methods. AIAA Journal,2009,47:2179-2192.
    [287] Pope S B. Tuebulent Flows. Cambrige University Press,2000.
    [288] Erlebacher G, Hussaini M Y, G C G Speziale C. Toward the large eddysimmulation of compressible turbulent flows [J]. Journal of Fluid Mechanics,1992,(238):85-155.
    [289] Favre A. Equations des Gaz Turbulents Compressibles. Journal de Mecanique,1965,4(3):361-390.
    [290] Schumann U. Subgrid scale model for finite difference simulations of turbulentflows in plane channels and annuli. Journal of Computational Physics,1975,18:376-604.
    [291] Lenormand E, Sagaut P, Comte P. Sub-grid scale models for large-eddysimulations of compressible, wall-bounded flows. AIAA Journal,2000,38(8):1340-1350.
    [292] Reynolds O. On the dynamic theory of incompressible viscous fluids and thedetermination of the criterion. Philosophical Transactions of the Royal Societyof London,1895,(186):123.
    [293] Menter F R. Two-equation eddy viscosity turbulence models for engineeringapplications. AIAA Journal,1994,32(8):1589-1605.
    [294] Fan C C. Hybrid Reynolds-averaged/Large-Eddy simulations of ramped-cavityand compression ramp flow-fileds[Master]. North Carolina State University,2002.
    [295] Xiao X D, Edwards J R, Hassan H A. Investigation of flow dependent blendingfunctions in hybrid LES/RANS simulations. AIAA-2003-3462.2003.
    [296] Baurle R A, Tam C J, Edwards J R. Hybrid simulation approach for cavity flows:blending, algorithm and boundary treamment issues. AIAA Journal,2003,41(8):1463-1480.
    [297] Choi J I, Edwards J R, Baulre R A. Compressible boundary layer predictions athigh Reynolds number using hybrid LES/RANS methods. AIAA-2008-4175.2008.
    [298] Wilcox D C. Turbulence modeling for CFD. CA Canada: DCW Industries,1998.
    [299] Coles D. The law of the wake in the turbulent boundary layer. Journal of FluidMechanics,1956,1:191-226.
    [300] Walz A. Boundary layers of flow and temperature. Braun Verlag: MITPress,1966.
    [301] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes.Journal of Computational Physics,1996,126:202-228.
    [302] Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokescalculations. AIAA Paper1995-1703.1995.
    [303] Liou M S. Progress towards an improved CFD method: AUSM+. AIAAPaper1995-1701.1995.
    [304] Garnier E, Sagaut P. Large eddy simulation of shock boundary layer interaction.AIAA Journal,2002,40(10):1121-1129.
    [305] Dubuc L, Cantariti F, Woodgate M. Solution of unsteady Euler equations usingan implicit dual-time step method[J]. AIAA Journal,1998,36(8):1417-1424.
    [306] Jameson A, Yoon S. Lower-upper implicit schemes with multiple grids for theEuler equations[J]. AIAA Journal,1987,25(7):929-935.
    [307]郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证.国防科学技术大学,2004.
    [308] Glimm J. Solutions in the large for non-linear systems of equations. Comm. PureAppl. Math.,1965,18:95-105.
    [309] Smits A, Dussauge J-P. Turbulent shear layers in supersonic flow.1996.
    [310] Driest E V. Turbulent boundary layer in compressible fluids. Journal of theAeronautical sciences,1951,18(3):145-160&216.
    [311] Dussauge J, Gaviglio J. The rapid epansion of a supersonic turbulent flow: roleof bulk dilatation. Journal of Fluid Mechanics,1987,174:81-112.
    [312] Favre A. The Mechanics of Turbulence. New York: Gordon and Breach,1964.
    [313] Morkovin M V. Effects of compressibility in turbulence flow1962.
    [314] Fan C C, Xiao X D, Edwards J R. Hybrid large eddy/Reynolds-averagedNavier-Stokes simulations of shock-separated flows. Jouranal of Spacecraft andRockets,2004,41:897-906.
    [315] Hopkins E, Inouye M. An evaluation of theories for predicting skin frictionand heat transfer in flat plates at supersonic and hypersonic mach numbers.AIAA Journal,1971,9:993-1003.
    [316] Norris J W, Edwards J R. Large-eddy simulation of high-speed, turbulentdiffusion flames with detailed chemistry[C]. AIAA Paper1997-0370.1997.
    [317] Sagaut P. Turbulent inflow conditions for Large-Eddy Simulation ofcompressible wall-bounded flows. AIAA Journal,2004,42(3):469-477.
    [318] Bohr E, Cuba J B, Jansen K. Inflow generation technique for large eddysimulation using equilibrium similarity analysis AIAA Paper2005-4672.2005.
    [319] Edwards J R, Choi J I, Boles J A. Hybrid LES/RANS simulation of a Mach5compression-corner interaction. AIAA-2008-718.2008.
    [320] Smagorinsky J. General circulation experiments with the primitive equations.Monthly Weather Review,1967,91(3):99-165.
    [321] Jeong J, Hussain F. On the identification of a vortex. Joural of Fluid Mechnics,1995,285:69-94.
    [322] Yoshizawa A, Horiuti K. A statistically derived subgrid scale kinetic energymodel for large-eddy simulation of turbulent flows. Journal of the PhysicalSociety of Japan,1985,54.
    [323] Chakravarthy V, Menon S. Large eddy simulation of turbulent premixed flamesin the flamelet regime. Combustion Science and Technology,2001,162:175-222.
    [324] Menon S, K rta M. Zonal Hybrid RANS-LES Method for Static and OscillatingAirfoils and Wings. AIAA2006-1256.2006.
    [325] Georgiadis N J, Rizzetta D P, Fureby C. Large-eddy simulation: Currentcapabilities, Recommended Practices and Future Research. AIAA Journal,2010,48(8):1772-1784.
    [326] Debonis J R, Scott J N. Study of the error and efficiency of numerical schemesfor computational aeroacoustics. AIAA Journal,2002,40(2):227-234.
    [327] Fan T C, Xiao X D, Edwards J R. Hybrid LES/RANS simulation of a shockwave/boundary layer interaction. AIAA-2002-0431.2002.
    [328] Luker J J, Bowersox R D W, Buter T A. Influence of curvature-driven favorablepressure gradient on supersonic turbulent boundary layer. AIAA Journal,2000,38(8):1351-1359.
    [329] Zheltovodov a A, Zaulichnii E G, Trofimov V M. Heat and turbulence study incompressible separated flows. Theoretical and Applied Mechanics,1987:22-87.
    [330] Gruber M R, Nejad a S, Dutton J C. An experimental investigation of transverseinjection from circular and elliptical nozzles into a supersonic crossflow[R].1996.
    [331]王翼.高超声速进气道启动问题研究[博士学位论文].国防科学技术大学,2008.
    [332] Loginov M, Adams N, Zheltovodov A. Large-eddy simulation of turbulentboudary layer inteaction with successive shock and expansion waves.International conference on thr methods of aerophysical research-Part1, Russia.Novosibirsk,2004.
    [333] Xiao X D. Large-Eddy simulation/Reynolds-Averaged Navier-Stokes hybridschemes for high speed flows[Ph.D]. North Carolina State University,2002.