高超声速飞行器巡航控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸气式高超声速飞行器具有速度快、巡航高度高、机动能力强等优点,因此在军事及民用领域都具有特殊的战略意义,已成为当前航空航天领域的研究热点。但由于采用了超燃冲压发动机、机体/发动机一体化设计等先进技术,使得高超声速飞行器气动、推进、结构和控制之间存在显著的动态交叉耦合效应,模型的非线性和不确定程度也很高,同时由于高超声速飞行器控制系统参数及发动机推力对飞行条件变化极其敏感,导致控制系统设计面临一系列困难。本文研究吸气式高超声速飞行器巡航控制问题,重点研究了纵向控制问题和倾斜转弯控制问题,其中纵向控制又分为稳态巡航时的攻角控制问题和纵向机动控制问题,倾斜转弯控制主要研究姿态控制问题。
     首先,在充分借鉴国内外文献资料的基础上,结合高超声速飞行器巡航段的飞行特点,建立起完整的高超声速飞行器6自由度数学模型,其中气动系数和吸气式发动机推力系数是飞行攻角、马赫数、高度和舵偏角的函数,并根据需要建立了纵向控制模型和倾斜转弯控制模型,分别进行了开环特性分析,表明整个模型能够体现出高超声速飞行器复杂的非线性、耦合性以及快时变性等特点,为设计具有非线性解耦控制能力和鲁棒性能的控制器提供了平台。
     在稳态巡航攻角控制中,首先建立了攻角控制模型并进行了操稳特性分析,然后分别设计了模糊PID控制、模型参考自适应滑模控制和自适应全局滑模控制三种攻角控制律,控制律的设计主要强调在参数不确定和干扰情况下保证攻角的快速、精确控制。
     在纵向非线性不确定模型控制研究中,以非线性输入输出反馈线性化控制作为控制内环,将复杂的非线性系统控制问题转化为线性系统的综合问题,然后分别设计滑模控制和反步滑模控制作为外环解决不确定性满足匹配条件与不满足匹配条件下系统的鲁棒控制问题。
     在倾斜转弯线性解耦控制研究中,设计了一种基于全局积分滑模的滚转角鲁棒自适应控制方法,同时基于多变量频域法对飞行器俯仰/偏航通道自动驾驶仪进行解耦设计,设计了一种解耦效果大大优于普通一阶预补偿阵的比例-积分型预补偿阵对耦合模型进行预补偿,把相互耦合的双输入双输出控制系统设计问题简化为两个单输入单输出系统的设计问题,然后用极点配置方法进行了独立系统设计。
     在倾斜转弯非线性解耦控制研究中,针对不确定性满足广义匹配条件的情况,设计了一种基于全局积分滑模面的变结构解耦控制器,解决了传统滑模控制抑制干扰能力差、滑模趋近阶段存在耦合的问题,同时通过滑模函数反馈削弱了系统参数不确定和干扰影响引起的滑模误差,实现了各输出之间的全程解耦和鲁棒稳定。针对不确定性不满足广义匹配条件的情况,设计了基于反步法的全局积分滑模解耦控制方法,在反步设计中每一步都采用鲁棒的全局积分滑模控制来稳定不确定系统,通过逐级修正算法设计控制器来实现对期望输出的渐进跟踪。
Air-breathing hypersonic vehicle has characteristics of fast velocity, high cruisealtitude and maneuvers, etc, and it is of special strategic significant in both the themilitary and commercial areas. Therefore, it attacks an ever increasing attentionworldwide. However, there is a strong inherent coupling among the aerodynamics,propulsion, structure and control dynamics due to the adoption of the scramjet engine,airframe/engine integrated design and other advanced technologies, and this leads to ahigh nonlinear dynamic model and serious uncertain. At the same time, a series ofdifficulties are encountered by the control system design because of control systemparameters and engine thrust both being extremely sensitive to changes in flightconditions.
     In this dissertation, the control problem in the cruising phase of the air-breathinghypersonic vehicle is studied, in particular on the longitudinal control and bank-to-turn(BTT) control. Additionally, the longitudinal control include angle of attack control atsteady-state and longitudinal maneuver control, and the BTT control performs theinvestigation on the attitude control problem.
     First of all, a six degree-of-freedom (6DOF) simulation model of a conceptualair-breathing hypersonic vehicle is presented, according to the available literatures andits flying characteristics during the cruising phase, and it includes the whole of kineticequations and motion equations. Aerodynamic and engine thrust coefficients are givenas functions of angle of attack, mach number, height and control surface deflections.Subsequently the longitudinal control and BTT control models are established.Open-loop dynamics and stability characteristics analysis demonstrates that theproposed model can reflect complex the nonlinear, coupling and fast time-varyingcharacteristics of the hypersonic vehicle, and it can provide a platform for the design ofnonlinear decoupling and robust performance of a controller.
     In the angle of attack control at steady-state, the control/stability characteristics areanalyzed, and three kinds of control law based on fuzzy PID, adaptive sliding modewith reference model and adaptive global sliding mode are designed respectively. Thecontrol scheme emphasises on the output of the system tracking the anticipant signalsfast and accurately with uncertain parameters and serious disturbance.
     In the longitudinal nonlinear uncertain model control, the non-linear feedbacklinearization control is employed as an inner loop to convert the complex nonlinearmathematic model into equivalent linear model accurately for control design, match andmismatched uncertainties control problems respectively, and then a sliding mode and abackstepping sliding mode are proposed as outer loops for the controllers, the globalstability and robustness of the closed-loop is guaranteed.
     In the decoupling control for linear model of BTT hypersonic vehicle, a robustcontrol approach for roll channel based on adaptive global integral sliding mode isproposed, and a decoupling autopilot is designed for pitch/yaw channel usingmultivariable frequency domain approach based on the Nyquist array method. Thecross-coupling is decreased with a proportional-integral (PI) model percompensatormatrix, which has much better affect than the ordinary first-order precompensationmatrix. A main-controller is then designed for the approximately decoupled system tomeet the requirement of the desired dynamic performance and stable accuracy throughpole placement design method for an independent system.
     In the decoupling design for nonlinear uncertain model of BTT hypersonic vehicle,an adaptive global integral sliding mode control approach is proposed to solve theuncertainties, which satisfy the generalized matching conditions. This methodguarantees the system robustness during the whole control process and eliminates thecross-coupling at the reaching phase. The sliding mode error caused by disturbance andperturbation is weakened with feedback, and the efficient decoupling and robustnessduring the whole control process is achieved. For the condition of the uncertaintiesdissatisfying the generalized matching conditions, a backstepping sliding modecontroller is designed, and a global integral sliding mode is introduced at each step ofthe backstepping design, which makes the initial state of the system locate on the slidingmode. The dummy control is obtained based on the Lyapunov stability theorem step bystep, and all the state is balanced and the output is traced progressively.
引文
[1]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态[J].飞航导弹,2004(5):27~31,54.
    [2]刘桐林.美国高超声速技术的发展与展望[J].航天控制,2004,22(4):36~41.
    [3] Bahm C, Baumann E, Martin J et al. The X-43A Hyper-X Mach7flight2guidance, navigation, and control overview and flight test results[A]. In:AIAA/CIRA13thInternational Space Planes and Hypersonic Systems andTechnology[C]. Capua, Italy,2005.
    [4] Davidson J, Lallman F, McMinn J D et al. Flight control laws for NASA'sHyper-X research vehicle[A]. In: AIAA Guidance, Navigation, and ControlConference and Exhibit[C]. Portland, Maine,1999.
    [5] Karlgaard C D, Tartabini P V, Blanchard R C et al. Hyper-X post-flighttrajectory reconstruction[A]. In: AIAA Atmospheric Flight MechanicsConference and Exhibit[C]. Providence, RI,2004.
    [6] McClinton C R, Reubush D R, Sitz J et al. Hyper-X program status[A]. In:AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systemsand Technologies Conference[C]. Kyoto, Japan,2001.
    [7] Holland S D, Woods W C and Engelund W C. Hyper-X research vehicle (HXRV)experimental aerodynamics test program overview[R]. AIAA2000-4011.
    [8] Harsha P T, Keel L C and Castrogiovanni A. X-43A vehicle design andmanufacture[A]. In: AIAA Guidance, Navigation, and Control Conference andExhibit[C]. San Francisco, CA,2005.
    [9]贺武生.超燃冲压发动机研究综述[J].火箭推进,2005,31(3):29~32.
    [10] Morelli E A, Derry S D and Smith M S. Aerodynamic parameter estimation forthe X-43A (Hyper-X) from flight data[A]. In: AIAA Atmospheric FlightMechanics Conference and Exhibit[C]. San Francisco,2005.
    [11] Karlgaard C D, Martin J G, Tartabini P V et al. Hyper-X Mach10trajectoryreconstruction[A]. In: AIAA Atmospheric Flight Mechanics Conference andExhibit[C]. San Francisco, California,2005.
    [12]许志.高超音速飞行器动力学与动态特性分析[D].西安:西北工业大学(硕士),2005.
    [13]崔玺康.高超音速飞行器前后体优化设计方法研究[D].西安:西北工业大学(硕士),2006.
    [14]朱云骥,史忠科.高超声速飞行器飞行特性和控制的若干问题[J].飞行力学,2005,23(3):5~8.
    [15] Marshall L A, Corpening G P and Sherrill R. A chief engineer’s view of theNASA X-43A scramjet flight test[A]. In:2005AIAA Guidance, Navigation, andControl Conference and Exhibit[C]. San Francisco, CA.2005.
    [16]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科学技术大学(博士),2004.
    [17] Engelund W C, Holland S D, Cockrell C E et al. Aerodynamic databasedevelopment for the Hyper-X airframe-integrated scramjet propulsionexperiments[J]. Journal of spacecraft and rockets,2001,38(6):803~810.
    [18]徐勇勤.高超声速飞行器总体概念研究[D].西安:西北工业大学(硕士),2005.
    [19]刘燕斌.高超声速飞行器建模及其先进飞行控制机理的研究[D].南京:南京航空航天大学(博士),2007.
    [20] Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion andPower,2001,17(6):1138~1148.
    [21] McClinton C R, Hunt J L, Ricketts R H et al. Airbreathing hypersonictechnology vision vehicles and development dreams[A]. In:9thInternationalSpace Planes and Hypersonic Systems and Technologies Conference and3rdWeakly Ionized Gases Workshop[C]. Norfolk, Virginia,1999.
    [22] Rausch V L, McClinton C R, Sitz J et al. NASA’s Hyper-X program[A]. In:48thInternational Astronautical Congress[C]. Turin, Italy. NASA,1997:1~10.
    [23] McClinton C R, Rausch V L, Sitz J et al. Hyper-X program status[R]. Kyoto,Japan, AIAA2001-0828.
    [24] Joyce P J, Pomroy J B and Grindle L. The Hyper-X launch vehicle: challengesand design considerations for hypersonic flight testing [R]. AIAA2005-3333.
    [25] Powell O A, Edwards J T and Norris R B. Development of hydrocarbon-fueledscramjet engines: the hypersonic technology (HyTech) program[J]. Journal ofPropulsion and Power,2001,17(6):1170~1176.
    [26] Brase L O, Haudrich D P. Flutter and divergence assessment of the HyFlymissile[A]. In:50thAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference[C]. Palm Springs, California,2009.
    [27] Marshall L A, Bahm C, Corpening G P et al. Overview with results and lessonslearned of the X-43A Mach10flight[R]. AIAA2005-3336.
    [28] Baumann E. Tailored excitation for frequency response measurement applied tothe X-43A flight vehicle[A]. In:44thAIAA Aerospace Sciences Meeting andExhibit[C]. Reno, Nevada, NASA/TM-2007-214609.
    [29] Tancredi U, Grassi M, Moccia A et al. Allowable aerodynamics uncertaintiessynthesis aimed at dynamics properties assessment for an unmanned spacevehicle[A]. In: AIAA “Unmanned Unlimited” Technical Conference, Workshopand Exhibit[C]. Chicago, Illinois,2004.
    [30] Parikh P, Engelund W, Armand S et al. Evaluation of a CFD method foraerodynamic database development using the Hyper-X stack configuration[A].In: Applied Aerodynamics Conference and Exhibit[C]. Providence, Rhode Island,2004.
    [31] Hank J M, Murphy J S and Mutzman R C. The X-51A scramjet engine flightdemonstration program[A]. In: AIAA International Space Planes and HypersonicSystems and Technologies Conference[C]. Dayton, Ohio,2008.
    [32] Wishart D P, Fortin T B and Guinan D. Design, fabrication and testing of anactively cooled scramjet propulsion system[A]. In: AIAA Aerospace SciencesMeeting&Exhibit[C]. Reno, Nevada,2003.
    [33] Leslie J D, Marren D E. Hypersonic test capabilities overview[A]. In: AIAA AirForce T&E[C]. Albuquerque, New Mexico,2009.
    [34] Hank J M, Franke M E and Eklund D R. TSTO reusable launch vehicles usingairbreathing propulsion[A]. In: AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhibit[C]. Sacramento, California,2006.
    [35] Faulkner R F. The evolution of the hyset hydrocarbon fueled scramjet enging[A].In: AIAA International Space Planes and Hypersonic Systems andTechnologies[C]. Norfolk, Virginia,2003.
    [36] Kazmar R R. Airbreathing hypersonic propulsion at Pratt&Whitney–overview[R]. AIAA2005-3256.
    [37]刘晓恩.美俄新一代战略导弹技术分析[J].中国航天.2005(5):36~40.
    [38] Fidan B, Mirmirani M and Ioannou P A. Flight dynamics and control ofair-breathing hypersonic vehicles: review and new directions[A]. In: AIAAInternational Space Planes and Hypersonic Systems and TechnologiesConference and Exhibit[C]. Norfolk, Virginia,2003.
    [39]张靖男,孙未蒙,郑志强.高超声速武器控制技术发展探讨[J].航空兵器,2006(4):11~13.
    [40]熊治国,孙秀霞,尹晖等.飞机俯仰运动自抗扰控制器设计[J].信息与控制,2005,34(5):576~579.
    [41]李中健,安锦文.全包线飞行控制系统设计方法研究[J].飞行力学,2001,19(1):5~9.
    [42]傅志峰.跨声速飞行控制技术研究[D].南京:南京航空航天大学(硕士),2007.
    [43] Dalle D J, Frendreis S V, Driscoll J F et al. Hypersonic vehicle flight dynamicswith coupled aerodynamics and reduced-order propulsive models[A]. In: AIAAGuidance, Navigation, and Control Conference[C]. Toronto, Canada,2010.
    [44]葛东明.临近空间高超声速飞行器鲁棒变增益控制[D].哈尔滨:哈尔滨工业大学(博士),2011.
    [45]吴宏鑫,孟斌.高超声速飞行器控制研究综述[J].力学进展,2009,39(6):756~765.
    [46]朱永红.非线性不确定系统鲁棒自适应控制研究[D].南京:南京航空航天大学(博士),2003.
    [47]柯海森.不确定非线性系统的控制研究[D].杭州:浙江大学(博士),2006.
    [48] Haddad W M, Hayakawa T and Chellaboina V S. Robust adaptive control fornonlinear uncertain systems[J]. Automatica,2003,39(3):551~556.
    [49] Qu Z H. Adaptive and robust controls of uncertain systems with nonlinearparameterization[J]. IEEE Transactions on Automatic Control,2003,48(10):1817~1823.
    [50] Vaddi S S, Sengupta P. Controller design for hypersonic vehiclesaccommodating nonlinear state and control constraints[A]. In: AIAA Guidance,Navigation, and Control Conference [C]. Chicago, Illinois,2009.
    [51]华晨.高超声速飞行器纵向通道的预测控制器设计及可视化仿真[D].上海:上海交通大学(硕士),2011.
    [52] Apkarian P, Gahinet P. A convex characterization of gain-scheduled H∞controllers[J]. IEEE Transactions on Automatic Control,1995,40(5):853~864.
    [53] Clement B, Duc G and Mauffrey S. Aerospace launch vehicle control: a gainscheduling approach[J]. Control Engineering Practice,2005,13(3):333~347.
    [54] Palm R, Stutz C. Open loop dynamic trajectory generator for a fuzzy gainscheduler[J]. Engineering Applications of Artificial Intelligence,2003,16(3):213~225.
    [55] Lu P. Regulation about time-varying trajectories: precision entry guidanceillustrated[A]. In: AIAA Guidance, Navigation and Control Conference andExhibit[C], Reston, Virginia,1999.
    [56] Shtessel Y B, Zhu J J and Daniels D. Reusable launch vehicle attitude controlusing time-varying sliding modes[A]. Proceedings of the Thirty-FourthSoutheastern Symposium on System Theory[C], Reston, Virginia,2002.
    [57] Yang C D, Kung C C. Nolinear H∞flight control of generalsix-degree-of-freedom motions[J]. Journal of Guidance, Control, and Dynamics,2000,23(2):278~288.
    [58] Choi J Y, Chwa D K and Kim MS. Adaptive control for feedback-linearizedmissiles with uncertainties[J]. IEEE Transactions on Aerospace and ElectronicSystems,2000,36(2):467~481.
    [59] Li C Y, Jing W X, Wang H et al. Development of flight control system for2Ddifferential geometric guidance and control problem[J]. Aircraft Engineering andAerospace Technology,2007,79(1):60~68.
    [60] Chen Y H, Gareth J K. Application of nonlinear control strategies to aircraft athigh angle of attack[C]. Proceedings of the29thConference on Decision andControl,1990:188~193.
    [61] Serakos D, Lin C F. Linearized kappa guidance[J]. Journal of Guidance, Control,and Dynamics,1995,18(5):975~980.
    [62] Snell. Nonlinear dynamic-inversion flight control of supermaneuverableaircraft[D], University of Minnesota (Doctor),1991.
    [63] McFarland M B, Calise A J. Neural-adaptive nonlinear autopilot design for anagile anti-air missile[A]. In: AIAA Guidance, Navigation and ControlConference[C], San Diego, California,1996.
    [64] McFarland M B, Calise A J. Multilayer neural networks and adaptive nonlinearcontrol of agile anti-air missiles[A]. In: AIAA Guidance, Navigation and ControlConference[C]. Reston, Virginia,1997.
    [65] Utkin V. Variable structure system with sliding modes[J]. IEEE Transactions onAutomatic and Control.1977,22(2):212~222.
    [66] Young K D, Utkin V I and Ozguner U. A control engineering’s guide to slidingmode control[J]. IEEE Transactions on Control Systems Technology.1999,7(3):328~342.
    [67] Bonivento C, Zanasi R. Advances in variable structure control[J]. Lecture Notesin Control and Information Sciences.1996,215:177~226.
    [68] Slotine J J, Sastry S S. Tracking control of nonlinear system using sliding surface,with application to robot manipulators[J]. International Journal of Control,1983,38(2):465~492.
    [69] Seshagiri S, Khalil H K. On introducing integral action in sliding modecontrol[C]. Proceedings of the41stIEEE Conference, Decision and Control,2002,1473~1478.
    [70]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [71] Zhou D, Mu C D, Xu W L, Adaptive silding-mode guidance of a homingmissile[J]. Journal of Guidance, Control and Dynamics,1999,22(4):589~594.
    [72] McGeoch D J, McGookin E W and Houston S S. MIMO sliding mode attitudecommand flight control system for a helicopter[A]. In: AIAA Guidance,Navigation, and Control Conference and Exhibit[C]. San Francisco, California,2005.
    [73] Shtessel Y, Tournes C and Krupp D. Reusable launch vehicle control in slidingmodes[A]. In: AIAA Guidance, Navigation, and Control Conference[C]. NewOrleans, Louisiana,1997.
    [74] Shtessel Y, McDuffie J, Jackson M et all. Sliding mode control of the X-33vehicle in launch and re-entry modes[A]. In: AIAA Guidance, Navigation, andControl Conference and Exhibit[C]. Reston, Virginia,1998.
    [75] Shtessel Y, Hall C and Jackson M. Reusable launch vehicle control in multipletime sale sliding modes[A]. In: AIAA Guidance, Navigation, and ControlConference and Exhibit[C]. Reston, Virginia,2000.
    [76] Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for areusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics,2006,29(6):1315~1328.
    [77] Moon G, Kim Y and Cho S. Variable structure control with optimized slidingsurface for aircraft control system[R]. AIAA2004-5420.
    [78] Ferrara A, Giacomini L. On modular backstepping design with second ordersliding modes[J]. Automatica,2001,37(1):129~135.
    [79]李俊,徐德民.非匹配不确定非线性系统的自适应反演滑模控制[J].控制与决策,1999,14(1):46~50.
    [80] Li G, Khajepour A. Robust control of a hydraulically driven flexible arm usingbackstepping technique[J]. Journal of Sound and Vibration,2005,280(3-5):759~775.
    [81] Lin F J, Chiu S L. Adaptive fuzzy sliding-mode control for PM synchronousservo motor derives[J]. IEE proceedings of Control Theory and Application,1998,145(1):63~72.
    [82] Ciliz M K, Narendra K S. Adaptive control of robotic manipulators usingmultiple models and switching[J]. The International Journal of RoboticsResearch,1996,15(6):592~610.
    [83] Lee T H. A model-based adaptive sliding mode controller[J]. InternationalJournal of System Science,1996,27(1):129~140.
    [84] Kim S H, Kim Y S and Song C H. A robust adaptive nonlinear control approachto missile autopilot design[J]. Control Engineering Practice,2004,12(2):149~154.
    [85] Zhang T, Ge S S and Hang C C. Adaptive neural network control forstrict-feedback nonlinear systems using backstepping design[J]. Automatica,2000,36(12):1835~1846.
    [86] Farrell J, Sharma M and Polycarpou M. Backstepping-based flight control withadaptive function approximation[J]. Journal of Guidance Control and Dynamics,2005,28(6):1089~1102.
    [87] Steinberg M L, Page A B. Nonlinear adaptive flight control with geneticalgorithm design optimization[J]. International Journal of Robust and NonlinearControl,1999,9(14):1097~1115.
    [88] Steinberg M L. Comparison of intelligent, adaptive, and nonlinear flight controllaws[J]. Journal of Guidance Control and Dynamics,2001,24(4):693~699.
    [89] Falemoin F, Thevenot R, Vancamberg P et al. Hypersonic airbreathingpropulsion: flight test needs[R]. AIAA95-6013.
    [90] Shaughnessy J D, Pinckney S Z, McMinn J D et al. Hypersonic vehiclesimulation model: winged-cone conguration[R]. NASA TM2102610,1991.
    [91] Gregory I M, Chowdhry R S, McMinn J D et al. Hypersonic vehicle model andcontrol law development using H∞and μ synthesis[R]. NASA TM-4562,1994.
    [92] Keshmiri S, Mirmirani M D and Colgren R D. Six-DOF modeling andsimulation of a generic hypersonic vehicle for conceptual design studies[A]. In:AIAA Modeling and Simulation Technologies Conference and Exhibit[C].Providence, Rhode Island,2004.
    [93] Keshmiri S, Colgren R and Mirmirani M. Development of an aerodynamicdatabase for a generic hypersonic air vehicle[A]. In: AIAA Guidance, Navigation,and Control Conference and Exhibit[C]. San Francisco, California,2005.
    [94] Keshmiri S, Colgren R and Mirmirani M. Six-DOF modeling and simulation of ageneric hypersonic vehicle for control and navigation purposes[A]. In: AIAAGuidance, Navigation, and Control Conference and Exhibit[C]. Keystone,Colorado,2006.
    [95] Keshmiri S, Colgren R and Mirmirani M. Six DoF nonlinear equations of motionfor a generic hypersonic vehicle[A]. In: AIAA Atmospheric Flight MechanicsConference and Exhibit[C]. Hilton Head, South Carolina,2007.
    [96] Clark A, Wu C, Mirmirani M et al. Development of an airframe-propulsionintegrated generic hypersonic vehicle model[A]. In: AIAA Aerospace SciencesMeeting and Exhibit[C]. Reno, Nevada,2006.
    [97] Clark A D, Mirmirani M D, Wu C et al. An aero-propulsion integrated elasticmodel of a generic airbreathing hypersonic vehicle[A]. In: AIAA Guidance,Navigation, and Control Conference and Exhibit[C]. Keystone, Colorado,2006.
    [98] Chavez F R, Schmidt D K. An integrated analytical aeropropulsive/aeroelasticmodel for dynamic analysis of hypersonic vehicles[R]. AIAA92-4567.
    [99] Chavez F R, Schmidt D K. Analytical aeropropulsive-aeroelastichypersonic-vehicle model with dynamic analysis[J]. AIAA Journal of Guidance,Control, and Dynamics,1994,17(6):1308~1319.
    [100] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of anair-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets,2007,44(2):374~387.
    [101] Xu H J, Mirmirani M and Ioannou P A. Robust neural adaptive control of ahypersonic aircraft[A]. In: AIAA Guidance, Navigation, and Control Conferenceand Exhibit[C]. Austin, Texas,2003.
    [102] Huo Y, Mirmirani M, Ioannou P et al. Altitude and velocity tracking controlfor an air-breathing hypersonic cruise vehicle[R]. AIAA2006-6695.
    [103] Kuipers M, Mirmirani M, Ioannou P et al. Adaptive control of an aeroelasticairbreathing hypersonic cruise vehicle[A]. In: AIAA Guidance, Navigation andControl Conference and Exhibit[C]. Hilton Head, South Carolina,2007.
    [104] Kuipers M, Ioannou P, Fidan B et al. Robust adaptive multiple modelcontroller design for an airbreathing hypersonic vehicle model[R]. AIAA2008-7142.
    [105] Sigthorsson D O, Serrani A, Yurkovich S et al. Tracking control for anoveractuated hypersonic air-breathing vehicle with steady state constraints[A]. In:AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Keystone,Colorado,2006.
    [106] Rodriguez A A, Dickeson J J, Cifdaloz O et al. Modeling and control ofscramjet-powered hypersonic vehicles: challenges, trends&tradeoffs[A]. In:AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Honolulu,Hawall,2008.
    [107] Falkiewicz N J, Cesnik C S, Crowell A R et al. Reduced-orderaerothermoelastic framework for hypersonic vehicle control simulation[A]. In:AIAA Atmospheric Flight Mechanics Conference[C]. Toronto, Ontario Canada,2010.
    [108] McNamara J J, Crowell A R, Friedmann P P et al. Approximate modeling ofunsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft,2010,47(6):1932~1945.
    [109] Jankovsky P, Sigthorsson D O, Serrani A et al. Output feedback control andsensor placement for a hypersonic vehicle model[A]. In: AIAA Guidance,Navigation, and Control Conference and Exhibit[C]. Hilton Head, SouthCarolina,2007.
    [110] Sigthorsson D, Jankovsky P, Serrani A et al. Robust linear output feedbackcontrol of an airbreathing hypersonic vehicle[J]. Journal of Guidance, Control,and Dynamics,2008,31(4):1052~1066.
    [111] Sigthorsson D O. Control-oriented modeling and output feedback control ofhypersonic air-breathing vehicles[D]. The Ohio State University(Doctor),2008.
    [112] Bhat S, Lind R. Linear parameter-varying control for variations in thermalgradients across hypersonic vehicles[A]. In: AIAA Guidance, Navigation, andControl Conference[C]. Chigago, Illinois,2009.
    [113] Zinnecker A, Serrani A, Bolender M A et al. Combined reference governor andanti-windup design for constrained hypersonic vehicles models[A]. In: AIAAGuidance, Navigation, and Control Conference[C]. Chicago, Illinois,2009.
    [114] Hansen B H, Lee H P, Youssef H M. Neuro-fuzzy dynamic inversion control fora hypersonic cruise vehicle[A]. In: AIAA Guidance, Navigation, and ControlConference[C] Toronto, Ontario Canada,2010.
    [115] Oppenheimer M W, Skujins T, Bolender M A et al. A flexible hypersonicvehicle model developed with piston theory[A]. In: AIAA Atmospheric FlightMechanics Conference and Exhibit[C]. Hilton Head, South Carolina,2007.
    [116] Parker J T, Serrani A, Yurkovich S et al. Approximate feedback linearizationof an air-breathing hypersonic vehicle[A]. AIAA Guidance, Navigation, andControl Conference[C]. Keystone, Colorado,2006.
    [117] Groves K P, Serrani A, Yurkovich S et al. Anti-windup control for anair-breathing hypersonic vehicle model[R]. AIAA2006-6557.
    [118] Mirmirani M, Wu C, Clark A et al. Modeling for control of a genericairbreathing hypersonic vehicle[A].AIAA Guidance, Navigation, and ControlConference[C]. San Francisco, California,2005.
    [119] Bolender M A, Doman D B. A non-linear model for the longitudinal dynamics ofa hypersonic air-breathing vehicle[R]. AIAA2005-6255.
    [120] Mudford N R, Boyce R R. Longitudinal stability and control of a Mach10“scramjet” glider[A]. AIAA/CIRA13thInternational Space Planes andHypersonic Systems and Technologies[C]. Capua, Italy.2005.
    [121] Parker J T, Bolender M A, Doman D B et al. Control-oriented modeling of anair-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics,2007,30(3):856~868.
    [122] Xu H J, Mirmirani M D and Ioannou P A. Adaptive sliding mode control designfor a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics,2004,27(5):829~838.
    [123] Fiorentini L, Serrani A, Bolender M A et al. Nonlinear robust/adaptivecontroller design for an air-breathing hypersonic vehicle model[A]. In: AIAAGuidance, Navigation and Control Conference and Exhibit[C]. Hilton Head,South Carolina,2007.
    [124] Fiorentini L, Serrani A, Bolender M A et al. Robust nonlinear sequential loopclosure control design for an air-breathing hypersonic vehicle model[C].2008American Control Conference. Washington, USA,3458~3463.
    [125] Fiorentini L, Serrani A, Bolender M A et al. Nonlinear robust adaptive controlof flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control,and Dynamics,2009,32(2):402~417.
    [126] Rehman O U, Fidan B and Petersen I. Uncertainty modeling and robust minimaxLQR control of hypersonic flight vehicles[A]. In: AIAA Guidance, Navigation,and Control Conference[C].Toronto, Canada,2010.
    [127] Rehman O U, Petersen I and Fidan B. Robust nonlinear control of a nonlinearuncertain system with input coupling and its application to hypersonic flightvehicles[C].2010IEEE International Conference on Control Applications.Yokohama, Japan,1451~1457.
    [128] Wilcox Z D, MacKunis W, Bhat S. et al. Lyapunov-based exponential trackingcontrol of a hypersonic aircraft with aerothermoelastic effects[J]. Journal ofGuidance, Control, and Dynamics,2010,33(4):1213~1224.
    [129]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策,2007,22(3):313~317.
    [130]高道祥,孙增圻,罗熊,等.基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用,2008,25(5):805~810.
    [131] Georgie J, Valasek J. Selection of longitudinal desired dynamics for dynamicinversion controlled re-entry vehicles[A]. In: AIAA Guidance, Navigation, andControl Conference and Exhibit[C]. Canada,2001.
    [132] Yu X H, Man Z H. Fast Terminal sliding mode control design for nonlineardynamical systems[J]. IEEE Transactions on Automatic Control,2002,49(2).261~264.
    [133] Burken J J, Lu P and Wu Z L. Reconfigurable flight control designs withapplication to the X-33vehicle[A]. In: AIAA Guidance, Navigation, and ControlConference and Exhibit[C]. Reston, Virginia,1999.
    [134] Johnson M D, Calise A J and Johnson E N. Further evaluation of an adaptivemethod for launch vehicle flight control[A]. In: AIAA Guidance, Navigation,and Control Conference and Exhibit[C]. Providence, RI,2004.
    [135] Lian B H, Bang H C, Hurtado J E. Adaptive backstepping control basedautopilot design for reentry vehicle[R].AIAA2004-5328.
    [136] Wu S F, Engelen C J H, Babuska R et al. Fuzzy logic full-envelopeautonomous flight control for an atmospheric re-entry spacecraft[J]. ControlEngineering Practice.2003.24(11).11~25.
    [137]唐大永.高超声速飞行器的模型不确定性分析及鲁棒控制研究[D].南京:南京航空航天大学(硕士),2006.
    [138]方炜.空天飞行器再入飞行的模糊自适应预测控制[D].南京:南京航空航天大学(博士),2008.
    [139]王玉惠.空天飞行器基于模糊理论的鲁棒自适应控制研究[D].南京:南京航空航天大学(博士),2008.
    [140]黄国勇.基于Terminal滑模的空天飞行器再入鲁棒自适应控制[D].南京:南京航空航天大学(博士),2007.
    [141]张春雨.空天飞行器建模及其自适应轨迹线性化控制研究[D].南京:南京航空航天大学(硕士),2007.
    [142]朱亮.空天飞行器不确定非线性鲁棒自适应控制[D].南京:南京航空航天大学(博士),2006.
    [143]钱承山.空天飞行器多模型鲁棒控制研究[D].南京:南京航空航天大学(博士),2008.
    [144] Riedel F W. Bank-to-turn control technology survey for homing missiles[R].National Aeronautics and Space Administration, NASA Contractor Report3325,1980.
    [145] Reichert R T. Homing performance comparison of selected airframeconfigurations using skid-to-turn and bank-to-turn steering policies[R].National Aeronautics and Space Administration,1981.
    [146] McGehee R M. Bank-to-turn (BTT) technology[R]. Air Force ArmamentLaboratory,79-1752.
    [147] Arrow A. Status and concerns for bank-to-turn control of tactical missiles[J].Guidance,1985,8(2):267~274.
    [148]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2005.
    [149]王锡泉.远程空空导弹BTT精确控制问题[J].航空兵器,2003(5):1~4.
    [150]叶振信,傅维贤,王万军等.战术导弹BTT控制技术发展综述[J].航天控制,2009,27(5):106~112.
    [151]张靖男,赵兴锋,郑志强. BTT导弹的发展现状与趋势[J].航空兵器,2006(10):37~39,43.
    [152]胡耀坤.制导炸弹倾斜转弯飞行控制系统设计与仿真研究[D].南京:南京理工大学(硕士),2009.
    [153]孙志伟.小灵巧滑翔弹飞行控制系统设计[D].南京:南京理工大学(硕士),2010.
    [154] Huang J, Lin C F. Sliding mode control of Have DashⅡ missile systems[C].American Control Conference, June1993,183~187.
    [155] Shima T, Idan M, Golan O M. Sliding mode control for integrated missileautopilot guidance[J]. Journal of Guidance Control and Dynamics.2006,29(2):250~260.
    [156] Schumacher C, Khargonekar P. A comparison of missile autopilot designs usingH∞control with gain scheduling and nonlinear dynamic inversion[C]. AmericanControl Conference,1997,2759~2763.
    [157] Xu J S, Wang Y J and Wu H. LMI based tracking guaranteed cost control[C].Proc. of the2006IEEE International Conference on Mechatronics andAutomation. June25-28,2006:1037~1042.
    [158] Tan F, Duan G R and Zhao L J. Robust controller design for autopilot of a BTTmissile[C]. Proceedings of the6thWorld Congress on Intelligent Control andAutomation, June21-23,2006:6358~6362.
    [159] Xin M, Balakrishnan S N. Nonlinear H∞missile longitudinal autopilot designwith θ Dmethod[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):41~56.
    [160]汤一华. BTT导弹鲁棒H∞自动驾驶仪设计[D].西安:西北工业大学(硕士),2004.
    [161]李舜.倾斜转弯鲁棒飞行控制系统研究[D].西安:西北工业大学(硕士),2006.
    [162]姚成法. BTT导弹鲁棒自动驾驶仪设计[D].西安:西北工业大学(硕士),2007.
    [163]朱志刚,杨文利. BTT导弹协调式耦合变结构自动驾驶仪设计[J].宇航学报,1997,18(1):8~12.
    [164]张科,常新杰,周凤歧. BTT导弹时变滑态变结构自适应自动驾驶仪设计[J].航天控制,1999,12(4):22~26.
    [165] Arrow A. An analysis of aerodynamic requirements for coordinated bank-to-turnautopilots[R]. NASA-CR-3644,1982.
    [166] Kovach M J, Stevens T R, Arrow A. A bank-to-turn autopilot design for anadvanced air-to-air interceptor[A]. AIAA Guidance, Navigation and ControlConference[C]. Monterey, CA,1987.
    [167] Bossi J A, Laugehough M A. Multivariable autopilot design for a bank-to-turnmissile[C]. Proceedings of the American Control Conference,1988,567~572.
    [168] Williams D E, Friedland B. Design of an autopilot for a bank-to-turn missileusing modem control and estimation theory[C]. The5thMeeting of CoordinatingGroup on Modem Control Theory,1987.
    [169] Reichert R T. Application of H∞Control to missile autopilot design[R]. AIAA1989-3550.
    [170] Wise K A, Mears B C, Poolla K. Missile autopilot design using H∞optimalControl with μ synthesis[C]. Proceedings of the American Control Conference,1988,2362~2367.
    [171] Lee S Y, Lee J I, Ha I J. Nonlinear autopilot for high maneuverability ofbank-to-turn missile[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1236~1253.
    [172] Kim J H, Jang J S. Nonlinear model inversion control for bank-to-turn missile[R],AIAA95-3318.
    [173] Refiner J, Balas G J and Garrard W L. Flight control design using robustdynamic Inversion and time-scale Separation[J]. Automatic,1996,32(11):1493~1504.
    [174] Tournes C, Hanks G. Hypersonic glider control using higher order sliding modecontrol[C]. IEEE International Conference, April2008,274~279.
    [175]郑建华,杨涤,邵成勋. BTT导弹的H∞加权混合灵敏度自动驾驶仪设计方法[J].宇航学报,1998,19(1):103~108.
    [176]周军,周风歧,冯文剑等.基于变结构控制理论的BTT导弹自动驾驶仪的三通道独立设计[J].宇航学报,1994,5(1):42~47.
    [177]郭鸿武,刘明俊. BTT导弹自动驾驶仪的多变量频域法解耦设计[J].国防科技大学学报,1999,21(6):13~16.
    [178]张友安,杨旭,崔平远等. BTT导弹的神经网络自适应反馈线性化控制[J].航空学报,2000,21(1):84~86.
    [179]查旭,胡云安,曹建国等. BTT导弹分块模型组合非线性控制器设计与仿真[J].系统仿真学报,2004,16(12):2789~2792.
    [180]庞瑞,史忠科.导弹混合BTT/STT变结构控制器设计与仿真[J].弹箭与制导学报,2009,29(1):23~26.
    [181] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance Control and Dynamics.2000,23(4):577~585.
    [182]《飞机设计手册》编辑委员会编.飞机设计手册第一卷[M],第1版,北京:航空工业出版社,1996:13~278.
    [183](德)鲁道夫布罗克豪斯(Rudolf Brockhaus)著.金长江译.飞行控制(第一版)[M].北京:国防工业出版社,1999.
    [184]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科学技术大学出版社.1993.
    [185]李超勇. TBM拦截器制导与控制若干问题研究[D].哈尔滨:哈尔滨工业大学(博士),2008.
    [186] Bruyere L, Tsourdos A and White B A. Robust analysis for missile lateralacceleration control using finite inclusion theorem[J]. Journal of GuidanceControl and Dynamics.2005,28(4):679~685.
    [187]赵文杰.不确定非线性系统的变结构控制研究[D].保定,华北电力大学(博士),2004.
    [188](意)Alberto Isidori著.王奔,庄圣贤译.非线性控制系统(第三版)[M].北京:电子工业出版社,2005.
    [189](意)马里诺(Marino R)等著,姚郁,贺凤华译.非线性系统设计-微分几何、自适应及鲁棒控制[M].北京:电子工业出版社,2006.
    [190] Kanellakopoulos I, Kokotovic P V. Systematic design of adaptive controllers forfeedback linearizable systems[J]. IEEE Transactions on Automatic Control,1991,36(11):1241~1253.
    [191] Kanellakopoulos I, Kokotovic P V and Morse A S. Adaptive output-feedbackcontrol of systems with output nonlinearities[J]. IEEE Transactions onAutomatic Control,1992,37(11):1666~1682.
    [192] Kokotovic P V. The joy of feedback: nonlinear and adaptive[J]. IEEE ControlSystems,1992,12(3):7~17.
    [193]李鹏,马建军,李文强等.一类不确定非线性系统的改进积分型滑模控制[J].控制与决策,2009,24(10):1463~1466,1472.
    [194]古孝鸿,周立峰.线性多变量系统频域法[M].上海:上海交通大学出版社,1990.
    [195]白方周,庞国仲.多变量频域理论与设计技术[M].北京:国防工业出版社,1988.
    [196]蒋慰孙,叶银忠.多变量控制系统分析与设计[M].北京:中国石化出版社,1997.
    [197] Hawkins D J. Pseudodiagonalisation and the inverse nyquist-array method[J].Electrical Engineers,1972,119(3):337~342.
    [198] Ford M P, Daly K C. Dominance improvement by pseudodecoupling[J].Electrical Engineers,1979:1316~1320.
    [199] Mason P J, Daly K C, Lee K B. The design of dynamic compensators forreducing open loop interaction in multivariable systems[C]. In: Computer AidedDesign of Control Systems. Zurich, Switzerland,1979.
    [200]鲍远律,庞国仲,李嗣福.实现对角优势的动态补偿器设计[J].信息与控制,1984(4):17~21.
    [201]庞国仲,鲍远律."自加权"准优势化方法[J].控制与决策,1989(2):1~7.
    [202]郑建华,杨涤.鲁棒控制理论在倾斜转弯导弹中的应用[M].北京:国防工业出版社,2001.
    [203] Behtash S, Shahruz S M. Output tracking for nonlinear systems withuncertainties[C] Proceedings of the29thConference on Decision and Control,1990,12:1168~1173.