电磁双功能前驱体—四硫代富瓦烯衍生物的合成及其配合物的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于电磁双功能材料的研究是目前合成与材料化学领域的研究热点,该领域最初的起源要追溯到对于四硫代富瓦烯(TTF)的研究。从发现第一个有机金属(TTF)(TCNQ)以来,TTF的衍生物已经不仅仅可以作为有机导体的构筑模块,同时也在分子机器、有机磁体、有机场效应晶体管、太阳能电池和非线性光学材料等方面得到广泛应用,其中最活跃的研究要属合成多功能分子基材料。设计一个同时具有导电性和磁性的分子(材料)特别吸引了很多化学和物理学家的兴趣。实现这一目标的方法就是在有机供体π电子和定域的顺磁离子d电子间建立耦合π-d相互作用,而实现π-d相互作用通常可以采用两种方法:(a)通过空间的相互作用来实现π-d相互作用,但此类相互作用会比较弱;(b)使两个体系通过化学键相连,从而有效地实现π-d相互作用。
     为了设计具有强π-d相互作用的双功能材料,我们成功地合成了四种带有配位基团的新颖TTF衍生物。并利用1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO)和1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH)分别制备出溶剂依赖的CuBr_42?电荷转移盐和金属MII(M = Zn, Co)配合物。这将为新型分子基电磁一体化材料提供理论和实验基础。研究工作主要包括以下四部分内容:
     1、合成出作为电磁一体化材料前躯体的四中新颖的TTF衍生物,并且通过质谱、红外、紫外和核磁进行结构表征。其中N-(tetrathiafulvalen-4-ylmethylene)-1,2,4-triazol-4-amine (1) , 4′-tetrathiafulvaleneyl- 2,2′:6′,2″-terpyridine (2) , 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) (3)和1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH) (4)分别带有单取代的三氮唑、三联吡啶、苯乙酮和β-二酮配位基团。这四种化合物的循环伏安测试成功地将TTF分步氧化为阳离子自由基和双阳离子,显示出可逆的单电子氧化过程。它们的电化学行为与母体TTF相似,因此它们应该可以作为优良的供体材料得到广泛的应用。同时每种化合物均为单取代的非对称分子,因此该类化合物在非线性光学材料领域可能有潜在的应用。
     2、通过改变溶剂的方法方便地实现了调节TTF-PEO的电荷转移量为+1和+2,分别合成出化合物(TTF-PEO)_2CuBr_4 (5)和(TTF-PEO)_2(CuBr_4)_2·CH_2Cl_2·CH_3CN (6),晶体结构分析表明它们分别属于三斜的Pī和正交的Pbca空间群。含有单取代基的TTF-PEO有利于有效地缩短有机供体与顺磁离子间的距离,这一点体现在5中具有最短的Br···S距离,预示着在TTF-PEO+·电子供体和CuII离子间通过Br···S···Br···S超交换作用可能存在强的π-d相互作用。具有反铁磁行为的化合物5在110-120K观察到了相转变的发生,是目前已报道的该类化合物中最高的相变温度。
     3、TTF-ph-tfac烯醇阴离子具有很强的配位能力,与金属氯化物(Zn和Co)螯合配位分别生成了配合物Zn(TTF-ph-tfac)_2(CH_3OH)_2 (7)和Co(TTF-ph-tfac)_2(CH_3OH)_2 (8),每个中心金属都桥连两个TTF-ph-tfac配体。电化学行为的测试预示着该体系可以作为电磁双功能材料的前躯体。8的磁性测试显示中心金属间是弱的反铁磁相互作。
     4、合成并通过单晶X-射线衍射表征了四个新颖的铜化合物,一维链化合物{[Cu(terpyOH)(phth)]·H_2O}_n (9),双核化合物[Cu2(terpyO)_2(phth)(H_2O)_2]·11H_2O (10),单核化合物[Cu(terpyOH)(SO4)(H_2O)]·2H_2O (11) and [Cu(terpyOH)_2]·(HBTC)·2H_2O (12) (terpyOH = 4′-羟基-2,2′:6′,2″-三联吡啶, phth =邻苯二甲酸,BTC =均苯三酸)。在9中,邻苯二甲酸阴离子桥连CuII中心形成了一个无限的Z型链。在10中存在的(H_2O)16和(H_2O)10水簇形成了一个2D含水层。一个通过氢键形成的近乎平面的S型和Z型水链分别在11和12的晶体结构中观察到。在12中,Cu(II)中心是六配位的,这与五配位的化合物9,10和11是不同的。并且在合成化合物11的过程中,发现在水热条件下4′-溴代-2,2′:6′,2″-三联吡啶发生原位反应生成terpyOH分子。通过对比这些化合物的晶体结构可以发现,当用terpyOH分子通过氢键作用构筑水分子簇的时候,控制体系的pH值使其脱去质子将是非常有利的。
The origins of dual-property materials of research date back to the molecule tetrathiafulvalene (TTF). Since the discovery of the first organic metal (TTF)(TCNQ), TTF derivatives have been used not only as building blocks of organic conductors, but also as components of molecular machines, organic magnets, organic field-effect transistors (OFET), electrochemical sensors, solar cells, and nonlinear optical (NLO) materials for second-harmonic generation (SHG) applications. Intense investigations are devoted to multifunctional molecular materials. In particular, chemists and physicists are attracted to the design of new molecules and materials that possess synergy or interplay between electrical conductivity with magnetism. The objective of this combination is to establish a coupling between conduction electrons (πelectrons) coming from organic donors and localized electrons (d electrons) coming from paramagnetic centers, through the so-calledπ-d interaction. To fill this goal, two approaches are investigated: (a) a through-space approach but withπ-d interactions that are usually very weak; (b) a covalent link between both systems.
     Dual-functional materials are of great interest in the area of materials chemistry. In order to design dual-functional materials, four TTF derivatives as the new precursors for the construction of conducting and magnetic materials have been synthesized. Using the 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) and 1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH), the preparation of solvent dependent CuBr_42? charge-transfer salts and the Zinc(II) coordination complex has also been reported, respectively, which can be regarded as an example of the two methods referred above. This report may provide a promising strategy for the design and exploitation of new magnetic compounds for useful applications. The main contents in this thesis can be summarized as follows:
     1. Four TTF derivatives as the new precursors for the construction of conducting and magnetic materials have been synthesized and chatacterized by NMR and MS, N-(tetrathiafulvalen-4-ylmethylene)-1,2,4-triazol-4-amine (1), 4′-tetrathiafulvaleneyl- 2,2′:6′,2″-terpyridine (2), 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) (3), 1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH) (4) with monosubstituted terpyridine heterocycle, triazol heterocycle, acetophenone and acetylacetonate substituents. The cyclic voltammetric analysis of all the compounds 1, 2, 3, and 4 display the two reversible one-electron oxidation waves expected to convert successively the TTF unit into the radical cation and then into the dication. Their electrochemical behaviors are similar to that of TTF, so they should be good donors for conducting materials. They are novel monosubstituted asymmetric TTF-π-A donor molecules with TTF cores, which should be good donors for molecular conductors or OFET potential application.
     2. The tuning of the charge-transfer of TTF-PEO by solvent was realized forming the mono- and dication complexes (TTF-PEO)_2CuBr_4 (5) and (TTF-PEO)_2(CuBr_4)_2·CH_2Cl_2·CH_3CN (6) in the triclinic Pīand the orthorhombic Pbca space group, respectively. These shortest Br···S contacts in 5 might make theπ-d interaction between TTF-PEO+·electron-donors and CuII ions possible via Br···S···Br···S super-exchange paths. The antiferromagnetic behavior for monocation radical TTF-PEO+? salt with CuBr_42? displayed the obvious phase transition at 110-120 K, which is the highest phase transition temperature for a charge-transfer salt with a uniformly monocharged TTF derivative.
     3. The chelating ability of its enolate anion (TTF-ph-tfac) has been investigated with [MIICl_2·xH_2O] (M = Zn and Co) leading to complexes Zn(TTF-ph-tfac)_2(CH_3OH)_2 (7) and Co(TTF-ph-tfac)_2(CH_3OH)_2 (8), where the metal center is coordinated by two TTF-ph-tfac ligands. This redox active ligand shows promising features for the elaboration of hybrid organic-inorganic building blocks. The magnetic measurement for 8 revealed a nearly perfect paramagnetic system with very weak antiferromagnetic interactions between the centers, which is a precursor for both conducting and magnetic materials.
     4. Four new copper complexes, the one dimensional (1D) chain complex {[Cu(terpyOH) (phth)]·H_2O}_n (9), the binuclear complex [Cu2(terpyO)_2(phth)(H_2O)_2]·11H_2O (10), mononuclear complexes [Cu(terpyOH)(SO4)(H_2O)]·2H_2O (11) and [Cu(terpyOH)_2]·(HBTC)·2H_2O (12) (terpyOH = 4′-hydroxy-2,2′:6′,2″-terpyridine, phth = phthalate, BTC = 1,3,5-benzene tricarboxylate) have been prepared and characterized by the single crystal X-ray diffraction analysis. In complexes 9, the CuII ions are bridged by phthalate dianions to form infinite Z-shaped chains with terpyOH pendants possessing penta-coordinated distorted square pyramidal geometries. Coexistence of (H_2O)16 and (H_2O)10 water clusters in the complex 10 leads to a novel two dimensional (2D) water sheet. A near-planar S-shape water chain and a zigzag water chain assembled by hydrogen bonds are formed for 11 and 12, respectively. The Cu(II) center in 12 is hexacoordinated, which is quite different from square-pyramidal geometries of complexes 9, 10, and 11. It is interesting to note that 4′-bromo-2,2′:6′,2″-terpyridine was converted into terpyOH in situ under hydrothermal conditions for complex 11. Hence, as discussed above, taking advantage of the terpyOH molecule constructing water cluster, we should adjust the pH to make the terpyOH deprotonated.
引文
[1] Coronado E, Delhaès P, Gatteschi D, Miller J S, Eds. Molecular Magnetism: From Molecular Assemblies to the Devices; Kluwer Academics Publishers: Dordrecht, 1996.
    [2] Enoki T, Yamaura J I, Miyazaki A. Molecular magnets based on organic charge transfer complexes [J]. Bull Chem Soc Jpn, 1997, 70: 2005-2023.
    [3] Lahti P M, Ed. Magnetic Properties of Organic Materials; Marcel-Dekker: New York, 1999.
    [4] Ito K, Kinoshita M, Eds. Molecular Magnetism, New Magnetic Materials. Gordon and Breach Science Publishers: Tokyo, 2000.
    [5] Miller J S, Drillon M, Eds. Magnetism: Molecules to Materials; Wiley-VCH: Weinheim, Germany, 2001.
    [6] Miller J S, Drillon M, Eds. Magnetism: Molecules to Materials II; Wiley-VCH: Weinheim, Germany, 2001.
    [7] Miller J S, Drillon M, Eds. Magnetism: Molecules to Materials III; Wiley-VCH: Weinheim, Germany, 2001.
    [8] Miller J S, Drillon M, Eds. Magnetism: Molecules to Materials IV; Wiley-VCH: Weinheim, Germany, 2003.
    [9] Ouahab L, Enoki T. Multiproperty Molecular Materials: TTF-Based Conducting and Magnetic Molecular Materials [J]. Eur J Inorg Chem, 2004, 933-941.
    [10] Decurtins S, Gütlich P, Spiering H, et al. Light-Induced Excited-Spin-State Trapping in Iron (II) Spin-Crossover Syetems. Optical Spectroscopic and Magnetic Susceptibility Study [J]. Inorg Chem, 1985, 24: 2174-2178.
    [11] Gütlich P, Hauser A, Spiering H. Thermal and optical switching of iron (II) complexes [J]. Angew Chem Int Ed Engl, 1994, 33: 2024-2054.
    [12] Sato O, Iyoda T, Fujishima A, et al. Photoinduced Magnetization of a Cobalt-Iron Cyanide [J]. Science, 1996, 272: 704-705.
    [13] Kobayashi H, Tomita H, Naito T, et al. New BETS Conductors with Magnetic Anions (BETS = bis(ethylenedithio)tetraselenafulvalene) [J]. J Am Chem Soc, 1996, 118:368-377.
    [14] Kobayashi H, Kobayashi A, Cassoux P. BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene) [J]. Chem Soc Rev, 2000, 29: 325-333.
    [15] Coronado E, Galan-Mascaros J R, Gimenez-Saiz C, Gomez-Garcia C J. Proceedings of the NATO Advanced Research Workshop on Magnetism: A Supramolecular Function; Academic Press: New York, 1996.
    [16] Kurmoo M, Graham A W, Day P, et al. Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4AFe(C_2O_4)_3·C_6H_5CN (A = H2O , K, NH4) [J]. J Am Chem Soc, 1995, 117: 12209-12217.
    [17] Coronado E, Galán-Mascarós J R, Gómez-Garcia C J, Laukhin V N. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound [J]. Nature, 2000, 408: 447-449.
    [18] Wudl F, Smith G M, Hufnagel E J. Bis-1,3-dithiolium chloride: an unusually stable organic radical cation. Chem Commun, 1970, 1453-1454.
    [19] Coffen D L, Chambers J Q, Williams D R, et al. Tetrathioethylenes [J]. J Am Chem Soc, 1971, 93: 2258-2268.
    [20] Hunig S, Kiesslich G, Scheutzow D, et al. Int J Sulfur Chem, Part C, 1971, 109-122.
    [21] Wudl F, Fred Wudl, Darold Wobschall, Earl J Hufnagel, Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system [J]. J Am Chem Soc, 1972, 94: 670-672.
    [22] Ferraris J, Cowan D O, Walatka V, et al. Electron transfer in a new highly conducting donor-acceptor complex [J]. J Am Chem Soc, 1973, 95: 948-949.
    [23] Coleman L B, Cohen M J, Sandman D J, et al. Superconducting fluctuations and the peierls instability in an organic solid [J]. Solid State Commun, 1973, 12: 1125-1132.
    [24] Becher J, Li Z T, Blanchard P, et al. Tetrathiafulvalenes in macrocyclic and supramolecular chemistry [J]. Pure Appl Chem, 1997, 69: 465-470.
    [25] Bryce M R. Tetrathiafulvalenes asπ-Electron Donors for Intramolecular Charge-Transfer Materials [J]. Adv Mater, 1999, 11: 11-23.
    [26] Bryce M R. Functionalised tetrathiafulvalenes: new applications as versatileπ-electron systems in materials chemistry [J]. J Mater Chem, 2000, 10: 589-598.
    [27] Jeppesen J O, Nielsen M B, Becher J. Tetrathiafulvalene Cyclophanes and CageMolecules [J]. Chem Rev, 2004, 104: 5115-5131.
    [28] Yoneyama N, Miyazaki A, Enoki T, et al. Magnetic Properties of TTF-Type Charge Transfer Salts in the Mott Insulator Regime [J]. Bull Chem Soc Jpn, 1999, 72: 639-651.
    [29] Dumm M, Loidl A, Fravel B W, et al. Surface-induced ordering in thin uniaxial liquid crystal films [J]. Phys Rev B, 2000, 61: 511-518.
    [30] Laversanne R, Amiell J, Coulon C, et al. Magnetic and Spectroscopic Properties of (TMTTF)_2(SbF)1-X(AsF5)X [J]. Mol Cryst Liq Cryst, 1985, 119: 317-320.
    [31] Tokumoto M, Anzai H, Ishiguro T, et al. Electrical and magnetic properties of organic semiconductors, (BEDT-TTF)_2X (X = IBr2, IBrCl, and ICl2) [J]. Synth Met, 1987, 19: 215-220.
    [32] Fabre J M, Gouasmia A K, Giral L, et al. New radical-cation salts containing an unsymmetrically substituted TTF or TSF typeπ-donor. Synthesis and characterization [J]. Tetrahedron Lett, 1988, 29: 2185-2188.
    [33] Bourbonnais C. Organic superconductors: Reduced dimensionality and correlation effects [J]. Synth Met, 1997, 84: 19-24.
    [34] Vescoli V, Degiorgi L, Henderson W, et al. Dimensionality-driven insulator-to-metal transition in the Bechgaard salts [J]. Science, 1998, 281: 1181-1184.
    [35] Lorenz T, Hoffman M, Gru ninger M, et al. Evidence for spin–charge separation in quasi-one-dimensional organic conductors [J]. Nature, 2002, 418: 614-617.
    [36] Mori T, Kawamoto T, Yamaura J, et al. Metal-Insulator Transition in the Organic Metal (TTM-TTP)I3 with a One-Dimensional Half-Filled Band [J]. Phys Rev Lett, 1997, 79: 1702-1705.
    [37] Miyazaki A, Kato T, Yamazaki H, et al. Anomalous metallic state of the one-dimensional molecular conductor (EDO-TTFBr2)3I3 [J]. Phys Rev B, 2003, 68: 085108.
    [38] Batail P, Ouahab L, Torrance J B, et al. Cation radical salts with magnetic anions: Preparation and characterization of FeCl_4 salts of TMTTF and TMTSF [J]. Solid State Commun, 1985, 55: 597-600.
    [39] Kumai R, Asamitsu A, Tokura Y. A Molecular Antiferromagnet TMTSF·FeCl_4 [J]. Chem Lett, 1996, 753.
    [40] Mori T, Inokuchi H. A BEDT-TTF Complex Including a Magnetic Anion, (BEDT-TTF)3(MnCl_4)_2 [J]. Bull Chem Soc Jpn, 1988, 61: 591-593.
    [41] Ayllon J A, Santos I C, Henriques R T, et al. Perylene salts with tetrahalogenoferrate(III) anions. Synthesis, crystal structure of [(C20H12)3][FeCl4] and characterisation [J]. J Chem Soc Dalton Trans, 1995, 3543-3549.
    [42] Lequan M, Lequan R M, Hauw C, et al. A new class of conducting organo-metallic salts: TTF radical cation salts with metal halides [J]. Synth Met, 1987, 19: 409-414.
    [43] Garrigou-Lagrange Ch, Rozanski S A, Kurmoo M, et al. Optical and electrical properties of quasi-bidimensional molecular semi-conductors: (TTF)14(MCl4)4, M = Co, Mn or Zn [J]. Solid State Commun. 1988, 67: 481-485.
    [44] Tanaka M, Kawamoto A, Tanaka J, et al. Electronic Structure of (BEDT–TTF)CuCl2 Complex [J]. Bull Chem Soc Jpn, 1987, 60: 2531-2534.
    [45] Tanaka M, Kawamoto A, Tanaka J, et al. Magnetic and Optical Properties of (BEDT-TTF)CuCl2 Complex [J]. Jpn J Appl Phys. 1987, 26: 893-894.
    [46] Enoki T, Tomomatsu I, Nakano Y, et al. In The Physics and Chemistry of Organic Superconductors, Springer-Verlag: Berlin, 1990, 294.
    [47] Lequan M, Lequan R M, Mecano G, et al. A new series of organomineral conductors prepared from BEDT-TTF and Di-anions of transition metal chlorides [J]. J Chem Soc Chem Commun, 1988, 174.
    [48] Marsden I R, M. Allan M L, Friend R H, et al. Crystal and electronic structures and electrical, magnetic, and optical properties of two copper tetrahalide salts of bis(ethylenedithio)-tetrathiafulvalene [J]. Phys Rev B, 1994, 50: 2118-2127.
    [49] Enoki T, Yamaura J, Sugiyasu N, et al. Solid State Properties of Charge Transfer Complexes of TTF Derivatives with 3D-Transition Metal Halides [J]. Mol Cryst Liq Cryst, 1993, 233: 325-334.
    [50] Enoki T, Yamaura J, Sugiyasu N, et al. In New Functionality Materials, Vol. C, Synthetic Process and Control of Functionality Materials, Elsevier Science Publisher B. V.: Amsterdam, 1993, 509.
    [51] Enoki T, Enomoto M, Enomoto M, et al. Molecular Magnets Based on Charge Transfer Complexes [J]. Mol Crys Liq Cryst, 1996, 285: 19-26.
    [52] Miyazaki A, Enomoto M, Enomoto M, et al. Molecular Antiferromangets Based on TTF-TYPE Radical Ion Salts [J]. Mol Cryst Liq Cryst, 1997, 305: 425-434.
    [53] Mallah T, Hollis C, Bott S, et al. Crystal Structures and Physical Properties of Bis(ethylenedithio)-tetrathiofulvalene Charge-transfer Salts with FeX4 - (X=Cl,Br)Anions [J]. J Chem Soc Dalton Trans, 1990, 859.
    [54] Day P, Kurmoo M, Mallah T, et al. Structure and Properties of Tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II) Hydrate, (BEDT-TTF)3CuC14·H2O: First Evidence for Coexistence of Localized and Conduction Electrons in a Metallic Charge-Transfer Salt [J]. J Am Chem Soc, 1992, 114: 10722-10729.
    [55] Kurmoo M, Kanazawa D, Day P, et al. (BEDT-TTF)6(CuX2Y2)2 (X=Br; Y=Cl or Br): Electrical transport properties under pressure and magnetic properties [J]. Synth Met, 1993, 55-57: 2347-2352.
    [56] Kurmoo M, Day P, Allan M, et al. Interaction Between Free Carriers of Organic Conductors and Localized Moment on Magnetic Anions [J]. Mol Cryst Liq Cryst, 1993, 234: 199-204.
    [57] Fitzmaurice J C, Slavin A M C, Williams D J, et al. [ET]3[NiCl4]·H2O; a metallic conductor containing the NiCl42– anion in a distorted square planar geometry [ET = bis(ethylenedithio)tetrathiafulvalene] [J]. J Chem Soc Chem Commun, 1993, 1479-1480.
    [58] Kepert C J, Kurmoo M, Day P. Semiconducting charge-transfer salts of BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] with hexachlorometallate(IV) anions [J]. J Mater Chem, 1997, 7: 221-228.
    [59] Kurmoo M, Day P, Guionneau P, et al. Crystal Structure and Magnetism of (BEDT-TTF)2MCl4 (BEDT-TTF =Bis(ethylenedithio)tetrathiafulvalene; M =Ga, Fe). Inorg. Chem, 1996, 35: 4719-4726.
    [60] Fujiwara H, Fujiwara E, Nakazawa Y, et al. A Novel Antiferromagnetic Organic Superconductorκ-(BETS)2FeBr4 [Where BETS = Bis(ethylenedithio)tetraselenafulvalene]. J Am Chem Soc, 2001, 123: 306-314.
    [61] Kobayashi H, Kobayashi A, Cassoux P. BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene) [J]. Chem Soc Rev, 2000, 29: 325-333.
    [62] Zhang B, Tanaka H, Fujiwara H, et al. Dual-Action Molecular Superconductors with Magnetic Anions [J]. J Am Chem Soc, 2002, 124: 9982-9983.
    [63] Matsumoto T, Sugimoto T, Katori H A, et al. Ferrimagnetic Ordering Due to Fe(III) d and DonorπSpins in (Ethylenedithiotetrathiafulvalenoquinone-1,3-dithiole -methide)2?FeBr4 [J]. Inorg Chem, 2004, 43: 3780-3782.
    [64] Fujiwara H, Takashi Hiraoka K W, Hayashi T, et al. Stable Metallic Behavior and Antiferromagnetic Ordering of Fe(III) d Spins in (EDO-TTFVO)2?FeCl4 [J]. J Am Chem Soc, 2005, 127: 14166-14167.
    [65] Bouherour S, Ouahab L, Pena O, et al. Structure of undeca(tetrathiafulvalene) tris(hexacyanoferrate) pentahydrate [J]. Acta Crystallogr, 1989, C45: 371-374.
    [66] Le Magueres P, Ouahab L, Briard P, et al. A new family of hybrid materials formed by TTF layers and oxalato-bridged bimetallic magnetic clusters [J]. Mol Cryst Liq Cryst, 1997, 305: 479-489.
    [67] Clemente-León M, Coronado E, Galán-Mascarós J R, et al. Molecular conductors based upon TTF-type donors and octahedral magnetic complexes [J]. Synth Met, 1999, 103: 2279-2282.
    [68] Clemente-León M, Coronado E, Gala′n-Mascarós J R, et al. Hybrid Molecular Materials Based upon Organicπ-Electron Donors and Metal Complexes. Radical Salts of Bis(ethylenethia)tetrathiafulvalene (BET-TTF) with the Octahedral Anions Hexacyanoferrate(III) and Nitroprusside. The First Kappa Phase in the BET-TTF Family [J]. Inorg Chem, 2001, 40: 3526-3533.
    [69] Mori H, Hirabayashi I, Tanaka S, et al. Organic conductors with three-component system containing Co, Zn, and Cd based upon BEDT-TTF [J]. Synth Met, 1995, 70: 789-790.
    [70] Bérézovsky F. Ph D. Dissertation, Universitéde Bretagne Occidentale (France), 2000.
    [71] Bérézovsky F, Triki S, Sala Pala J, et al. Radical cation salts based on BEDT-TTF and the paramagnetic anion [Cr(NCS)6]3? [J]. Synth Met, 1999, 102: 1755-1756.
    [72] Thétiot F, Bérézovsky F, Triki S, et al. New charge transfer salts of two organicπ-donor of the tetrathiafulvalene type with the paramagnetic [Cr(NCS)6]3– anion [J]. M C R Chim, 2003, 6: 291-300.
    [73] Turner S S, Day P, Gelbrich T, Hursthouse M B. New Molecular Charge Transfer Salts of BEDT-TTF, Bis(ethylenedithio) Tetrathiafulvalene, with Thiocyanato-Complex Anions: (BEDT-TTF)4[Fe(NCS)6]·CH2Cl2 and (BEDT-TTF)2[Cr(NCS)4(bipym)]·0.15H2O [J]. J Solid State Chem. 2001, 159: 385-390.
    [74] Kepert C J, Kurmoo M, Truter M R, et al. Quasi-one-dimensional bis(ethylenedithio)tetrathiafulvalene charge-transfer salts with paramagnetic Group 6 anions [J]. J Chem Soc Dalton Trans, 1997, 607-614.
    [75] Mas-Torrent M, Turner S S, Wurst K, et al. A new family of conducting and magnetic charge-transfer salts from BMDT-TTF [J]. Synth Met, 2001, 120: 799-800.
    [76] Turner S S, Le Pevelen D, Day P, et al. TTF based charge transfer salts of [Cr(NCS)4(phen)]–: bulk magnetic order and crystal structures of the TTF, TMTTF (tetramethyltetrathiafulvalene) and TMTSF (tetramethyltetraselenafulvalene) derivatives [J]. J Chem Soc Dalton Trans, 2000, 2739-2744.
    [77] Mhanni A, Onahab L, Pena O, et al. New organic-donor inorganic-acceptor salts: (TTF)6(XM12O40)Et4N, X=Si and P [J]. Synth Met, 1991, 41(43): 1703.
    [78] Coronado E, Galán-Mascarós J R, Ruiz-Pérez C, et al. Hybrid molecular materials formed by alternating layers of bimetallic oxalate complexes and tetrathiafulvalene molecules: Synthesis, structure, and magnetic properties of TTF4(Mn(H2O)2)[Cr(ox)3]2)·14 H2O [J]. Adv Mater, 1996, 8: 737-740.
    [79] Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. A new family of hybrid materials formed by TTF layers and oxalato-bridged bimetallic magnetic clusters [J]. Synth Met, 1997, 85: 1677-1678.
    [80] Coronado E, Galán-Mascarós J R, Giménez-Saiz C, et al. Hybrid Organic/Inorganic Molecular Materials Formed by Tetrathiafulvalene Radicals and Magnetic Trimeric Clusters of Dimetallic Oxalate-Bridged Complexes: The Series (TTF)4{MII(H2O)2[MIII(ox)3]2}·nH2O (MII = Mn, Fe, Co, Ni, Cu and Zn; MIII = Cr and Fe; ox = C2O42-) [J]. Eur J Inorg Chem, 2003, 2290-2298.
    [81] Coronado E, Galán-Mascarós J R, Gómez-Garcia C J, Laukhin V N. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound [J]. Nature, 2000, 408: 447-449.
    [82] Coronado E, Galán-Mascarós J R, Gómez-García C J, et al. Incommensurate Nature of the Multilayered Molecular Ferromagnetic Metals Based on Bis(ethylenedithio)tetrathiafulvalene and Bimetallic Oxalate Complexes [J]. Inorg Chem, 2004, 43: 4808-4810.
    [83] Alberola A, Coronado E, Galán-Mascarós J R, et al. Multifunctionality in hybrid molecular materials: design of ferromagnetic molecular metals and hybrid magnets [J]. Synth Met, 2003, 133-134: 509-513.
    [84] Alberola A, Coronado E, Galán-Mascarós J R, et al. Multifunctionality in hybrid molecular materials: Design of ferromagnetic molecular metals [J]. Synth Met, 2003, 135-136: 687-689.
    [85] Alberola A, Coronado E, Galán-Mascarós J R, et al. A Molecular Metal Ferromagnet from the Organic Donor Bis(ethylenedithio)tetraselenafulvalene and Bimetallic OxalateComplexes [J]. J Am Chem Soc, 2003, 125: 10774-10775.
    [86] Zhang B, Wang Z, Zhang Y, et al. Hybrid Organic-Inorganic Conductor with a Magnetic Chain Anion:κ-BETS2[FeIII(C2O4)Cl2] [BETS =Bis(ethylenedithio)tetraselenafulvalene] [J]. Inorg Chem, 2006, 45: 3275-3280.
    [87] Nataliya D, Eduard K, Yagubskii B, et al.π-Donor BETS Based Bifunctional Superconductor with Polymeric Dicyanamidomanganate(II) Anion Layer:κ-(BETS)2Mn[N(CN)2]3 [J]. J Am Chem Soc, 2008, 130: 7238-7240.
    [88] Tanaka H, Okano Y, Kobayashi H, Suzuki W, Kobayashi A. A three-dimensional synthetic metallic crystal composed of single-component molecules [J]. Science, 2001, 291: 285-287.
    [89] Tanaka H, Kobayashi H, Kobayashi A. A Conducting Crystal Based on A Single-Component Paramagnetic Molecule, [Cu(dmdt)2] (dmdt =Dimethyltetrathiafulvalenedithiolate) [J]. J Am Chem Soc, 2002, 124: 10002-10003.
    [90] Yamada J, Nishikawa H, Kikuchi K. TTF Chemistry-Fundamentals and Applications of Tetrathiafulvalene, Kodansha & Springer, Tokyo, 2004.
    [91] Liu S-X, Dolder S, Pilkington M, et al. Facile Synthesis of Novel Functionalized Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) Derivatives [J]. J Org Chem, 2002, 67: 3160-3162.
    [92] Devic T, Avarvari N, Batail P. A Series of Redox Active, Tetrathiafulvalene-Based Amidopyridines and Bipyridines Ligands: Syntheses, Crystal Structures, a Radical Cation Salt and Group 10 Transition-Metal Complexes [J]. Chem Eur J, 2004, 10: 3697-3707.
    [93] Isomura E, Tokuyama K, Nishinaga T, et al. Synthesis and properties of 4′,5′-bis(methylthio)-4,5-bis(2-pyridylethynyl)tetrathiafulvalene and its copper complexes [J]. Tetrahedron Lett, 2007, 48: 5895-5898.
    [94] Wang L, Zhang B, Zhang J. Preparation and Crystal Structure of Dual-Functional Precursor Complex Bis(acetylacetonato)nickel(II) with 4-Pyridyltetrathiafulvalene [J]. Inorg Chem, 2006, 45: 6860-6863.
    [95] Ota A, Ouahab L, Golhen S, et al. Paramagnetic transition metal complexes with a redox-active ligand: M(hfac)2(EDO-EDT-TTF-py)n; [M = CuII, n= 1, 2; M = MnII, n= 2] [J]. New J Chem, 2005, 29: 1135-1140.
    [96] Liu S-X, Dolder S, Franz P, et al. Structural Studies of Transition Metal Complexes with4,5-Bis(2-pyridylmethylsulfanyl)-4′,5′-ethylenedithiotetrathiafulvalene:Probing Their Potential for the Construction of Multifunctional Molecular Assmibles [J]. Inorg Chem, 2003, 42: 4801-4803.
    [97] Xue H, Tang X J, Wu L Z, et al. Highly Selective Colorimetric and Electrochemical Pb2+ Detection Based on TTF-π-Pyridine Derivatives [J]. J Org Chem, 2005, 70: 9727-9734.
    [98] Setifi F, Ouahab L, Golhen S, et al. First Radical Cation Salt of Paramagnetic Transition Metal Complex Containing TTF as Ligand, [CuII(hfac)2(TTF-py)2](PF6)·2CH2Cl2 (hfac =Hexafluoroacetylacetonate and TTF-py =4-(2-Tetrathiafulvalenyl-ethenyl)pyridine) [J]. Inorg Chem, 2003, 42: 1791-1793.
    [99] Chahma M, Hassan N, Alberola A, et al. Preparation and Coordination Complex of the First Imine-Bridged Tetrathiafulvalene-Pyridine Donor Ligand [J]. Inorg Chem, 2007, 46: 3807-3809.
    [100] Pointillart F, Gal Y L, Golhen S, et al. 4f Gadolinium(III) Complex Involving Tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a Ligand [J]. Inorg Chem, 2009, 48: 4631-4633.
    [101] Ichikawa S, Mori H. High Conductivity of the New Supramoleclar Copper Complex with Oxidized Pyrazinoselenathiafulvalene (=pyra-STF) as the Ligand, [CuICl1.5(pyra-STF)0.5+] [J]. Inorg Chem, 2009, 48: 4643-4645.
    [102] Iwahori F, Golhen S, Ouahab L, et al. CuII Coordination Complex Involving TTF-py as Ligand [J]. Inorg Chem, 2001, 40: 6541-6542.
    [103] Jia C, Liu S-X, Ambrus C, et al. One-Dimensionalμ-Chloromanganese(II)- Tetrathiafulvalene (TTF) Coordination Compound [J]. Inorg Chem, 2006, 45: 3152-3154.
    [104] Liu S-X, Ambrus C, Dolder S, et al. A Dinuclear Ni(II) Complex with Two Types of Intramolecular Magnetic Couplings: Ni(II)-Ni(II) and Ni(II)-TTF?+ [J]. Inorg Chem, 2006, 4: 9622–9624.
    [105] Gavrilenko K S, Gal Y L, Ouahab L, et al. First trinuclear paramagnetic transition metal complexes with redox active ligands derived from TTF: Co2M(PhCOO)6(TTF-CH=CH-py)·2CH3CN, M = CoII, MnII[J]. Chem Commun, 2007, 280-282.
    [106] Vigato P A, Peruzzo V, Tamburini S, The evolution ofβ-diketone orβ-diketophenol ligands and related complexes [J]. Coord Chem Rev, 2009, 253: 1099-1201.
    [107] Massue J, Bellec N, Chopin S. Electroactive Ligands: The First Metal Complexes of Tetrathiafulvenyl-Acetylacetonate [J]. Inorg Chem, 2005, 44: 8740-8748.
    [108] Moore A J, Bryce M R. Tetrathiafulvalene: A Convenient Large-Scale (20g) Synthesis [J]. Synthesis, 1997, 407-409.
    [109] Garin J. The Reactivity of Tetrathia-and Tetraselenafulvalenes [J]. Adv Heterocycl Chem, 1995, 62: 249-304.
    [110] Svenstrup N, Becher J. The Organic Chemistry of 1,3-Dithiole-2-thione-4,5-dithiolate (DMIT) [J]. Synthesis, 1995, 215-235.
    [111] Green D C. Synthetic method for the preparation of monosubstituted tetrathiafulvalenes [J]. J Chem Soc Chem Commun, 1977, 161-162.
    [112] Green D C, Allen R W. Vinyltetrathiafulvalene [J]. J Chem Soc Chem Commun, 1978, 823-833.
    [113] Green D C. General Method for the Preparation of Substituted Tetrathiafulvalenes and Directing Effects of Substituents [J]. J Org Chem, 1979, 44: 1476-1479.
    [1] Day P, Kurmoo M, Mallah T, et al. Structure and Properties of Tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II)Hydrate, (BEDT-TTF)3CuC14·H2O: First Evidence for Coexistence of Localized and Conduction Electrons in a Metallic Charge-Transfer Salt [J]. J Am Chem Soc, 1992, 114: 10722-10729.
    [2] Coronado E, Favello L R, Galan-Mascaros J R, et al. Magnetic Molecular Metals Based on the Organic Donor Molecule BET (BET = Bis(ethy1enethio)tetrathiafulvalene): The Series BET2[MCl4] (M3+ = Ga, Fe) [J]. Adv Mater, 1997, 9: 984-987.
    [3] Coronado E, Galán-Mascarós J R, Gómez-Garcia C J, Laukhin V N. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound [J]. Nature, 2000, 408: 447-449.
    [4] For example, see: Chem. Rev. 2004, 104.
    [5] Yamada J, Nishikawa H, Kikuchi K, TTF Chemistry-Fundamentals and Applications of Tetrathiafulvalene, Kodansha & Springer, Tokyo, 2004.
    [6] Liu S-X, Dolder S, Pilkington M, et al. Facile Synthesis of Novel Functionalized Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) Derivatives [J]. J Org Chem, 2002, 67: 3160-3162.
    [7] Devic T, Avarvari N, Batail P A. Series of Redox Active, Tetrathiafulvalene-Based Amidopyridines and Bipyridines Ligands: Syntheses, Crystal Structures, a Radical Cation Salt and Group 10 Transition-Metal Complexes [J]. Chem Eur J, 2004, 10: 3697-3707.
    [8] Isomura E, Tokuyama K, Nishinaga T, et al. Synthesis and properties of 4′,5′-bis(methylthio)-4,5-bis(2-pyridylethynyl)tetrathiafulvalene and its copper complexes [J]. Tetrahedron Lett, 2007, 48: 5895-5898.
    [9] Wang L, Zhang B, Zhang J. Preparation and Crystal Structure of Dual-Functional Precursor Complex Bis(acetylacetonato)nickel(II) with 4-Pyridyltetrathiafulvalene [J]. Inorg Chem, 2006, 45: 6860-6863.
    [10] Ota A, Ouahab L, Golhen S, et al. Paramagnetic transition metal complexes with a redox-active ligand: M(hfac)2(EDO-EDT-TTF-py)n; [M = CuII, n= 1, 2; M = MnII, n= 2] [J]. New J Chem, 2005, 29: 1135-1140.
    [11] Liu S-X, Dolder S, Franz P, et al. Structural Studies of Transition Metal Complexes with 4,5-Bis(2-pyridylmethylsulfanyl)-4′,5′-ethylenedithiotetrathiafulvalene: Probing Their Potential for the Construction of Multifunctional Molecular Assmibles [J]. Inorg Chem, 2003, 42: 4801-4803.
    [12] Xue H, Tang X-J, Wu L-Z, et al. Highly Selective Colorimetric and Electrochemical Pb2+ Detection Based on TTF-π-Pyridine Derivatives [J]. J Org Chem, 2005, 70: 9727-9734.
    [13] Setifi F, Ouahab L, Golhen S, et al. First Radical Cation Salt of Paramagnetic Transition Metal Complex Containing TTF as Ligand, [CuII(hfac)2(TTF-py)2](PF6)·2CH2Cl2 (hfac =Hexafluoroacetylacetonate and TTF-py =4-(2-Tetrathiafulvalenyl-ethenyl)pyridine) [J]. Inorg Chem, 2003, 42: 1791-1793.
    [14] Chahma M, Hassan N, Alberola A, et al. Preparation and Coordination Complex of the First Imine-Bridged Tetrathiafulvalene-Pyridine Donor Ligand [J]. Inorg Chem, 2007, 46: 3807-3809.
    [15] Pointillart F, Gal Y L, Golhen S, et al. 4f Gadolinium(III) Complex Involving Tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a Ligand [J]. Inorg Chem, 2009, 48: 4631-4633.
    [16] Ichikawa S, Mori H. High Conductivity of the New Supramoleclar Copper Complex with Oxidized Pyrazinoselenathiafulvalene (=pyra-STF) as the Ligand, [CuICl1.5(pyra-STF)0.5+] [J]. Inorg Chem, 2009, 48: 4643-4645.
    [17] Kobayashi A, Fujiwara E, Kobayashi H. Single-Component Molecular Metals with Extended-TTF Dithiolate Ligands [J]. Chem Rev, 2004, 104: 5243-5264.
    [18] Massue J, Bellec N, Chopin S, et al. Electroactive Ligands: The First Metal Complexes of Tetrathiafulvenyl-Acetylacetonate [J]. Inorg Chem, 2005, 44: 8740-8748.
    [19] Bellec N, Massue J, Roisnel T, et al. Chelating ability of a conjugated redox active tetrathiafulvalenyl-acetylacetonate ligand [J]. Inorg Chem Commun, 2007, 10: 1172-1176.
    [20] Li Y-J, Liu W, Li Y-Z, et al. Dinuclear copper(II) complex with tetrathiafulvalene-based bis-acetylacetonate ligands [J]. Inorg Chem Commun, 2008, 11: 1466-1469.
    [21] Pellon P, Gachot G, Le Bris J, et al. Complexing Ability of the Versatile, Redox-Active,3-[3-(Diphenylphosphino)propylthio]-3′,4,4′-trimethyl-tetrathiafulvalene Ligand [J]. Inorg Chem, 2003, 42: 2056-2060.
    [22] Smucker B W, Dunbar K R J. Homoleptic complexes of Ag(I), Cu(I), Pd(II) and Pt(II) with tetrathiafulvalene-functionalized phosphine ligands [J]. J Chem Soc, Dalton Trans, 2000, 1309-1315.
    [23] Devic T, Batail P, FourmiguéM, Avarvari N. Unexpected Reactivity of PdCl2 and PtCl2 Complexes of the Unsaturated Diphosphine o-Me2TTF(PPh2)2 toward Chloride Abstraction with Thallium Triflate [J]. Inorg Chem, 2004, 43: 3136-3141.
    [24] Moore A J, Bryce M R. Tetrathiafulvalene: A Convenient Large-Scale (20g) Synthesis [J]. Synthesis, 1997, 407-409.
    [25] Garin J, Orduna J, Uriel S, et al. Improved Syntheses of Carboxytetrathiafulvalene, Formyltetrathiafulvalene and (Hydroxymethyl)tetrathiafulvalene: Versatile Building for New Functionalised Tetrathiafulvalene Derivatives [J]. Synthesis, 1994, 489-493.
    [26] Constable E C, Ward M D. Synthesis and co-ordination behaviour of 6′,6′′-bis(2-pyridyl)-2,2′:4,4′′:2′′,2′′′-quaterpyridine;‘back-to-back’2,2′: 6′,2′′-terpyridine [J]. J Chem Soc, Dalton Trans, 1990, 1405-1409.
    [27] Whittle B, Batten S R, Jeffery J C, et al. Ruthenium(II) complexes of some new polynucleating ligands incorporating terpyridyl and macrocyclic aza-crown binding sites [J]. J Chem Soc, Dalton Trans, 1996, 4249-4255.
    [28] Avarvari N, FourmiguéM. First cation radical salt of a tetrathiafulvalene-based phosphine metal Complex [J]. Chem Commun, 2004, 1300-1301.
    [29] Levi O P, Becker J Y, Ellern A, et al. Synthesis of 2,3-dimethylthio-6-pyridyl tetrathiafulvalene: a precursor for a new system involving a direct linkage between a strong donor (D) and a strong acceptor (A) [J]. Tetrahedron Lett, 2001, 42: 1571-1573.
    [30] Moore A J, Batsanov A S, Bryce M R, et al. Trimethyltetrathiafulvalene Bearing an N-Methylpyridinium Substituent:Synthesis, Crystal Structures, and Charge Transfer Properties [J]. Eur J Org Chem, 2001, 73-78.
    [31] Setifi F, Ouahab L, Golhen S, et al. First Radical Cation Salt of Paramagnetic Transition Metal Complex Containing TTF as Ligand, [CuII(hfac)2(TTF-py)2](PF6)·2CH2Cl2 (hfac =Hexafluoroacetylacetonate and TTF-py =4-(2-Tetrathiafulvalenyl-ethenyl)pyridine) [J]. Inorg Chem, 2003, 42: 1791-1793.
    [32] Popic V V, Korneev S M, Nikolaev V A, et al. An Improved Synthesis of 2-Diazo-1, 3-diketones [J]. Synthesis, 1991, 195-198.
    [33] Anselme J P. Convenient and practical preparation of dibenzoylmethane [J]. J Org Chem, 1967, 32: 3716.
    [34] Segura J L, Martín N. New Concepts in Tetrathiafulvalene Chemistry [J]. Angew Chem Int Ed, 2001, 40: 1372-1409.
    [35] Mogens B N, Christian L, Jan B. Tetrathiafuvalenes as building blocks in supramolecular chemistry II [J]. Chem Soc Rev, 2000, 153-164.
    [1] Ferraris J P, Cowan D O, Walatka V, et al. Electron Transfer in a New Highly Conducting Donor-Acceptor Complex [J]. J Am Chem Soc, 1973, 95: 948-949.
    [2] Iyoda M, Hasegawa M, Miyake Y. Bi-TTF, Bis-TTF, and Related TTF Oligomers [J]. Chem Rev, 2004, 104: 5085-5113.
    [3] Gorgues A, Hudhomme P, Salle M. Highly Functionalized Tetrathiafulvalenes: Riding along the Synthetic Trail from Electrophilic Alkynes [J]. Chem Rev, 2004, 104: 5151-5184.
    [4] Frere P, Skabara P. J. Salts of extended tetrathiafulvalene analogues: relationships between molecular structure, electrochemical properties and solid state organisation [J]. Chem Soc Rev, 2005, 34: 69-98.
    [5] Perruchas S, Boubekeur K, Canadell E, et al. Modulating the Framework Negative Charge Density in the System [BDT-TTP·+]/[Re6S5Cl91-]/[Re6(S/Se)6Cl82-]/[Re6S7Cl73-]: Templating by Isosteric Cluster Anions of Identical Symmetry and Shape, Variations of Incommensurate Band Filling, and Electronic Structure in 2D Metals [J]. J Am Chem Soc, 2008, 130: 3335-3348.
    [6] Saha S, Flood A H, Stoddart J F, et al. A Redox-Driven Multicomponent Molecular Shuttle [J]. J Am Chem Soc, 2007, 129: 12159-12171.
    [7] Collier C P, Jeppesen J O, Luo Y, et al. Molecular-Based Electronically Switchable Tunnel Junction Devices [J]. J Am Chem Soc, 2001, 123: 12632-12641.
    [8] Kumai R, Matsushita M, Izuoka A, et al. Intramolecular Exchange Interaction in a Novel Cross-Conjugated Spin System Composed ofπ-Ion Radical and Nitronyl Nitroxide [J]. J Am Chem Soc, 1994, 116: 4523-4524.
    [9] Fujiwara H, Kobayashi H. Newπ-extended organic donor containing a stable TEMPO radical as a candidate for conducting magnetic multifunctional materials [J]. Chem Commun, 1999, 2417-2418.
    [10] Murata T, Morita Y, Fukui K, et al. A Purely Organic Molecular Metal Based on a Hydrogen-Bonded Charge-Transfer Complex:Crystal Structure and Electronic Properties of TTF-Imidazole– p-Chloranil [J]. Angew Chem Int Ed, 2004, 43: 6343-6346.
    [11] Mas-Torrent M, Hadley P, Bromley S T, et al. Correlation between Crystal Structure and Mobility in Organic Field-Effect Transistors Based on Single Crystals of Tetrathiafulvalene Derivatives [J]. J Am Chem Soc, 2004, 126: 8546-8553.
    [12] Mas-Torrent M, Durkut M, Hadley P, et al. High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors [J]. J Am Chem Soc, 2004, 126: 984-985.
    [13] Bando Y, Shirahata T, Shibata K, et al. Organic Field-Effect Transistors Based on Alkyl-Terminated Tetrathiapentalene (TTP) Derivatives [J]. Chem Mater, 2008, 20: 5119-5121.
    [14] Nielsen K A, Cho W-S, Lyskawa J, et al. Tetrathiafulvalene-Calix[4]pyrroles: Synthesis, Anion Binding,and Electrochemical Properties [J]. J Am Chem Soc, 2006, 128: 2444-2451.
    [15] Guerro M, Carlier R, Boubekeur K, et al. Cyclic Vinylogous TTF: a Potential Molecular Clip Triggered by Electron Transfer [J]. J Am Chem Soc, 2003, 125: 3159-3167.
    [16] Nakanishi T, Kojima T, Ohkubo K, et al. Photoconductivity of Porphyrin Nanochannels Composed of Diprotonated Porphyrin Dications with Saddle Distortion and Electron Donors [J]. Chem Mater, 2008, 20: 7492-7500.
    [17] Briseno A L, Miao Q, Ling M M, et al. Hexathiapentacene: Structure, Molecular Packing, and Thin-Film Transistors [J]. J Am Chem Soc, 2006, 128: 15576-15577.
    [18] Bendikov M, Wudl F, Perepichka D F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics [J]. Chem Rev, 2004, 104: 4891-4945.
    [19] Alas S, Andreu R, Blesa M J, et al. Synthesis, Structure, and Optical Properties of 1,4-Dithiafulvene-Based Nonlinear Optic-phores [J]. J Org Chem, 2007, 72: 6440-6446.
    [20] Kobayashi A, Fujiwara E Kobayashi H. Single-Component Molecular Metals with Extended-TTF Dithiolate Ligands [J]. Chem Rev, 2004, 104: 5243-5264.
    [21] Enoki T, Miyasaki A. Magnetic TTF-Based Charge-Transfer Complexes [J]. Chem Rev, 2004, 104: 5449-5477.
    [22] Coronado E, Day P. Magnetic Molecular Conductors [J]. Chem Rev, 2004, 104: 5419-5448.
    [23] Hiraoka T, Fujiwara H, Sugimoto T, et al. Metal–semiconductor structural phase transitions and antiferromagnetic orderings in (Benzo-TTFVO)2·MX4 (M = Fe, Ga; X =Cl, Br) salts [J]. J Mater Chem, 2007, 17: 1664-1673.
    [24] Coronado E, Galán-Mascarós J R, Gómez-Garcia C J, Laukhin V N. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound [J]. Nature, 2000, 408: 447-449.
    [25] Day P, Kurmoo M, Mallah T, et al. Structure and Properties of Tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II) Hydrate, (BEDT-TTF)3CuC14·H2O: First Evidence for Coexistence of Localized and Conduction Electrons in a Metallic Charge-Transfer Salt [J]. J Am Chem Soc, 1992, 114: 10722-10729.
    [26] Graham A W, Kurmoo M , Day P.β″-(bedt-ttf)4[(H2O)Fe(C204)3]·PhCN:The First Molecular Superconductor containing Paramagnetic Metal Ions [J]. J Chem Soc Chem Commun, 1995, 2061-2062.
    [27] Kurmoo M, Graham A W, Day P, et al. Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4AFe(C2O4)3·C6H5CN (A = H2O , K, NH4) [J]. J Am Chem Soc, 1995, 117: 12209-12217.
    [28] Ojima E, Fujiwara H, Kato K, et al. Antiferromagnetic Organic Metal Exhibiting Superconducting Transition,κ-(BETS)2FeBr4 [BETS = Bis(ethylenedithio)tetraselenafulvalene] [J]. J Am Chem Soc, 1999, 121: 5581-5582.
    [29] Fujiwara H, Fujiwara E, Nakazawa Y, et al. A Novel Antiferromagnetic Organic Superconductorκ-(BETS)2FeBr4 [Where BETS =Bis(ethylenedithio)tetraselenafulvalene] [J]. J Am Chem Soc, 2001, 123: 306-314.
    [30] Uji S, Shinagawa H, Terashima T, et al. Magnetic-field-induced superconductivity in a two-dimensional organic conductor [J]. Nature, 2001, 410: 908-910.
    [31] Balicas L, Brooks J S, Storr K, et al. Superconductivity in an Organic Insulator at Very High Magnetic Fields [J]. Phys Rev Lett, 2001, 87: 067002.
    [32] Fujiwara H, Kobayashi H, Fujiwara E, et al. An Indication of Magnetic-Field-Induced Superconductivity in a Bifunctional Layered Organic Conductor,κ-(BETS)2FeBr4 [J]. J Am Chem Soc, 2002, 124: 6816-6817.
    [33] Alberola A, Coronado E, Galán-Mascarós J R, et al. A Molecular Metal Ferromagnet from the Organic Donor Bis(ethylenedithio)tetraselenafulvalene and Bimetallic Oxalate Complexes [J]. J Am Chem Soc, 2003, 125: 10774-10775.
    [34] Coronado E, Galán-Mascarós J R. Hybrid molecular conductors [J]. J Mater Chem,2005, 15: 66-74.
    [35] Setifi F, Golhen S, Ouahab L, et al. Bulk Weak Ferromagnet in Ferrimagnetic Chains of Organic-Inorganic Hybrid Materials Based on BDH-TTP and Paramagnetic Thiocyanato Complex Anions: (BDH-TTP)[M(isoq)2(NCS)4], M = CrIII, FeIII [J]. Inorg Chem, 2002, 41: 3786-3790.
    [36] Turner S S, Michaut C, Durot S, et al. TTF based charge transfer salts of [M(NCS)4(C9H7N)2]- where M = Cr, Fe and C9H7N =isoquinoline; observation of bulk ferrimagnetic order [J]. J Chem Soc Dalton Trans, 2000, 905-909.
    [37] Turner S S, Day P. Ion–radical salts: a new type of molecular ferrimagnet [J]. J Mater Chem, 2005, 15: 23-25.
    [38] Enoki T, Tomomatsu I, NakanoY, et al. In The Physics and Chemistry of Organic Superconductors [M]. Springer-Verlag: Berlin, 1990, 294.
    [39] Marsden I R, Allan M L, Friend R H, et al. Crystal and electronic structures and electrical, magnetic, and optical properties of two copper tetrahalide salts of bis(ethylenedithio)-tetrathiafulvalene [J]. Phys Rev B, 1994, 50: 2118-2127.
    [40] Lu W, Zhu Q Y, Dai J, et al. Tetrathiafulvalene-Diamide Salts with S···S and C···C Stacked Radical Couples [J]. Cryst Growth Des, 2007, 7: 652-657.
    [41] Kahn O. Molecular Magnetism [M]. VCH: New York, 1993.
    [42] Starynowicz P. COSABS99, Program for Absorprtion Correction [P]. University of Wroclaw, Wroclaw, Poland, 1999.
    [43] Sheldrick G M. SHELXS97 and SHELXL97 [P]. University of G?ttingen, Germany, 1997.
    [1] Coronado E, Day P. Magnetic Molecular Conductors [J]. Chem Rev, 2004, 104: 5419-5448.
    [2] Nielsen M B, Lomholt C, Becher J. Tetrathiafulvalenes as building blocks in supramolecular chemistry II [J]. Chem Soc Rev, 2000, 29: 153.
    [3] Enoki T, Miyasaki A. Magnetic TTF-Based Charge-Transfer Complexes [J]. Chem Rev, 2004, 104: 5449-5477.
    [4] Hiraoka T, Fujiwara H, Sugimoto T, et al. Metal-semiconductor structural phase transitions and antiferromagnetic orderings in (Benzo-TTFVO)2·MX4 (M = Fe, Ga; X = Cl, Br) salts [J]. J Mater Chem, 2007, 17: 1664-1673.
    [5] Fujiwara H, Wada K, Hiraoka T, et al. Stable Metallic Behavior and Antiferromagnetic Ordering of Fe(III) d Spins in (EDO-TTFVO)2·FeCl4 [J]. J Am Chem Soc, 2005, 127: 14166-14167.
    [6] Wang Y, Cui S X, Li B, et al. Synthesis and Characterization of Monosubstituted TTF and Its Solvent Dependent Mono- and Dication Charge-Transfer Salts [J]. Cryst Growth Des, 2009, 9: 3855-3858.
    [7] Kushch N D, Yagubskii E B, Kartsovnik M V, et al.π-Donor BETS Based Bifunctional Superconductor with Polymeric Dicyanamidomanganate(II) Anion Layer:κ-(BETS)2Mn[N(CN)2]3 [J]. J Am Chem Soc, 2008, 130: 7238-7240.
    [8] Zhang B, Wang Z, Zhang Y, et al. Hybrid Organic-Inorganic Conductor with a Magnetic Chain Anion:κ-BETS2[FeIII(C2O4)Cl2] [BETS =Bis(ethylenedithio)tetraselenafulvalene] [J]. Inorg Chem, 2006, 45: 3275-3280.
    [9] Coronado E, Curreli S, Giménez-Saiz C, et al. New BEDT-TTF/[Fe(C5O5)3]3- Hybrid System: Synthesis, Crystal Structure, and Physical Properties of a Chirality-InducedαPhase and a Novel Magnetic Molecular Metal [J]. Inorg Chem, 2007, 46: 4446-4457.
    [10] FourmiguéM, Auban-Senzier P. Anionic Layered Networks Reconstructed from [Cd(SCN)3]∞-Chains in Pseudo One-Dimensional Conducting Salts of Halogenated Tetrathiafulvalenes [J]. Inorg Chem, 2008, 47: 9979-9986.
    [11] Cerrada E, Diaz C, Diaz M C, et al. Tetrathiafulvalene-functionalized phosphine as a coordinating ligand. X-Ray structures of (PPh2)4TTF and [(AuCl)4{(PPh2)4TTF}] [J]. J Chem Soc Dalton Trans, 2002, 1104-1109.
    [12] Pellon P, Gachot G, Le Bris J, et al. Complexing Ability of the Versatile, Redox-Active,3-[3-(Diphenylphosphino)propylthio]-3¢,4,4¢-trimethyl-tetrathiafulvalene Ligand [J]. Inorg Chem, 2003, 42: 2056-2060.
    [13] Avarvari N, Martin D, FourmiguéM. Structural and electrochemical study of metal carbonyl complexes with chelating bis- and tetrakis(diphenylphosphino)tetrathiafulvalenes [J]. J Organomet Chem, 2002, 643: 292-300.
    [14] Devic T, Batail P, FourmiguéM, Avarvari N. Unexpected Reactivity of PdCl2 and PtCl2 Complexes of the Unsaturated Diphosphine o-Me2TTF(PPh2)2 toward Chloride Abstraction with Thallium Triflate [J]. Inorg Chem, 2004, 43: 3136-3141.
    [15] Avarvari N, FourmiguéM. First cation radical salt of a tetrathiafulvalene–based phosphine metal Complex [J]. Chem Commun, 2004, 1300-1301.
    [16] Pointillart F, Le Gal Y, Golhen S, et al. First Paramagnetic 4d Transition-Metal Complex with a Redox-Active Tetrathiafulvalene Derivative, [Ru(salen)(PPh3)(TTF-CH=CH-Py)]BF4[salen2-=N,N’ethan-1,2-diylbis(salicylidenamine), PPh3 = Triphenylphosphine, TTF-CH=CH-Py =4-(2-Tetrathiafulvalenylethenyl)pyridine] [J]. Inorg Chem, 2008, 47: 9730-9732.
    [17] Iwahori F, Golhen S, Ouahab L, et al. CuII Coordination Complex Involving TTF-py as Ligand [J]. Inorg Chem, 2001, 40: 6541-6542.
    [18] Ouahab L, Iwahori S, Golhen S, et al. M(hfac)2(TTF-py)2 (M = CuII, MnII; hfac =hexafluoroacetylacetonate and TTF-py = 4-(2-tetrathiafulvalenyl-ethenyl)pyridine): a new approach forπ-d interactions in conducting and magnetic molecule based materials [J]. Synth Met, 2003, 133: 505-507.
    [19] Setifi F, Ouahab L, Golhen S, et al. First Radical Cation Salt of Paramagnetic Transition Metal Complex Containing TTF as Ligand, [CuII(hfac)2(TTF-py)2](PF6)·2CH2Cl2 (hfac =Hexafluoroacetylacetonate and TTF-py =4-(2-Tetrathiafulvalenyl-ethenyl)pyridine) [J]. Inorg Chem, 2003, 42: 1791-1793.
    [20] Liu S-X, Dolder S, Franz P, et al. Structural Studies of Transition Metal Complexes with 4,5-Bis(2-pyridylmethylsulfanyl)-4',5'-ethylenedithiotetrathiafulvalene: Probing Their Potential for the Construction of Multifunctional Molecular Assmibles [J]. Inorg Chem, 2003, 42: 4801-4803.
    [21] Devic T, Avarvari N, Batail P. A Series of Redox Active, Tetrathiafulvalene-Based Amidopyridines and Bipyridines Ligands: Syntheses, Crystal Structures, a Radical Cation Salt and Group 10 Transition-Metal Complexes [J]. Chem Eur J, 2004, 10: 3697-3707.
    [22] Wang L, Zhang B, Zhang J. Preparation and Crystal Structure of Dual-Functional Precursor Complex Bis(acetylacetonato)nickel(II) with 4-Pyridyltetrathiafulvalene [J]. Inorg Chem, 2006, 45: 6860-6863.
    [23] Liu S-X, Ambrus C, Dolder S, et al. A Dinuclear Ni(II) Complex with Two Types of Intramolecular Magnetic Couplings: Ni(II)-Ni(II) and Ni(II)-TTF·+ [J]. Inorg Chem, 2006, 45: 9622-9624.
    [24] Benbellat N, Gavrilenko K S, Gal Y L, et al. Co(II)-Co(II) Paddlewheel Complex with a Redox-Active Ligand Derived from TTF [J]. Inorg Chem, 2006, 45: 10440-10442.
    [25] Massue J, Bellec N, Chopin S, et al. Electroactive Ligands: The First Metal Complexes of Tetrathiafulvenyl-Acetylacetonate [J]. Inorg Chem, 2005, 44: 8740-8748.
    [26] Ichikawa S, Kimura S, Takahashi K, et al. Intrinsic Carrier Doping in Antiferromagnetically Interacted Supramolecular Copper Complexes with (Pyrazino)tetrathiafulvalene (Pyra-TTF) as the Ligand, [CuIICl2(pyra-TTF)] and (Pyra-TTF)2[CuI3Cl4(pyra-TTF)] [J]. Inorg Chem, 2008, 47: 4140-4145.
    [27] Ichikawa S, Mori H. High Conductivity of the New Supramoleclar Copper Complex with Oxidized Pyrazinoselenathiafulvalene (=pyra-STF) as the Ligand, [CuICl1.5(pyra-STF)0.5+] [J]. Inorg Chem, 2009, 48: 4643-4645.
    [28] Chahma M, Hassan N, Alberola A, et al. Preparation and Coordination Complex of the First Imine-Bridged Tetrathiafulvalene-Pyridine Donor Ligand [J]. Inorg Chem, 2007, 46: 3807-3809.
    [29] Zhu Q, Liu Y, Lu W, et al. Effects of Protonation and Metal Coordination on Intramolecular Charge Transfer of Tetrathiafulvalene Compound [J]. Inorg Chem, 2007, 46: 10065-10070.
    [30] Wu J-C, Liu S-X, Keene T, et al. Coordination Chemistry of aπ-Extended, Rigid and Redox-Active Tetrathiafulvalene-Fused Schiff-Base Ligand [J]. Inorg Chem, 2008, 47: 3452-3459.
    [31] Pointillart F, Gal Y L, Golhen S, et al. 4f Gadolinium(III) Complex Involving Tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a Ligand [J]. Inorg Chem, 2009, 48: 4631-4633.
    [32] Mercury 1.3, Supplied with Cambridge Structural Database CCDC [P], Cambridge, U. K., 2003-2004.
    [33] Kahn O. Molecular Magnetism [M]. VCH: New York, 1993.
    [34] Starynowicz P. COSABS99, Program for Absorprtion Correction [P]. University of Wroclaw, Wroclaw, Poland, 1999.
    [35] Sheldrick G M. SHELXS97 and SHELXL97 [P]. University of G?ttingen, Germany, 1997.
    [36] Wen H, Li C, Song Y, et al. Synthesis and Magnetic Properties of a Highly Conducting Neutral Nickel Complex with a Highly Conjugated Tetrathiafulvalenedithiolate Ligand [J]. Inorg Chem, 2007, 46: 6837-6839.
    [37] Agnihotri P, Patra S, Suresh E, et al. Selective Precipitation of Alkaline Earth Metal Cations with Dipicrylamine Anion: Structure-Selectivity Correlation [J]. Eur J Inorg Chem, 2006, 4938-4944.
    [1] Westhoff E, Ed. Water and biological macromolecules; CRC Press: Boca Raton, FL, 1993.
    [2] Joannopoulous J D. Photonics: Self-assembly lights [J]. Nature 2001, 414: 257-258.
    [3] Keutsch F N, Cruzan J D, Saykally R J. The Water Trimer [J]. Chem Rev, 2003, 103: 2533-2577.
    [4] Müller A, Krickemeyer E, B?gge H, et al. Drawing Small Cations into Highly Charged Porous Nanocontainers Reveals“Water”Assembly and Related Interaction Problems [J]. Angew Chem Int Ed, 2003, 42: 2085-2010.
    [5] Kim K, Jordan K D, Zwier T S. Low-Energy Structures and Vibrational Frequencies of the Water Hexamer: Comparison with Benzene-(H2O)6 [J]. J Am Chem Soc, 1994, 116: 11568-11569.
    [6] Ugalde J M, Alkorta I, Elguero J. Formation of Extended Tapes of Cylic Water Hexamers in a Organic Molecular Crystal Host [J]. Angew Chem Int Ed, 2000, 39: 717-721.
    [7] Gruenloh C J, Carney J R, Arrington C A, et al. Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Benzene-(Water)8 [J]. Science, 1997, 276: 1678-1681.
    [8] Mascal M, Infantes L, Chisholm J. Water Oligomers in Crystal Hydrates-What′s News and What Isn′t? [J]. Angew Chem Int Ed, 2006, 45: 32-36.
    [9] Gregory J K, Clary D C, Liu K, et al. The Water Dipole Moment in Water Clusters [J]. Science, 1997, 275: 814-817.
    [10] Liu K, Brown M G, Carter C, et al. Characterization of a cage form of the water hexamer [J]. Nature, 1996, 381: 501-503.
    [11] Cruzan J D, Braly L B, Liu K, et al. Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer [J]. Science, 1996, 271: 59-62.
    [12] Nauta K, Miller R E. Formation of Cyclic Water Hexamer in Liquid Helium: The Smallest Piece of Ice [J]. Science, 2000, 287: 293-295.
    [13] Zappa F, Denifl S, M?hr I, et al. Ultracold Water Cluster Anions [J]. J Am Chem Soc,2008, 130: 5573-5578.
    [14] García-Zarracino R, H?pfl H, Güizado-Rodríguez M. Bis(tetraorganodistannoxanes) as Secondary Building Block Units (SBUs) for the Generation of Porous Materials– A Three-Dimensional Honeycomb Architecture Containing Adamantane-type Water Clusters [J]. Cryst Growth Des, 2009, 9: 1651-1654.
    [15] Mahata P, Ramya K V, Natarajan S. Reversible Water Intercalation Accompanied by Coordination and Color Changes in a Layered Metal-Organic Framework [J]. Inorg Chem, 2009, 48: 4942-4951.
    [16] Ludwig R. Water: From Clusters to the Bulk.Angew Chem Int Ed, 2001, 40: 1808-1827.
    [17] Infantes L, Motherwell S. Water clusters in organic molecular crystals CrystEngComm 2002, 4: 454-461.
    [18] Ermer O, Neudorfl J. Comparative Supramolecular Chemistry of Coronene, Hexahelicene, and [18] Crown-6: Hydrated and Solvated Molecular Complexes of
    [18]Crown-6 with 5-Hydroxyisophthalic Acid and Related Di- and Tricarboxylic Acids [J]. Chem Eur J, 2001, 7: 4961-4980.
    [19] Li F, Li T, Yuan D, et al. Characterization of a novel water tape containing (H2O)18 clusters [J]. Inorg Chem Commun, 2006, 9: 691-694.
    [20] Jude K M, Wright S K, Tu C, et al. Crystal Structure of F65A/Y131C-Methylimidazole Carbonic Anhydrase V Reveals Architectural Features of an Engineered Proton Shuttle [J]. Biochemistry, 2002, 41: 2485-2491.
    [21] Tajkhorshid E, Nollert P, Jensen M, et al. Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning [J]. Science 2002, 296: 525-530.
    [22] Manikumari S, Shivaiah V, Das S K. Identification of a Near-Linear Supramolecular Water Dimer, (H2O)2, in the Channel of an Inorganic Framework Material [J]. Inorg Chem, 2002, 41: 6953-6955.
    [23] Custecean R, Afloroaei C, Vlassa M, et al. Water Clusters: Towards an Understanding Based on First Principles of Their Static and Dynamic Properties [J]. Angew Chem Int Ed, 2000, 39: 3094-3096.
    [24] Lu J, Yu J -H, Chen X–Y, et al. Novel Self-Assembled Chain of Water Molecules in a Metal-Organic Framework Structure of Co(II) with Tartrate Acid [J]. Inorg Chem, 2005, 44: 5978-5980.
    [25] Pal S, Sankaran N B, Samanta A. Structure of a Self-Assembled Chain of Water Molecules in a Crystal Host [J]. Angew Chem Int Ed, 2003, 42: 1741-1743.
    [26] Hu N -H, Li Z -G, Xu J -W, et al. Self-Assembly of a Water Chain with Tetrameric and Decameric Clusters in the Channel of a Mixed-Valence CuICuII Complex [J]. Cryst Growth Des, 2007, 7: 15-17.
    [27] Phillips A D, Fei Z, Ang W H, et al. Self-Assembly of a Water Chain with Tetrameric and Decameric Clusters in the Channel of a Mixed-Valence CuICuII Complex [J]. Cryst Growth Des, 2009, 9: 1966-1978.
    [28] Lakshminarayanan P S, Suresh E, Ghosh P. Formation of an Infinite 2D-Layered Water of (H2O)45 Cluster in a Cryptand-Water Supramolecular Complex: A Template Effect [J]. J Am Chem Soc, 2005, 127: 13132-13133.
    [29] Janiak C, Scharman T G. Two-Dimensional Water and Ice Layers: Neutron Diffraction Studies at 278, 263, and 20 K [J]. J Am Chem Soc, 2002, 124: 14010-14011.
    [30] Ma B-Q, Sun H-L, Gao S. Formation of Two-Dimensional Supramolecular Icelike Layer Containing (H2O)12 Rings [J]. Angew Chem Int Ed, 2004, 43: 1374-1376.
    [31] Raghuraman K, Katti K K, Barbour L J, et al. Characterization of Supramolecular (H2O)18 Water Morphology and Water-Methanol (H2O)15(CH3OH)3 Clusters in a Novel Phosphorus Functionalized Trimeric Amino Acid Host [J]. J Am Chem Soc, 2003, 125: 6955-6961.
    [32] Chen S-P, Huang G-X, Li M, et al. New in Situ Condensation Reaction of Amino Diphosphonic Acids: A Series of Bicyclic Phosphonate Derivatives and Three Novel Water Clusters [J]. Cryst Growth Des, 2008, 8: 2824-2833.
    [33] Rodríguez-Cuamatzi P, Vargas-Díaz G, H?pfl H. Modification of 2D Water That Contains Hexameric Units in Chair and Boat Conformations - A Contribution to the Structural Elucidation of Bulk Water [J]. Angew Chem Int Ed, 2004, 43:3041.
    [34] Li C-H, Huang K-L, Dou J-M, et al. An Interesting Six-Connected 3D Nanowater Framework Constructed from Turbine-Type (H2O)18 Clusters Based on a Mn(III) Complex [J]. Cryst Growth Des, 2008, 8: 3141-3143.
    [35] Huang Y-G, Gong Y-Q, Jiang F-L, et al. Formation of an Infinite Three-Dimensional Water Network by the Hierarchic Assembly of Bilayer Water Nanotubes of Octamers [J]. Cryst Growth Des, 2007, 7: 1385-1387.
    [36] Newkome G R, Cho T J, Moorefield C N, et al. Towards Ordered Architectures:Self-Assembly and Stepwise Procedures to the Hexameric Metallomacrocycles [Arylbis(terpyridinyl)6FeII6-n-RuIIn] (n=0,2,3,5) [J]. Chem Eur J, 2004, 10: 1493-1500.
    [37] Baranoff E, Collins J -P, Flamigni L, et al. From ruthenium(II) to iridium(III): 15 years of triads based on bis-terpyridine complexes [J]. Chem Soc Rev, 2004, 33: 147-155.
    [38] Hofmeier H, Schubert U S. Recent developments in the supramolecular chemistry of terpyridine–metal complexes [J]. Chem Soc Rev, 2004, 33: 373-399.
    [39] Nayak M, Koner R, Stoeckli-Evans H, et al. Hydrogen-Bonded One-Dimensional Zigzag Pairs and Helical Dimers in an Enolic 4-Terpyridone Based Nickel(II) Dicyanamide Supramolecule [J].Cryst Growth Des, 2005, 5: 1907-1912.
    [40] Murguly E, Norsten T B, Branda N. Tautomerism of 4-hydroxyterpyridine in the solid, solution and gas phases: an X-ray, FT-IR and NMR study [J]. J Chem Soc, Perkin Trans, 1999, 2: 2789-2794.
    [41] McMurtrie J, Dance I. Engineering the metal-terpy grid with complexes containing 4′-hydroxy terpyridine [J]. Cryst Eng Comm, 2005, 7: 230-236.
    [42] Gaspar A B, Munoz M C, Real J A. [Co (4-terpyridone)2]X2: A Novel Cobalt(II) Spin Crossover System [4-Terpyridone ) 2,6-Bis(2-pyridyl)-4(1H)-pyridone] [J]. Inorg Chem, 2001, 40: 9-10.
    [43] Galet A, Gaspar A B, Munoz M C, et al. Influence of the Counterion and the Solvent Molecules in the Spin Crossover System [Co(4-terpyridone)2]X·nH2O [J]. Inorg Chem, 2006, 45: 4413-4422.
    [44] Constable E C, Ward M D. Synthesis and co-ordination behaviour of 6′,6″-bis(2-pyridyl)-2,2′:4,4″:2″,2″-quaterpyridine;‘back-to-back’2,2′:6′,2″-terpyridine [J]. J Chem Soc, Dalton Trans. 1990, 1405-1409.
    [45] Whittle B, Batten S R, Jeffery J C, et al. Ruthenium(II) complexes of some new polynucleating ligands incorporating terpyridyl and macrocyclic aza-crown binding sites [J]. J Chem Soc, Dalton Trans. 1996, 4249-4255.
    [46] Kahn, O. Molecular Magnetism [M], VCH: New York, 1993.
    [47] Starynowicz, P. COSABS99, Program for Absorprtion Correction [P], University of Wroclaw, Wroclaw, Poland, 1999.
    [48] Sheldrick, G. M. SHELXS97 and SHELXL97 [P], University of G?ttingen, Germany, 1997.
    [49] Blake A J, Hubberstery P, Suksangpanya U, et al. Anion recognition by conservation of hydrogen-bonding patterns in salts of copper(II) co-ordinated by tetradentate bis(amidino-Oalkylurea) ligands [J]. J Chem Soc, Dalton Trans. 2000, 3873-3880.
    [50] Wang P, Moorefield C N, Panzner M, et al. Terpyridine CuII Polycarboxylate Crystal Reorganization to One- and Two-Dimensional Nanostructures: Crystal Disassembly and Reassembly [J]. Cryst Growth Des, 2006, 6: 1563-1565.
    [51] Narten A H, Thiessen W E, Blum L. Atom Pair Distribution Functions of Liquid Water at 25°C from Neutron Diffraction [J]. Science, 1982, 217: 1033-1034.
    [52] Bleaney B, Bowers K D. Anomalous Paramagnetism of Copper Acetate [J]. Proc R Soc London, A 1952, 214: 451-465.