野桑蚕和家蚕对拟除虫菊酯抗性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野桑蚕(Bombyx mandarina)和家蚕(Bombyx mori)为鳞翅目昆虫。对野桑蚕和家蚕进行拟除虫菊酯抗性的比较研究,将为鳞翅目害虫的防治和家蚕抗性育种提供重要的理论依据。拟除虫菊酯的作用靶标是神经轴突上的钠离子通道蛋白(sodium channel protein),而细胞色素P450第九家族的多个基因与昆虫对拟除虫菊酯抗性有关。本文测定了溴氰菊酯对野桑蚕和家蚕的毒力,进行了抗溴氰菊酯野桑蚕的筛选,克隆了野桑蚕和家蚕的钠离子通道蛋白基因,分析了氯氰菊酯对野桑蚕和家蚕CYP9家族基因的诱导转录,获得的主要结果如下:
     1野桑蚕拟除虫菊酯抗药性和钠离子通道蛋白基因的克隆
     1.1溴氰菊酯对野桑蚕和家蚕的毒力比较
     采用点滴法测定了溴氰菊酯对野桑蚕和家蚕的毒力。吴江野桑蚕(YWJ)、启东野桑蚕(YQD)和苏大野桑蚕(YSD)分别是家蚕品种大造(Dazao)的15.89倍、11.67倍、10.11倍,家蚕品种L11是大造的4.37倍。
     1.2野桑蚕对溴氰菊酯抗性品系的筛选
     在桑叶育条件下,苏大野桑蚕经连续3代溴氰菊酯筛选,S4代抗药性倍数为16.48倍,S4代LD50 (0.445 ng/头)值较S0代LD50 (0.237 ng/头)提高了0.9倍。在人工饲料饲育条件下,吴江野桑蚕经6代人工饲料育和3代溴氰菊酯筛选,S6代抗药性倍数为18.67倍,S6代LD50 (0.504 ng/头)值较S0代LD50 (0.418 ng/头)值提高了0.2倍。
     1.3野桑蚕和家蚕para型钠离子通道蛋白基因结构域Ⅱ的克隆与突变
     根据家蚕钠离子通道蛋白基因部分序列(GenBank登录号:EF521818),设计特异引物,通过RT-PCR方法,克隆了编码吴江野桑蚕(YWJ)和家蚕品种大造的钠离子通道蛋白结构域II的cDNA片段。两片段长均为1 135bp ,编码378个氨基酸,没有发现与击倒抗性(knock down resistance,kdr)相关的点突变,但发现2个点突变I164L和V196A,推测可能这两个突变与野桑蚕对溴氰菊酯的抗性有关。
     1.4野桑蚕和家蚕para型钠离子通道蛋白基因的克隆与选择性剪切
     根据家蚕钠离子通道蛋白基因部分序列(GenBank登录号:BK005824,EF521818),设计引物,分段RT-PCR,克隆了家蚕大造钠离子通道蛋白基因Bmpara(GenBank登录号:EU688970)和吴江野桑蚕钠离子通道蛋白基因Bmmpara。根据克隆的野桑蚕钠离子通道蛋白基因序列和家蚕基因组序列,设计引物,采用PCR方法,克隆到3段野桑蚕基因组序列。序列分析表明,Bmpara的cDNA长为5 555 bp,编码1 851个氨基酸;Bmmpara的cDNA有6种,长度分别为5 555 bp、5 594 bp、5 432 bp、5 522 bp、5 561bp、5 399bp,分别编码1 851、1 864、1 810、1 840、1 853、1 799个氨基酸;3段野桑蚕基因组序列长度分别为1 632 bp、536 bp、3 220 bp。将Bmpara和Bmmpara的cDNA与家蚕基因组Blast分析和野桑蚕基因组片段比对,结果表明,Bmpara有34个外显子和33个内含子,Bmmpara除了与Bmpara有相同结果外,还发现Bmmpara有a(11个氨基酸ENDLGRTKKKK)、b(13个氨基酸GLKAALCGRCVSS)、c(41个氨基酸SLINFVAALCGAGGIQAFKTMRTLRALRPL RAMSRMQGMRV)3个选择性微外元,可能存在6种选择性剪接,构成野桑蚕钠离子通道蛋白不同亚型。
     2野桑蚕和家蚕细胞色素P450的诱导与抗药性研究
     2.1野桑蚕细胞色素P450氧化酶活性测定及CYP9家族基因的诱导转录
     采用酶标板酶活性动力学法检测了氯氰菊酯诱导苏大野桑蚕中肠和脂肪体的PNOD活性,结果表明:氯氰菊酯诱导24 h,脂肪体、中肠PNOD活性分别增加了18.7%、12.2%。根据家蚕CYP9家族基因序列,设计引物,克隆了野桑蚕CYP9A21基因(GenBank登录号:FJ265741)、CYP9A22基因(GenBank登号:EF535806)和CYP9G3基因片断。用半定量RT-PCR方法分析了氯氰菊酯诱导野桑蚕CYP9家族基因的表达水平,结果表明,氯氰菊酯诱导24 h,CYP9A21基因在中肠的mRNA表达量是对照的2.1倍,CYP9A20、CYP9A21、CYP9G3基因在脂肪体的mRNA表达量是对照的1.9、3.5、1.4倍。推测野桑蚕CYP9A21等基因的的过量表达可能导致野桑蚕对氯氰菊酯氧化解毒代谢的增强。
     2.2家蚕CYP9家族基因的诱导转录及CYP9A22的克隆与序列分析
     用半定量RT-PCR方法分析氯氰菊酯诱导家蚕CYP9家族基因的表达水平,结果表明,氯氰菊酯诱导家蚕24 h, CYP9A20基因的中肠、CYP9A22基因的脂肪体、CYP9G3的脂肪体的mRNA表达量分别是对照的1.3、3.1、1.2倍。与野桑蚕相比,家蚕CYP9家族基因被诱导的mRNA表达量低,推测这可能是家蚕比野桑蚕对拟除虫菊酯更敏感的原因之一。采用RACE策略,克隆了CYP9A22基因(GenBank登录号:EF535804)。该基因cDNA全长1 707 bp,编码区长1 596 bp,编码531个氨基酸,推定的蛋白质分子质量为61 kD,等电点为7.71,与已知的CYP9家族的CYP9A14基因(棉铃虫Helicoverpa armigera)的氨基酸同源性达到62.3%。利用NNPP分析软件预测出转录起始位点,与根据CYP9A22全长cDNA序列推测的结果是一致的。TFSEARCH 1.3软件分析转录因子结合位点的结果显示,转录起始位点上游序列不仅包含启动子的核心结构序列TATA-box和CAAT-box,亦包含多个转录因子结合位点,如GATA-1,CdxA,Dfd等。
Bombyx mandarina and Bombyx mori are lepidopterous insects. The comparative study of resistance to pyrethroid in Bombyx mandarina and Bombyx mori will be of great significance to lepidoptera pests prevention and resistive breeding of Bombyx mori. Action drone of pyrethroid is sodium channel protein located in nerve axone, while several genes of the ninth cytochrome P450 family are related to resistance to pyrethroid in insects. In this study, we measured the toxicity of decamethrin on Bombyx mandarina and Bombyx mori, screened Bombyx mandarina with decamethrin resistance, colned sodium channel protein genes in Bombyx mandarina and Bombyx mori, and investigated the transcription of CYP9 family genes induced by cypermethrin in Bombyx mandarina and Bombyx mori. The main results are summarized as follows:
     1 Research on Pyrethroid resistance and sodium channel protein genes clone in Bombyx mandarina
     1.1 Comparison of the toxicity of deltamethrin on Bombyx mandarina and Bombyx mori
     Drop method was used to determinate the toxicity of deltamethrin on Bombyx mandarina and Bombyx mori. The resistance of Wujiang Bombyx mandarina (YWJ), Qidong Bombyx mandarina (YQD) and Soochow University Bombyx mandarina (YSD) was 15.89, 11.67 and 10.11 times of that of Dazao Bombyx mori, respectively, while the resistance of L11 Bombyx mori was 4.37 times of that of Dazao Bombyx mori.
     1.2 Screening of deltamethrin resistant strains of Bombyx mandarina
     Deltamethrin was used to screen resistant strains of Bombyx mandarina. YSD fed with mulberry leaves were screened for three generations under deltamethrin treatment continuously. The results showed that the deltamethrin resistance of S4 was 16.48 times of that of Dazao Bombyx mori, and the LD50 value (0.445 ng/larva) in S4 generation increased by 0.9 times in comparison with the LD50 value (0.237 ng/larva) of S0 generation. YWJ fed with artificial diets for six generations were screened for three generations under deltamethrin treatment. The results suggested that the deltamethrin resistance of S6 was 18.67 times of that of Dazao Bombyx mori, and the LD50 value (0.504 ng/larva) in S6 generation increased by 0.2 times compared with the LD50 value (0.418 ng/larva) of S0 generation.
     1.3 The cloning and mutation of para sodium channel protein gene structure domainⅡin Bombyx mandarina and Bombyx mori
     According to the partial sequence of Bombyx mori sodium channel protein gene (GenBank No. EF521818), the special primer was designed. The cDNA fragments which encoded the sodium channel protein encoding gene structure domainⅡof YWJ and Dazao were cloned by RT-PCR. Sequence analysis showed that the length of the two cDNA fragments was about 1135bp, respectively, which encoded 378 amino acids. No point mutation related to kdr resistance and super-kdr was found, while two amino acid point mutations, namely I164L and V196A, were discovered, which might be relevant to deltamethrin resistance of Bombyx mandarina.
     1.4 Cloning and selective splicing of sodium channel protein genes of Bombyx mandarina and Bombyx mori
     According to the partial sequence of Bombyx mori sodium channel protein encoding gene (GenBank No. BK005824,EF521818), the special primes were designed. The sodium channel protein genes of Bombyx mori Bmpara (GenBank No. EU688970) and Bombyx mandarina Bmmpara were cloned, respectively, by RT-PCR. According to the sequences of the cloned sodium channel protein genes in Bombyx mandarina and Bombyx mori genome, three Bombyx mandarina genome sequences were cloned by PCR. Sequence analysis indicated that the length of Bmpara cDNA is 5 555 bp, which encoded 1851 amino acids. There are six kinds of Bmmpara cDNA, the lengths of which were 5 555 bp, 5 594 bp, 5 432 bp, 5 522 bp, 5 561 bp, 5 399 bp, respectively, and encoded 1 851, 1 864, 1 810, 1 840, 1 853, 1 799 amino acid, respectively. The lengthes of three Bombyx mandarina genome sequences were 1 632 bp, 536 bp and 3 220 bp, respectively. The Blast anlysis and comparison analysis showed that there were at least 34 extrons and 33 introns in Bmpara and Bmmpara. Moreover, there were three optional micro-exons in Bmmpara,including a with eleven amino acids (ENDLGRTKKKK), b with thirteen amino acids (GLKAALCGRCVSS) and c with forty-one amino acids (SLINFVAALCGAGGIQ AFKTMRTLRALRPLRAMSRMQGMRV), six kinds of selective splicing, which established different subtypes of sodium channel protein of Bombyx mandarina.
     2 Inducement of cytochrome P450 and drug resistance research in Bombyx mandarina and Bombyx mori
     2.1 P450 oxidase activity determination and induced-transcription of CYP9 family genes in Bombyx mandarina
     Enzyme linked immunosorbent assay was used to determine the activity of PNOD in the midgut and fat body of YSD under cypermethrin treatment. Result showed that after 24h inducement, the PNOD activity of fat body and midgut increased by 18.7% and 12.2%, respectively. With the primer designed according to CYP9 family gene of Bombyx mori, CYP9A21 (GenBank No. FJ265741), CYP9A22 (GenBank No. EF535806) and CYP9G3 segments of Bombyx mandarina were cloned, respectively. The expression level of CYP9 family genes of Bombyx mandarina induced by cypermethrin were determined by semi-quantitive RT-PCR. Results indicated that after 24h inducement, the mRNA expression amount of CYP9A21 in midgut is 2.1 times of the control, and the mRNA expression amount of CYP9A20、CYP9A21、CYP9G3 in fat body were 1.9, 3.5, and 1.4 times of the control, respectively. The over expression of these special cypermethrin P450 genes might enhance the oxidation and detoxifcation capacity of Bombyx mandarina to cypermethrin.
     2.2 Induced-transcription of CYP9 family gene of Bombyx mori and clone and sequence analysis of CYP9A22
     Semi-quantitive RT-PCR was used to analysis expression level of CYP9 family genes in Bombyx mori induced by cypermethrin. Results indicated that after 24h inducement, the mRNA expression amount of CYP9A20 in midgut, CYP9A22 and CYP9G3 in fat body, were 1.3, 3.1, 1.2 times of the control, respectively. Compared with Bombyx mandarina, the mRNA expression amount of CYP9 family genes in Bombyx mori were lower, which partially accounted for the more susceptivity of Bombyx mori to pyrethroid than Bombyx mandarina. CYP9A22 (GenBank No. EF535804) of cytochrome P450 was cloned by RACE. The total length of the cDNA is 1707 bp, and the length of encoding region is 1596bp encoding five hundred and thirty-one amino acids. The deduced molecule weight of the protein is 61KD with pI 7.71, and the amino acid homology between CYP9A22 and CYP9A14 of CYP9 family attained 62.3%. The transcription start site deduced by NNPP analysis sofeware was coincident with the result deduced according to the total length cDNA of CYP9A22. The combinatopm site of transcription factor analyzed by TFSEARCH 1.3 shows that the upriver sequence of transcription start site contains not only the nuclear structure sequence of promoter such as TATA-box and CAAT-box, but also several combination sites of transcription factors such as GATA-1,CdxA,Dfd, et al.
引文
[1]中国农业科学院蚕业研究所.中国养蚕学.上海:上海科学技术出版社, 1991. 80-84.
    [2]苏州蚕桑专科学校.桑树病虫害防治学.北京:农业出版社, 1992. 276-278.
    [3]姚新华,王卫民,方利民,等.桑树鳞翅目害虫杀虫剂更新的研究.江苏蚕业, 2003, 25(4): 12-15.
    [4]陈伟国.桑园农药使用现状调查分析.蚕桑通报, 2004, 35(4): 26-30.
    [5]王艳梅,王艳蓉,俞蓉.桑园虫害多发的原因分析及防治对策.广西蚕业, 2005, 42(2): 23-24.
    [6]白锡川,吕美坤,张德明.桑螟对桑园常用农药抗性调查.植物保护, 2005, 31(6): 81-83.
    [7]渡部仁,高野繁通.カイコ殺虫剤抵抗性に関する研究I : DDTおよびSumithionに対する感受性について.日本応用動物昆虫学会誌, 1966, 10(3): 105-109.
    [8]段家龙.家蚕对丙体-666抵抗性及其遗传研究.蚕业科学, 1982, 8(4): 203-208.
    [9]梅丽娟,陆星垣.家蚕对叶蝉散抵抗性的遗传研究.蚕业抗性, 1991, 17(4): 19-24.
    [10]陈锐,戴珍科,蔡道基.溴氰菊酯对家蚕安全评价的研究.中国环境科学, 1991, 11(5): 343-347.
    [11]叶志毅,陆元林.常用农药对家蚕的毒力和残毒期的研究.蚕业科学, 1991, 17(2): 84-89.
    [12]孙克坊,周勤,周金钱,等.微量菊酯类农药对家蚕毒性的调查初报.蚕桑通报, 2002, 33(3): 27-29.
    [13]鲁兴萌,周勤,周金钱,等.微量氯氰菊酯对家蚕的毒性.农药学学报, 2003, 5(4): 42-46.
    [14] Wang X P, Hobbs A A. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem. Mol. Biol., 1995, 25(9): 1 001-1 009.
    [15]唐振华,毕强.杀虫剂作用的分子行为.上海:远东出版社. 2003, 327-351;649-655.
    [16]张友军,张文吉.击倒抗性(Kdr)的分子机理.昆虫知识, 1996, 33(1) : 49-52.
    [17] Zlotkin E. The insect voltage gated sodium channel as target of insecticides. Annu .Rev. Entomol., 1999, 44: 429-455.
    [18] Busvine J R. Mechanism of resistance to insecticides in houseflies. Nature, 1951, 168: 193-195.
    [19] Milani R. Comportamento mendeliano della resistenza alla azione abbattante del DDT: correlazione tran abbattimento e mortalia in Musca domestica L. Riv. Parasitol., 1954, 15: 513-542.
    [20] Sawicki R M. Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature, 1978, 275: 443-444.
    [21] Salkoff L , Butler A , Wei A , et al. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science, 1987, 237: 744-749.
    [22] Loughney K, Kreber R, Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 1989, 58: 1 143 - 1 154.
    [23] Ramaswami M, Tanouye M A. Two sodium-channel genes in Drosophila: Implications for channel diversity. Proc. Natl. Acad. Sci .USA., 1989, 86: 2 079 - 2 082.
    [24] Williamson M S, Denholm I, Bell C A, et al. Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol. Gen. Genet., 1993, 240: 17-22.
    [25] Knipple D C, Doyle K E, Marsella-Herrick P A, et al. Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. PNAS., 1994, 91: 2 483-2 487.
    [26] Taylor M F J, Hechel D G, Brown T M, et al. Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm. Insect Biochem. Mol. Biol., 1993, 23: 763-775.
    [27] Dong K, Scott J G. Linkage of kdr-type resistance and the para homologous sodium channel gene in German cockroaches (Blattella germanica). Insect Biochem. Mol. Biol., 1994, 24: 647-654.
    [28] Lee S H, Dunn J B, Clark J M, et al. Molecular analysis of kdr-like resistance in apermethrin-resistant strain of Colorado potato beetle. Pestic. Biochem. Physiol., 1999, 63: 63-75.
    [29] Morin S, Williamson M S, Goodson S J, et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem. Mol. Biol., 2002, 32: 1 781-1 791.
    [30] Chiang C, Devonshire A L. Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrothroid resistance (kdr) in house flies (Musca domestica). Pestic. Sci., 1982, 13: 156-160.
    [31] Kasbekar D P, Hall L M. A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides. Pestic. Biochem. Physiol., 1988, 32(2): 135-145.
    [32] Bloompuist J R, Soderlund D M, Knipple D C. Knockdown resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the napts mutant of Drosophila melanogaster is correlated with reduced neuronal sensitivity. Arch. Insect Biochem. Physiol., 1989, 10: 293-302.
    [33] Salgado V L, Irving S N, Miller T A. Depolarization of motor nerve terminals by pyrethroids in susceptible and kdr-resiatant houseflies. Pestic. Biochem. Physiol., 1983a, 20: 100-114.
    [34] Salgado V L, Irving S N, Miller TA. The importance of nerve terminal depolarization in pyrethroid poisoning of insects. Pestic. Biochem. Physiol., 1983b, 20: 169-182.
    [35] Soderlund D M, Knipple D C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol., 2003, 33: 563-577.
    [36] Cattera1l W A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000, 26: 13-25.
    [37]唐振华,袁建忠,庄佩君,等.昆虫钠离子通道的结构和与击倒抗性有关的基因突变.昆虫学报, 2004, 47(6): 830-836.
    [38] Dong K. A single amino acid change in the para sodium channel protein is associated with knockdown- resistance (kdr) to pyrethroid insecticides in the German cockroach. Insect Biochem. Mol. Biol., 1997, 27: 93-100.
    [39] Park Y, Taylor M F J. A novel mutation L1029H in sodium channel gene hscp associated with pyrethriod resistance for Heliothis virescens (Lepidoptera:Noctuidae). Insect Biochem. Mol. Biol., 1997, 27: 9-13.
    [40] Guerrero F D, Jamroz R C, Kammlah D, et al. Toxicological and molecular characterization of pyrethroid-resistant houseflies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochem. Mol. Biol., 1997, 27: 745-755.
    [41] Schuler T H, Martinez-Torres D, Thompson A J, et al. Toxicological eletrophysiological, and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic Biochem. Physiol., 1998, 59: 169-192.
    [42] Martinez-Torres D, Foster S P, Field L M, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera:Aphididae). Insect Mol. Biol., 1999a, 8(3): 339-346.
    [43] Martinez-Torres D, Chandre F, Williamson M S, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s. s. Insect Mo. Biol., 1998, 7: 179-184.
    [44] Ranson H, Jensen B, Vulule J M, et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol., 2000, 9: 491-497.
    [45] Martinez-Torres D, Chevillon C, Brun-Barale A, et al. Voltage-dependent Na+ channels in pyrethroidresistant Culex pipiens (L.) mosquitoes. Pestic. Sci., 1999b, 55: 1 012-1 020.
    [46] Thackeray J R, Ganetzky B. Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel lsoforms. Neuroscience., 1994, 14: 2 569-2 578.
    [47]王建军.小菜蛾Plutella xylostella (L.)杀虫剂靶标抗性的分子生物学研究.南京农业大学博士论文, 2001.
    [48]曹晓梅,孙晨熹.抗性家蝇para基因的选择性剪接和位点突变.寄生虫与医学昆虫学报, 2003, 10(1): 35-40.
    [49] Tan J G, Liu Z Q, Nomura Y, et a1. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J. Neurosci., 2002, 22(13): 5 300-5 309.
    [50]何琳.家蚕神经系统靶点基因克隆与功能研究.中国科学院博士学位论文, 2007.
    [51] Feyereisen R. Insect P450 enzymes. Annu. Rev. Entomol., 1999, 44: 507-533.
    [52] Rose R L, Goh D, Thompson D M, et al. Cytochrome P450 CYP 9A1 in Heliothis virescens: the first member of a new CYP family. Insect Biochem. Mol. Bio1., 1997, 27: 605-615.
    [53]陈松.与氰戊菊酯抗性相关的棉铃虫细胞色素P450基因的克隆及异源表达.南京农业大学博士学位论文, 2005.
    [54]杨亦桦.棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理.南京农业大学博士学位论文, 2005.
    [55] Strode C, Wondji C S, David J P, et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem. Mol. Bio1., 2008, 38: 113-123.
    [56] Stevens J L, Snyder M J, Koener J F, et al. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem. Mol. Bio1., 2000, 30: 559-568.
    [57] Sundseth S S, Kennel S J, Waters L C. Monoclonal antibodies to resistance-related forms of cytochrome P450 in Drosophila melanogaster. Pestic. Biochem. Physiol., 1989, 33: 176-188.
    [58] Sundseth S S, Nix C E, Waters L C. Isolation of insecticide resistance-related forms of cytochrome P450 from Drosophila melanogaster. Biochem. J., 1990, 265: 213-217.
    [59] Waters LC, Zelhof AC, Shaw BJ, et al. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. PNAS., 1992b, 89: 4 855-4 859.
    [60] Maitra S, Dombrowski S M, Waters L C, et al. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT resistant and susceptible strains of Drosophila melanogaster. Gene, 1996, 180: 165-171.
    [61] Maitra S, Dombrowski SM, Basu M, et al. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene, 2000, 248: 147-156.
    [62] Brun A, Cuany A. Inducibility of the Drosophila melanogaster cytochrome P450gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem. Mol.Bio1., 1996, 26: 697-703.
    [63] Pedra J, Mclntyre L, Scharf M, et al. Genome-wide transcription profile of field and laboratory-selected dichlorodiphenyltrichloroethane (DDT)- resistant Drosophila. PNAS., 2004, 101: 7 034-7 039.
    [64] Dunkov B C, Guzov V M, Mocelin G, et al. The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol., 1997, 16(11):1 345-1 356.
    [65] Rose R L, Barbhaiya L, Roe R M, et al. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pestic.Biochem. Physiol., 1995, 51: 178-191.
    [66] Yang Y H, Wu Y D, Chen S, et al. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem. Mol.Bio1., 2004, 34: 763-773.
    [67] Yang Y H, Chen S, Wu S W, et al. Constitutive Overexpression of Multiple Cytochrome P450 Genes Associated with Pyrethroid Resistance in Helicoverpa armigera. Journal of Economic Entomology, 2006, 99(5): 1 784-1 789.
    [68] Chen S and Li X C. Transposable elements are enriched within or in close proximity toxenobiotic-metabolizing cytochrome P450 genes. BMC Evolutionary Biology, 2007, 7(46): 1-13.
    [69]周颖君,杨亦桦,武淑文,等.棉铃虫细胞色素P450 CYP9A12基因5’-上游区的克隆及序列分析.昆虫学报, 2008, 51(2): 120-125.
    [70] Ma?bèche-Coisne M, Merlin C, Fran?ois M C, et al. P450 and P450 reductase cDNAs from the moth Mamestra brassicae: cloning and expression patterns in male antennae. Gene, 2005, 346: 195-203.
    [71] Claudianos C, Ranson H, Johnson RM, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 2006, 15: 615–636.
    [72] Li B, Xia QY, Lu Ch, et al. Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori). Science in China Ser. C Life Sciences, 2005, 48 (4): 414-418.
    [73] Scott J G, Liu N, Wen Z. Insect cytochromes P450: diversity, insecticideresistance and tolerance to plant toxins. Comp. Biochem. Physiol., 1998, 121: 147 -155.
    [74] Scott J G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol, 1999, 29: 757-777.
    [75]冷欣夫,邱星辉.细胞色素P450酶系的结构功能与应用前景.北京:科学出版社, 2001, 151-157.
    [76] Nebert D W, Gonzlalez E J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem, 1989, 56: 945-993.
    [77] Agosin M, Dinamarca M L. The effect DDT on the level of di-and triphosphopyridine nucleotides in Triatoma infestans. Exp.Parasitot., 1963, 13: 199-203.
    [78]唐振华.昆虫中的细胞色素P450及其特性.昆虫知识. 1990, (1): 52-55.
    [79] Brattsten L B, Wilkinson C F, Eisner T. Herbivore-Plant Interactions: Mixed-Function Oxidases and Secondary Plant Substances. Science, 1977, 196: 1 349-1 352.
    [80] Terriere L C, Yu S J. Induction of detoxifying enzymes in insects. J. Agri. Food. Chem., 1974, 22(3): 366-373.
    [81] Yu S J. Hsu E L. Induction of Detoxification Enzymes in Phytophagous Insects: Roles of insecticide Synergists, Larval age, and species. Arch. Insect. Biochem. Physiol., 1993, 24(1): 21-32.
    [82] Lee S T, Scott J G. Tissue distribution of microsomal cytochrome P450 monoxygenases and their inducibility by phenobarbital in housefly, Musca Domestica L. Insect Biochem. Molec. Biol., 1992, 22(7): 699-711.
    [83] Terriere L C. Introduction of detoxification enzymes in insects. Ann. Rev. Entomol., 1984, 29: 71-88.
    [84] Brattsten L B. Ecological significance of mixed-function oxidations. Drug. Metab. Rev., 1979, 10: 35-58.
    [85] Prapaipong H, Berenbaum M R, Schuler M A. Transcriptional regulation of the Papilio polyxenes CYP6B1 gene. Nucleic Acids Research, 1994, 22(15): 3 210- 3 217.
    [86] Feyereisen R, Koener J F, Farnsworth D E, et al. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of house fly,Musca domestica. Proc. Natl. Acad. Sci., 1989, 86(5): 1 465-1 469.
    [87] Cohen M B, Schuler M A, Berenbaum M R. A host-inducible cytochrome P450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl. Acad. Sci., 1992, 89(22): 10 920-10 924.
    [88] Hung C F, Harrison T L, Berenbaum M R, et al. CYP6B3: a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Insect Molec.Biol., 1995, 4(3): 149-160.
    [89] Hung C F, Prapaipong H, Berenbaum M R, et al. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochem. Molec. Biol., 1995, 25(1): 89-99.
    [90] Scott J G, Lee S S. Purification and characterization of a cytochrome P-450 from insecticide susceptible and resistant strains of housefly, Musca domestica L., before and after phenobarbital exposure. Arch Insect Biochem Physiol., 1993, 24(1): 1-19.
    [91] Gordon H T.Nutritional factors in insect resistance to chemicals. Annu. Rev. Entomo1., 1961, 6: 27-54.
    [92]唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社, 2003. 8-17.
    [93]郑伟华,赵建庄,马德英,等.溴氰菊酯的毒性和致突变性的研究进展.北京农学院学报, 2004, 19(1): 77-80.
    [94]王佛桑.桑园害虫灾害控制面临的挑战与对策.安徽农学通报, 2005, 11(1): 69-70.
    [95]沈晋良,谭建国,肖斌,等.我国棉铃虫对拟除虫菊酯类农药的抗性监测及预报.昆虫知识, 1991, 28(6): 337-341.
    [96]黄剑,吴文君.利用EXCEL快速进行毒力测定中的致死中量计算和卡方检验.昆虫知识, 2004, 41(6): 594-598.
    [97]马惠,王开运,王红艳,等.溴虫腈对家蚕和桑树害虫的毒力比较.昆虫学报, 2006, 49(4): 599-603.
    [98]吴益东,沈晋良,陈进,等.用点滴法和浸叶法监测棉铃虫抗药性的比较.植物保护, 1996, 22(5): 3-6.
    [99]吴益东,陈松,净新娟,等.棉铃虫抗药性监测方法――浸叶法敏感毒力基线的建立及其应用.昆虫学报, 2001, 44(1): 56-61.
    [100]楼普灿,施俊发,王建新.菊酯类农药防治桑园冬季害虫试验.蚕桑通报, 1987, 18(4): 32-34.
    [101]朱炳浩,徐锦松.速灭杀丁防治桑园越冬害虫效果试验.江苏蚕业, 1988, 4:27.
    [102]赵华强,王东,李兵,等.杀虫剂溴氰菊酯对野桑蚕和家蚕的毒力比较.蚕业科学, 2008, 34(1): 115-118.
    [103]赵华强,许雅香,王东,等.中国野桑蚕人工饲料育研究初报.蚕业科学, 2006, 32(1): 122-124.
    [104]谷口义雄,埢木理.野桑蚕室内桑叶育.蚕丝研究, 1983, 126: 18-24.
    [105]谭建国.棉铃虫对拟除虫菊酯类杀虫剂的抗性检测及抗性选择.南京农业大学学报, 1987, 4(增): 36-43.
    [106] Jensen M P, Crowder L A, Watson T F. Selection for permethrin resistance in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 1984, 77(6): 1 409-1 411.
    [107]吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗性和敏感品系的选育.昆虫学报, 1994, 37(2): 129-136.
    [108]王开运,慕立义,刘峰,等.棉铃虫对氰戊菊酯等杀虫剂抗性的选育及其生化机理.昆虫学报, 1997, 40(1): 23-31.
    [109]卓乐姒,黄月兰,杨家荣.棉铃虫人工饲料的研究.昆虫学报, 1981, 24: 108-110.
    [110]谭福杰.农业害虫抗药性测定方法.南京农业大学学报, 1987, 4(增): 105-122.
    [111]杨恩会,林雁,吴益东.棉铃虫对氰戊菊酯-辛硫磷混剂的抗性演化及解毒酶活性变化.昆虫学报, 2006, 49(2): 247-253.
    [112]杨亦桦,陈松,吴益东.有机磷/拟除虫菊酯混剂筛选棉铃虫品系的交互抗性和生化生理.棉花学报, 2008, 20(4): 249-255.
    [113]埢木理,竹田敏.野桑蚕的全龄人工饲料育.日本蚕丝学杂志, 1982, 51(1): 237-238.
    [114]赵华强,许雅香,李兵,等.野桑蚕全龄人工饲料适应性品系的选育.蚕业科学, 2007, 33(3): 470-472.
    [115] Williamson M S, Martinez-Torres D, Hick C A, et al. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet., 1996, 252: 51-60.
    [116] Catterall W A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem., 1986, 55: 953-985.
    [117]赵华强,刘海涛,王东,等.野桑蚕对溴氰菊酯抗性品系的筛选.安徽农业科学, 2009, 37(14):6483-6484, 6515.
    [118] Miyazaki M, Ohyama K. Cloning and sequencing of the para-type sodium chanel gene from susceptible and kdr-resistant german cockroaches (Blattella germanica) and house fly (Musca domestica). Mol Gen Genet., 1996, 252: 61-68.
    [119] Park Y, Taylor M F, Feyereisen R. Voltage-gated sodium channel genes hscp and hDSC1 of Heliothis vi rescens F. genomic organization. Insect Mol Biol., 1999, 8 (2): 161-170.
    [120]冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社. 1996. 132-147.
    [121] Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics, 2002, 30: 13-19.
    [122] Graveley B R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet., 2001 ,17: 100-107.
    [123] Thackeray J R, and Ganetzky B. Conserved alternative splicing patterns and splicing signals in the Drosophila Sodiwm Channel Gene para. Genetics, 1995, 141: 203-214.
    [124] Scott J G. Cytochrome P450 monooxygenase-mediated resistance to insecticides. Pestic. Sci., 1996, 21: 241-245.
    [125] Okey A B. Enzyme induction in the cytochrome p450 system. Pharmac. Ther., 1990, 45: 241-298.
    [126]王东,李兵,王燕红,等.野桑蚕羧酸酯酶基因(BmmCarE-2)的克隆及表达分析.蚕业科学, 2008, 34(4): 650-657.
    [127]李兵,王东,王燕红,等.野桑蚕脑组织cDNA文库的构建及化学感受蛋白基因(CSP3)的克隆和序列分析.蚕业科学, 2008, 34(1): 227-231.
    [128]王东.家蚕与野桑蚕CYP6B29基因的克隆、序列分析及原核表达.苏州大学硕士学位论文. 2006. 29-33.
    [129] Bradford W W. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72: 248-254.
    [130]邱星辉,冷欣夫.昆虫细胞色素P450研究: P450酶系的可诱导性.昆虫知识, 1999, 36(1): 48-53.
    [131]唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社, 2003. 170-181.
    [132] Scott J G, Lee S S T. Tissue distribution of microsomal cytochrome P450 monooxygenases and their inducibility by Phenobarbital in the insecticide resistant LPR strain of house fly, Musca domestics L. Insect Biochem.Mol. Biol., 1993, 23: 729-738.
    [133] Scott J G, Wen Z. Cytochromes P 450 of insects: the tip of the iceberg. Pest Manag Sci., 2001, 57: 958-967.
    [134]冷欣夫,邱星辉.细胞色素P450酶系的结构功能与应用前景.北京:科学出版社, 2001. 1-8.
    [135] Li X , Schuler M A, Berenbaum M R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 2002, 419: 712-715.
    [136]马惠,姜辉,陶传江,等. 27种农药对家蚕的毒性评价研究.农药学学报, 2005, 7(2): 156-159.
    [137]沈士林,沈根生.中秋蚕大面积出现不结茧现象的反思.蚕桑通报, 2006, 37(1): 45-46.
    [138]王希春.惠民县2006年夏蚕微量农药中毒原因分析与防治对策.山东蚕业, 2007, 2: 11-12.
    [139] J.萨姆布鲁克, D. W.拉塞尔(黄培堂等译).分子克隆实验指南(第三版).北京:科学出版社, 2002. 651-657.
    [140]朱玉贤,李毅.现代分子生物学.北京:高等教育出版社, 2002. 88-99.
    [141]唐振华,毕强.杀虫剂作用的分子行为.上海:上海远东出版社, 2003. 154-161.
    [142]韦存虚,唐振华.昆虫P450的诱导及其与抗药性的关系.农药译丛, 1999, 21(2): 26-29.
    [143] Carino F, Koener J F, Plapp F W J, et al. Expression of the cytochrome P450 gene CYP6A1 in the housefly , Musca domestica. ACS. Symp. Ser., 1992, 31-40.
    [144] Wheelock G D, Scott J G. Immunological detection of cytochrome P450 from insecticide resistant and susceptible house flies (Musca domestica). Pestic. Biochem. Physiol., 1990, 38: 130-139.
    [145] Tomita T, Scott J G. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in the housefly. Insect Biochem. Mol. Biol., 1995, 25: 275-283.
    [146] Daborn P J, Yen J L, Bogwitz M R, et al. A single P450 allele associated with insecticide resistance in Drosophila. Science, 2002, 297: 2 253-2 256.
    [147] Feyereisen R. Insect cytochrome P450. Comprehensive Molecular Insect Science, 2005, 4: 1-77.
    [148] Latinkic B V, Cooper B, Smith S, et al. Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development. Development, 2004, 131: 669-679.
    [149] Mura C, Gac G, Jacolot S, et al. Transcription regulation of the human HFE gen indicates high liver expression and erythropoiesis coregulation. FASEB J., 2004, 18: 1 922-1 924.
    [150] Margalit Y, Yarus S, Shapira E, et al. Isolation and characterization of target sequences of the chicken CdxA homebox geng. Nucleic Acids Res., 1993, 21: 4 915-4 922.
    [151] Chang M H, Chou C M, Hsieh Y C, et al. Identification of 5’-upstream region of pufferfish ribosomal protein L29 gene as a strong constitutive promoter to drive GFP expression in zebragish. Biochem. Biophys. Res. Commun., 2004, 314: 249-258.
    [152] Mcginnis W, Krumlan R. Homeobox genes and axial patterning. Cell, 1992, 68: 283-302.
    [153] Garbarino J E, Oosumi T, Belknap W R. Isolation of a poluubiquitin promoter and its expression in transgenic potato plants. Plant Physiol., 1995, 109: 1 371- 1 378.