基于磺酰胺基团的汞离子荧光探针的设计、合成及识别机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞及其化合物属于剧毒物质,严重危害人类的健康。因此,对Hg2+的检测在生命、环境和医学等诸多领域都具有非常重要的意义。由于荧光离子探针方法不仅使用便捷,而且在灵敏度、选择性以及实施实时、原位检测等方面均具有突出优点,因此开发具有高选择性、高灵敏度、良好水溶性的Hg2+荧光探针成为了人们的关注焦点和研究目标。本论文以丹磺酰基团为荧光发色团,磺酰胺基团为识别基团,设计、合成了几种氨基酸衍生物作为汞离子荧光探针,在水溶液中利用荧光离子滴定实验检测了它们对金属离子的识别特性,并利用多种实验方法对相关识别机理作了系统研究。主要研究内容包括:
     1)设计、合成了含有色氨酸的探针分子——2-(5-二甲氨基-1-萘磺酰胺基)-3-(3-吲哚基)丙酸甲酯(a),该分子有良好的水溶性,对汞离子的识别具有高度的选择专一性、极高的响应灵敏度和很强的抗干扰能力并可应用于活体细胞内汞离子检测。
     2)合成了含有双酯基氨基酸衍生物——2-(5-二甲氨基-1-萘磺酰胺基)琥珀酸二甲酯(b)和2-(5-二甲氨基-1-萘磺酰胺基)琥珀酸酯戊二酸二甲酯(c),它们具有良好的水兼溶性,对汞离子的识别具有高选择性、高灵敏度,并具有除去溶液中汞离子的功能(过滤法)。
     3)合成了含有亮氨酸的一系列衍生物,通过荧光离子滴定实验对比研究了探针分子各基团与识别的选择性、灵敏度和抗干扰能力等的关系;并通过对比分子结构与荧光离子滴定实验结果,研究了BSA在丹磺酰类探针分子与汞离子识别过程中的作用原理。
     同时,我们利用荧光光谱、紫外-可见吸收光谱、核磁共振波谱、红外光谱、单晶X-光衍射等技术方法对这些探针分子与汞离子的识别模式和作用机理进行了系统研究,这些研究为进一步设计和优化汞离子荧光探针奠定了基础。
Mercury pollution, which mainly stems from mercury (II) ion (Hg2+) contaminated natural water, has become a worldwide environment problem since Hg2+ can easily pass through biological membranes, causing serious damage to the central nervous and endocrine systems. Therefore, developing new methods for mercury detection that are effective, rapid, facile, and applicable to environmental and/or biological systems have become a significant and insistent goal. Differently from traditional instrumental techniques, small-molecule probes are well-suited for quick detection of Hg2+ in the field and for in vivo studies in biological systems. And therefore the design and synthesis of fluorescence sensors for Hg2+ have recently attracted much attention. Because of the water-solubility is very important for sensors, hydrophilic amino acids have been introduced to the design to improve the water-solubility of fluorescent sensors.
     Firstly, we designed and synthesized methyl 2-(5-(dimethylamino)naphthalene- 1- sulfonamido)-3-(1H-indol-3-yl)propanoate (a) as an efficient and selective fluorescent Hg2+ probe. Compound a displayed a rapid and specific response to Hg2+ in buffered aqueous solution with enhancement and blue-shift of fluorescence emission, and in compare to the previous study it showed a significant improvement of detection limit (5 nM), which is lower than the upper limit for Hg2+ in drinking water (10 nM). Notably, the results of the fluorescence imaging in Hela cells suggest that a can be used to detect intracellular Hg2+ in live cells. Using 1H NMR, FT-IR and single crystal X-ray diffraction experiments, we explored the coordination mechanism of a and Hg2+ both in solution and in crystal. On the basis of these results, we confirmed that the blue-shift and enhancement of the emission band of a originated from the strong binding between Hg2+ and the deprotonated amino group, which induced the disruption of ICT between the amino group and the dansyl moiety. The high stability of a/Hg2+ complex in aqueous solution could be attributed to the enhanced chelation of the nitrogen atom and Hg2+, various weak interactions provided by multiple atoms, and also by the fixed placement in space of Hg2+ by the two indole rings. In summary, the sensor a exhibits characteristics of high affinity, fast and stably turn-on response to Hg2+, which attribute to the stably binding modle of a/Hg2+.
     Based on the investigation of a, we have designed and synthesized other two new sensors, dimethyl 2-(5-(dimethylamino)naphthalene-1-sulfonamido)succinate (b) and dimethyl 2-(5-(dimethylamino)naphthalene-1-sulfonamido)pentanedioate (c), with diester groups which act as the Hg2+ recognition site and the dansyl group as the fluorescent chromophore. As the closely related structure, b and c show similar fluorescence response to Hg2+ with large blue-shift (Δλ=75 nm) and quantum yield 10-fold enhancement , performing high sensitivity (detection limit 0.5μM) and specific selectivity for Hg2+ over 15 other metal ions in HEPES solution. We also examined the coordination mechanism of b and Hg2+ in solution with 1H NMR and FT-IR experiments, which show that the involved ICT between the amino group and the dansyl moiety is inhibited by Hg2+ binding, and therefore the emission is released and the band shifts toward the blue region of the emission spectrum. The dimethyl amino group of the dansyl moiety is weakly basic, while the amino functionality of the sulfonamide is weakly acidic, resulting in a sensor with good water compatibility. Upon addition of low amounts of Hg2+ to b in solution, the deprotonated sulfonamide has a higher affinity for Hg2+ and bind Hg2+ to form a complex of b/Hg2+; while large amounts of Hg2+ induces low water-solubility and aggregated complexes with strong fluorescence emission and blue-shift, which can be used to remove Hg2+ from aqueous solution by filtering.
     The previous studies revealed that both the sulfonamide group and the residue of amino acid were very important for the Hg2+ recognition. To further assayed it, we design and synthesize a series of amino acid derivatives, methyl 2-(5-(dimethylamino)naphthalene- 1-sulfonamido)-4-methylpentanoate (d), 2-(5-(dimethylamino)naphthalene-1-sulfonamido)- 4-methylpentanoic acid (e), N-(cyanomethyl)-2-(5-(dimethylamino)naphthalene-1-sulfonamido)-4- methyl pentanamide (f), 2-(biphenyl-4-ylsulfonamido)-N-(cyanomethyl)-4-methyl pentanamide (g), N-(1-(cyanomethylamino)-4-methyl-1-oxopentan-2-yl)-4- methoxybenzamide (h) and N-(1-(cyanomethylamino)-4-methyl-1-oxopentan-2-yl) biphenyl -4-carboxamide (i). Compound h and i did not respond to Hg2+ in HEPES aqueous solution, correspondingly d, e, f and g which containing sulfonamide group can detect Hg2+ in the identical condition. It confirmed again that sulfonamide group has high affinity to Hg2+ and is crucial important for the Hg2+ recognition. Because of all d, e, f and g can recognize Hg2+ in aqueous solution: Compound d shows enhancement and blue-shift of fluorescence emission as response to Hg2+ in buffered aqueous solution, but the changes of the fluorescence emission is smaller than a, b and c; f has a similar fluorescence response to Hg2+, which is more weak than d; e and g are quenching the fluorescence emission by Hg2+. It shows that the residue of amino acid is not very important but only assistant for the recognition.
     In addition, we also in-depth study the function of the BSA in the recognition between dansyl probe and mercury ion. The results showed that BSA in the process of dansyl probe and mercury ion recognition, not only played the role of a platform, but also directly involved in the identification. Firstly, BSA is the host (receptor) of the entire recognition system, and dansyl probe and mercury ion are the guests, and then the two guests interact with each other and induce the fluorescent signal changes. But the dansyl probe and mercury ion need to enter the same or adjacent cavities of the BSA, and can interact with each other in the cavities. So the entire recognition system which contains ternary recognition process is very complicated, and there are mulriple interactions between the three molecules in this system.
     In conclusion, we have successfully obtained a series sensors for Hg2+ by using sulfonamide as the recognition site and performed in-depth studing of the mechanism, which show a potential guideline in environmental applications oriented toward the chemosensor design and optimization.
引文
[1] CELO V, LEAN D R S, SCOTT S L. Abiotic methylation of mercury in the aquatic environment [J]. Sci. Total Environ., 2006, 368: 126-137.
    [2] BOENING D W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere, 2000, 40: 1335-1351.
    [3] HARRIS H H, PICKERING I J, GEORGE G N. The chemical form of mercury in fish [J]. Science, 2003, 301: 1203-1203.
    [4] KAUR P, ASCHNER M, SYVERSEN T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes [J]. NeuroToxicology, 2006, 27: 492-500.
    [5] TAKEUCHI T, MORIKAWA N, MATSUMOTO H A, et al. Pathological study of minamata disease in Japan [J]. Acta Neuropathologica, 1962, 2: 40-57.
    [6] PIERCE P E, THOMPSON J F, LIKOSKY W H, et al. Alkyl mercury poisoning in humans [J]. JAMA, J. Am. Med. Assoc., 1972, 220: 1439-1442.
    [7] BAKIR F, DAMLUJI S F, AMIN-ZAKI L, et al. Methylmercury poisoning in Iraq [J]. Science, 1973, 181: 230-241.
    [8] MALM O. Goldmining as a source of mercury exposure in the Brazilian Amazon [J]. Environ. Re. Sect. A, 1998, 77: 73-78.
    [9] GUSTIN M S, COOLBAUGH M F, ENGLE M A, et al. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains [J]. Environ. Geol., 2003, 43: 339-351.
    [10] CHU P, PORCELLA D B. Mercury stack emissions from U.S. electric utility power plants [J]. Water, Air, Soil Pollut., 1995, 80: 135-144.
    [11] Guo, T.; Baasner, J.; Gradl, M.; Kistner, A. Determination of mercury in saliva with a flow-injection system [J]. Anal. Chim. Acta 1996, 320, 171-176.
    [12] CHAN M H M, CHAN I H S, KONG A P S, et al. Cold-vapour atomic absorption spectrometry underestimates total mercury in blood and urine compared to inductively-coupled plasma mass spectrometry: an important factor for determining mercury reference intervals [J]. Pathology, 2009, 41: 467-472.
    [13] BLOOM N, FITZGERALD W F. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection [J]. Anal. Chim. Acta, 1988, 208: 151-161.
    [14] FITZGERALD W F, GILL G A. Sub nanogram determination of mercury by two-stage Au amalgamation in gas phase detection applied to atmospheric analysis [J]. Anal. Chem., 1979, 51: 1714-1720.
    [15] KRAWCZYK T K, MOSZCZYNSKA M, TROJANOWICZ M. Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor [J]. Biosens. Bioelectron., 2000, 15: 681-691.
    [16] VLASOV Y G, ERMOLENKO Y E, KOLODNIKOV V V, et al. A mercury sensor for flow- and batch-injection analyses [J]. Sens. Actuators B, 1995, 24: 317-319.
    [17] BONFIL Y, BRAND M, KIROWA-EISNER E. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode [J]. Anal. Chim. Acta, 2000, 424: 65-76.
    [18] HAN S, ZHU M, YUAN Z, LI X. A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury–glutathione complex [J]. Biosens. Bioelectron., 2001, 16: 9-16.
    [19] ZHAO Q, CAO T, LI F, et al. A highly selective and multisignaling optical- electrochemical sensor for Hg2+ based on a phosphorescent Iridium(III) complex [J]. Organometallics, 2007, 26: 2077-2081.
    [20] CABALLERO A, LLOVERAS V, CURIEL D, et al. Electroactive thiazolederivatives capped with ferrocenyl units showing charge-transfer transition and selective ion-sensing properties: a combined experimental and theoretical study [J]. Inorg. Chem., 2007, 46: 825-838.
    [21] MUTHUKUMAR C, KESARKAR S D, SRIVASTAVA D N. Conductometric mercury [II] sensor based on polyaniline–cryptand-222 hybrid [J]. J. Electroanal. Chem., 2007, 602: 172-180.
    [22] LOMBARDO M, VASSURA I, FABBRI D, et al. A strikingly fast route to methylmercury acetylides as a new opportunity for monomethylmercury detection [J]. J. Organomet. Chem., 2005, 690: 588-593.
    [23] LIU L, LAM Y -W, WONG W -Y. Complexation of 4,40-di(tert-butyl)-5- ethynyl-2,20- bithiazole with mercury(II) ion: Synthesis, structures and analytical applications [J]. J. Organomet. Chem., 2006, 691: 1092-1100.
    [24] LIU L, WONG W -Y, LAM Y–W, TAM W -Y. Exploring a series of monoethynylfluorenes as alkynylating reagents for mercuric ion: Synthesis, spectroscopy, photophysics and potential use in mercury speciation [J]. Inorg. Chim. Acta, 2007, 360: 109-121.
    [25] SAITO S, SASAMURA S, HOSHI S. Simultaneous detection of [metal(II)– tpen]2+ as kinetically inert cationic complexes using pre-capillary derivatization electrophoresis: an application to biological samples [J]. Analyst, 2005, 130: 659-663.
    [26] CZARNIK A W. Chemical communication in water using fluorescent chemosensors [J]. Acc. Chem. Res., 1994, 27: 302-308.
    [27] DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, et al. Signaling recognition events with fluorescent sensors and switches [J]. Chem. Rev., 1997, 97: 1515-1566.
    [28] DE SILVA A P, FOX D B, HUXLEY A J M, et al. Combining luminescence,coordination and electron transfer for signalling purposes Coord [J]. Chem. Rev., 2000, 205: 41-57.
    [29] PRODI L, BOLLETTA F, MONTALTI M, et al. Luminescent chemosensors for transition metal ions [J]. Coord. Chem. Rev., 2000, 205: 59-83.
    [30] CALLAN J F, DE SILVA A P, MAGRI D C. Luminescent sensors and switches in the early 21st century [J]. Tetrahedron, 2005, 61: 8551-8588.
    [31] PRODI L. Luminescent chemosensors: from molecules to nanoparticles [J]. New J. Chem., 2005, 29: 20-31.
    [32] NOLAN E M, LIPPARD S J. Tools and tactics for the optical detection of Mercuric ion [J]. Chem. Rev., 2008, 108: 3443-3480.
    [33] CHEN P, HE C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions [J]. J. Am. Chem. Soc., 2004, 126: 728-729.
    [34] WEGNER S V, OKESLI A, CHEN P, et al. Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg2+ [J]. J. Am. Chem. Soc., 2007, 129: 3474-3475.
    [35] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for Mercury(II) in aqueous solutions [J]. Angew. Chem., Int. Ed., 2004, 43: 4300-4302.
    [36] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes [J]. J. Am. Chem. Soc., 2006, 128: 2172-2173.
    [37] THOMAS J M, TING R, PERRIN D M. High affinity DNAzyme-based ligands for transition metal cations– a prototype sensor for Hg2+ [J]. Org. Biomol. Chem., 2004, 2: 307-312.
    [38] LI T, LI B, WANG E. et al. G-quadruplex-based DNAzyme for sensitive mercury
    [39] ZHANG D, DENG M G, XU L, et al. The sensitive and selective optical detection of Mercury(II) ions by using a phosphorothioate DNAzyme strategy [J]. Chem. Eur. J., 2009, 15: 8117-8120
    [40] SIMEONOV A, MATSUSHITA M, JUBAN E A, et al. Blue-fluorescent antibodies [J]. Science, 2000, 290: 307-313.
    [41] MATSUSHITA M, MEIJLER M M, WIRSCHING P, et al. A blue fluorescent anti body-cofactor sensor for mercury [J]. Org. Lett., 2005, 7: 4943-4946.
    [42] FAN L -J, ZHANG Y, JONES W E. Design and synthesis of fluorescence“Turn-on”chemosensors based on photoinduced electron transfer in conjugated polymers [J]. Macromolecules, 2005, 38: 2844-2849.
    [43] KIM I -B, BUNZ U H F. Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water [J]. J. Am. Chem. Soc., 2006, 128: 2818-2819.
    [44] MOHR G J, MURKOVIC I, LEHMANN F, et al. Application of potential- sensitive fluorescent dyes in anion and cation–sensitive polymer membranes [J]. Sens. Actuators B, 1997, 39: 239-245.
    [45] MURKOVIC I, WOLFBEIS O S. Fluorescence-based sensor membrane for mercury (II) detection [J]. Sens. Actuators B, 1997, 39: 246-251.
    [46] DOLCI L S, MARZOCCHI E, MONTALTI M, et al. Amphiphilic porphyrin film on glass as a simple and selective solid-state chemosensor for aqueous Hg2+ [J]. Biosens. Bioelectron., 2006, 22: 399-404.
    [47] ZHANG X -B, GUO C -C, LI Z -Z, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Anal. Chem., 2002, 74: 821-825.
    [48] PALLAVICINI P, DIAZ-FERNANDEZ Y A, FOTI F, et al. Fluorescent sensors for Hg2+ in micelles: A new approach that transforms an ON-OFF into an OFF-ONresponse as a function of the lipophilicity of the receptor [J]. Chem. Eur. J., 2007, 13: 178-187.
    [49] WANG J B, QIAN X H, QIAN J H, et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors [J]. Chem. Eur. J., 2007, 13: 7543-7552.
    [50] HUANG C -C, YANG Z, LEE K -H, et al. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II) [J]. Angew. Chem., Int. Ed., 2007, 46: 6824-6828.
    [51] HE S, LI D, ZHU C, et al. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye [J]. Chem. Commun., 2008, 4885-4887.
    [52] XUE X, WANG F, LIU X. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates [J]. J. Am. Chem. Soc., 2008, 130: 3244-3245.
    [53] TATAY S, GAVI?A P, CORONADO E, et al. Optical mercury sensing using a benzothiazolium hemicyanine dye [J]. Org. Lett., 2006, 8: 3857-3860.
    [54] FU Y, LI H, HU W. Small-molecular chromogenic sensors for Hg2+: a strong“push-pull”system exists after binding [J]. Eur. J. Org. Chem., 2007, 2459-2463.
    [55] BASHEER M C, ALEX S, THOMAS K G, et al. A squaraine-based chemosensor for Hg2+ and Pb2+ [J]. Tetrahedron, 2006, 62: 605-610.
    [56] DOMAILLE D W, QUE E L, CHANG C J. Synthetic fluorescent sensors for studying the cell biology of metals [J]. Nat. Chem. Biol., 2008, 4: 168-175.
    [57]徐筱杰,超分子建筑-从分子到材料[M].北京:科学技术文献出版社,2000.
    [58] KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis [J]. Proc. Natl. Acad. Sci., 1958, 44: 98-104.
    [59] CRAM D J. Preorganization-From Solvents to Spherands [J]. Angew. Chem., Int. Ed., 1986, 25: 1039-1057.
    [60] BLAZANI V, DE COLA L. Supramolecular Chemistry [M]. The Netherlands:Kluwer Academic Publishers, 1992.
    [61] PEARSON R G. Hard and soft acids and bases [J]. J. Am. Chem. Soc., 1963, 85: 3533-3539.
    [62] PEARSON R G. Chemical hardness - applications from molecules to solids [M]. Wiley-VCH, Weinheim, 1997.
    [63] Kim S H, Kim J S, Park S M, et al. Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam [J]. Org. Lett., 2006, 8: 371-374.
    [64] ZHANG J, LUO J, ZHU X X, et al. Molecular pockets derived from cholic acid as chemosensors for metal ions [J]. Langmuir, DOI: 10.1021/la9028996.
    [65] HE G, ZHAO Y, HE C, et al.“Turn-On”fluorescent sensor for Hg2+ via displacement approach [J]. Inorg. Chem., 2008, 47: 5169-5176.
    [66] CHOI M G, KIM Y H, NAMGOONG J E, et al. Hg2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins [J]. Chem. Commun., 2009, 3560-3562.
    [67] SONG K C, KIM J S, PARK S M, et al. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline [J]. Org. Lett., 2006, 8: 3413-3416.
    [68] JIANG W, WANG W. A selective and sensitive‘‘turn-on’’fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile esulfurization–lactonization reaction [J]. Chem. Commun., 2009, 3913-3915.
    [69] KASHA M. Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching a visual demonstration of the perturbation [J]. J. Chem. Phys., 1952, 20: 71.
    [70] EL-SAYED M A. Triplet state: Its radiative and nonradiative properties [J]. Acc.Chem. Res., 1968, 1: 8-16.
    [71] KOZIAR J C, COWAN D O. Photochemical heavy-atom effects [J]. Acc. Chem. Res., 1978, 11: 334-341.
    [72] SVEJDA P, MAKI A H, ANDERSON R R. Methylmercury as a spin-orbit probe. Effect of complexing on the excited state properties of tryptophan, tryptamine, and benzimidazole [J]. J. Am. Chem. Soc., 1978, 100: 7138-7145.
    [73] MASUHARA H, SHIOYAMA H, SAITO T, et al. Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions [J]. J. Phys. Chem., 1984, 88: 5868-5873.
    [74] Burress C N, Bodine M I, Elbjeirami O, et al. Enhancement of external spin-orbit coupling effects caused by metal-metal cooperativity [J]. Inorg. Chem., 2007, 46: 1388-1395.
    [75] CHEN Q -Y, CHEN C -F. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown [J]. Tetrahedron Lett., 2005, 46: 165-168.
    [76] KIM J H, HWANG A–R, CHANG S -K. Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene-diaza-crown ether having pyrenylacetamide subunits [J]. Tetrahedron Lett., 2004, 45: 7557-7561.
    [77] Park S M, Kim M H, Choe J -I, et al. Cyclams Bearing Diametrically Disubstituted Pyrenes as Cu2+- and Hg2+-Selective Fluoroionophores [J].J. Org. Chem., 2007, 72, 3550-3553.
    [78] WANG J, QIAN X. Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor [J]. Chem. Commun., 2006, 109-111.
    [79] WANG J, QIAN X. A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg2+ ion binding with high sensitivity [J]. Org. Lett., 2006, 8: 3721-3724.
    [80] LEE H N, KIM H N, SWAMY K M K, et al. New acridine derivatives bearing immobilized azacrown or azathiacrown ligand as fluorescent chemosensors for Hg2+ and Cd2+ [J]. Tetrahedron Lett., 2008, 49: 1261-1265.
    [81] HUANG W, SONG C, HE C, et al. Recognition preference of rhodamine- thiospirolactams for Mercury(II) in aqueous solution [J]. Inorg. Chem., 2009, 48: 5061-5072.
    [82] LIU W., XU L., ZHANG H., et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells [J]. Org. Biomol. Chem., 2009, 7: 660-664.
    [83] YANG H, ZHOU Z, HUANG K, et al. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit [J]. Org. Lett., 2007, 9: 4729-4732.
    [84] HUANG J, XU Y, QIAN X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor [J]. J. Org. Chem., 2009, 74: 2167-2170.
    [85] ZHENG Y–S, HU Y -J. Chiral recognition based on enantioselectively aggregation-induced emission [J]. J. Org. Chem., 2009, 74: 5660-5663.
    [86] Ning Z, Chen Z, Zhang Q, et al. Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter [J]. Adv. Funct. Mater., 2007, 17: 3799-3807.
    [87] LIU L, ZHANG G, XIANG J, ET AL. Fluorescence“Turn On”chemosensors for Ag+ and Hg2+ Based on tetraphenylethylene motif featuring adenine and thymine moieties [J]. Org. Lett., 2008, 10: 4581-4584.
    [88] LIU B. Highly sensitive oligonucleotide-based fluorometric detection of mercury(II) in aqueous media [J]. Biosens. Bioelectron., 2008, 24: 762-766.
    [89] CHIANG C -K, HUANG C -C, LIU C -W, et al. Oligonucleotide-based
    [90] TSIEN R Y, POENIE M. Fluorescence ratio imaging: a new window into intracellular ionic signaling [J]. Trends Biochem. Sci., 1986, 11: 450-455.
    [91] WHITE B R, LILJESTRAND H M, HOLCOMBE J A. A‘turn-on’FRET peptide sensor based on the mercury binding protein MerP [J]. Analyst, 2008, 133: 65-70.
    [92] ZHANG X, XIAO Y, QIAN X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J]. Angew. Chem., Int. Ed., 2008, 47: 8025-8029.
    [93] SURESH M, MISHRA S, MISHRA S K, et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism [J]. Org. Lett., 2009, 11: 2740-2743.
    [94] TIAN M, IHMELS H. Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe [J]. Chem. Commun., 2009, 3175-3177.
    [95] WANG J, QIAN X, CUI J. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity [J]. J. Org. Chem., 2006, 71: 4308-4311.
    [96] GULIYEV R, COSKUN A, AKKAYA E U. Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site [J]. J. Am. Chem. Soc., 2009, 131: 9007-9013.
    [97] WANG Z, ZHANG D, ZHU D. A sensitive and selective“turn on”fluorescent chemosensor for Hg(II) ion based on a new pyrene–thymine dyad [J]. Anal. Chim. Acta, 2005, 549: 10-13.
    [98] DHIR A, BHALLA V, KUMAR M. Ratiometry of monomer/excimer emissions of dipyrenyl thiacalix[4]arene for Cu2+ detection: a potential Cu2+ and K+ switchedINHIBIT logic gate with NOT and YES logic functions [J]. Tetrahedron Lett., 2008, 49: 4227-4230.
    [99] KIM J S, CHOI M G, SONG K C, et al. Ratiometric determination of Hg2+ ions based on simple molecular motifs of pyrene and dioxaoctanediamide [J]. Org. Lett., 2007, 9: 1129-1132.
    [1] HARRIS H H, PICKERING I J, GEORGE G N. The chemical form of Mercury in fish [J]. Science, 2003, 301: 1203-1203.
    [2] FORMAN J, MOLINE J, CERNICHIARI E, et al. A cluster of pediatric metallic Mercury exposure cases treated with meso-2,3-dimercaptosuccinic acid (DMSA) [J]. Environ. Health Perspect., 2000, 108: 575-577.
    [3] NEWBY C A, RILEY D M, LEAL-ALMERAZ T O. Mercury use and exposure among Santeria practitioners: religious versus folk practice in Northern New Jersey, USA. [J]. Ethn. Health, 2006, 11: 287-306.
    [4] DYE B A, SCHOBER S E, DILLON C F, et al. Urinary mercury concentrations associated with dental restorations in adult women aged 16-49 years: United States, 1999-2000. [J]. Occup. Environ. Med., 2005, 62: 368-375.
    [5] CELO V, LEAN D R S, SCOTT S L. Abiotic methylation of mercury in the aquatic environment [J]. Sci. Total Environ., 2006, 368: 126-137.
    [6] BOENING D W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere, 2000, 40: 1335-1351.
    [7] KAUR P, ASCHNER M, SYVERSEN T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes [J]. NeuroToxicology, 2006, 27: 492-500.
    [8] Guo, T.; Baasner, J.; Gradl, M.; Kistner, A. Determination of mercury in saliva with a flow-injection system [J].Anal. Chim. Acta 1996, 320, 171-176.
    [9] CHAN M H M, CHAN I H S, KONG A P S, et al. Cold-vapour atomic absorption spectrometry underestimates total mercury in blood and urine compared to inductively-coupled plasma mass spectrometry: an important factor for determining mercury reference intervals [J]. Pathology, 2009, 41: 467-472.
    [10] BLOOM N, FITZGERALD W F. Determination of volatile mercury species at thepicogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection [J]. Anal. Chim. Acta, 1988, 208: 151-161.
    [11] FITZGERALD W F, GILL G A. Sub nanogram determination of mercury by two-stage Au amalgamation in gas phase detection applied to atmospheric analysis [J]. Anal. Chem., 1979, 51: 1714-1720.
    [12] KRAWCZYK T K, MOSZCZYNSKA M, TROJANOWICZ M. Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor [J]. Biosens. Bioelectron., 2000, 15: 681-691.
    [13] PRODI L. Luminescent chemosensors: from molecules to nanoparticles [J]. New J. Chem., 2005, 29: 20-31.
    [14] CALLAN J F, DE SILVA A P, MAGRI D C. Luminescent sensors and switches in the early 21st century [J]. Tetrahedron, 2005, 61: 8551-8588.
    [15] PARK S M, KIM M H, CHOE J -I, et al. Cyclams bearing diametrically disubstituted pyrenes as Cu2+- and Hg2+-selective fluoroionophores [J]. J. Org. Chem., 2007, 72: 3550-3553.
    [16] HA-THI M -H, PENHOAT M, MICHELET V, et al. Highly selective and sensitive phosphane sulfide derivative for the detection of Hg2+ in an organoaqueous medium [J]. Org. Lett., 2007, 9: 1133-1136.
    [17] COSKUN A, YILMAZ M D, AKKAYA E U. Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II) [J]. Org. Lett., 2007, 9: 607-609.
    [18] ZHU M, YUAN M, LIU X, et al. Visible near-infrared chemosensor for mercury ion [J]. Org. Lett., 2008, 10: 1481-1484.
    [19] HE G, ZHAO Y, HE C, et al. "Turn-on" fluorescent sensor for Hg2+ via displacement approach [J]. Inorg. Chem., 2008, 47: 5169-5176.
    [20] NOLAN E M, LIPPARD S J. Turn-on and ratiometric mercury sensing in waterwith a red-emitting probe [J]. J. Am.Chem. Soc., 2007, 129: 5910-5918.
    [21] TANG B, CUI L, XU K, et al. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications [J]. ChemBioChem, 2008, 9: 1159-1164.
    [22] Suresh M, Mishra S, Mishra S K, et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism [J]. Org. Lett., 2009, 11: 2740-2743.
    [23] LEACH B E, ANGELICI R J. Metal-ion catalysis of the hydrolysis of some amino acid ester N,N-diacetic acids [J]. J. Am. Chem. Soc., 1968, 90: 2504-2508.
    [24] KIRIN S I, DUBON P, WEYHERMULLER T, et al. Amino acid and peptide bioconjugates of copper(II) and zinc(II) complexes with a modified N,N-bis(2-picolyl)amine ligand [J]. Inorg. Chem., 2005, 44: 5405-5415.
    [25] AOKI S, KAWATANI H, GOTO T, et al. A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen = 1,4,7,10-tetraazacyclododecane): a selective fluorescent probe for Y(3+) and La(3+) [J]. J. Am. Chem. Soc., 2001, 123: 1123-1132.
    [26] MéTIVIER R, LERAY I, VALEUR B. Lead and Mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores [J]. Chem. Eur. J., 2004, 10: 4480-4490.
    [27] MA L, LI Y, LI L, et al. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells [J]. Chem. Commun., 2008, 6345-6347.
    [28] ROPER E D, TALANOV V S, GORBUNOVA M G, et al. Optical determination of thallium(I) and cesium(I) with a fluorogenic calix[4]arenebis(crown-6 ether) containing one pendent dansyl group [J]. Anal. Chem., 2007, 79: 1983-1989.
    [29] VALEUR B, LERAY I. Ion-responsive supramolecular fluorescent systems based
    [30]刘国湘,胡文祥,氨基酸酯化方法的比较及其红外光谱研究[J].氨基酸和生物资源, 1995, 17: 36-39.
    [31]王景桃,丁西明,不对称卟啉化合物的合成及其与氨基酸甲酯的作用[J].感光科学与光化学, 1998, 16(4): 331-337.
    [32] SHINKAI H, NISHIKAWA M, SATE Y, et al. N-(Cyclohexylcarbonyl)-D- phenylalanines and related compounds. A new class of oral hypoglycemic agents. 2 [J]. J. Med. Chem., 1989, 32, 1436-1441.
    [33] TAKI M, DESAKI M, OJIDA A, et al. Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric chemosensor. [J]. J. Am. Chem. Soc., 2008, 130: 12564-12565.
    [34] LI H -W, LI Y, DANG Y -Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for Mercury (II) ions [J]. Chem. Commun., 2009, 4453-4455.
    [35] NOLAN E M., LIPPARD S J. Tools and Tactics for the Optical Detection of Mercuric Ion [J]. Chem. Rev., 2008, 108: 3443-3480.
    [36] Mercury Update: Impact of Fish Advisories [B]. EPA Fact Sheet EPA-823-F-01-011; EPA, Office of Water: Washington, DC, 2001.
    [37] WU D, HUANG W, LIN Z, et al. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments [J]. Inorg. Chem., 2008, 47: 7190-7201.
    [38] HUANG J, XU Y, QIAN X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor [J]. J. Org. Chem., 2009, 74: 2167-2170.
    [39] KUBO Y, KATO M, MISAWA Y, et al. A fluorescence-active 1,3-bis (isothiouronium)-derived naphthalene exhibiting versatile binding modes towardoxoanions in aqueous MeCN solution: new methodology for sensing oxoanions [J]. Tetrahedron Lett., 2004, 45: 3769-3773.
    [40]裘祖文,裴奉奎,核磁共振波谱[B].科学出版社1989年2月第一版.
    [41] BUIE N M, TALANOV V S, BUTCHER R J, et al. New fluorogenic dansyl-containing calix[4]arene in the partial cone conformation for highly sensitive and selective recognition of lead(II) [J]. Inorg. Chem., 2008, 47: 3549-3558.
    [42] Rodríguez L, Lima J C, Parola A J, et al. Anion detection by fluorescent Zn(II) complexes of functionalized polyamine ligands [J]. Inorg. Chem., 2008, 47: 6173-6183.
    [43] MéTIVIER R, LERAY I, VALEUR B. A highly sensitive and selective fluorescent molecular sensor for Pb(II)based on a calix[4]arene bearing four dansyl groups [J]. Chem. Commun., 2003, 996-997.
    [44] LIN-VIEN D, COLTHUP N B, FATELEY W G, et al. The handbook of infrared and raman characteristic frequencies of organic molecules [B]. Academic Press, INC., San Diego, CA, 1991.
    [45] CAO X -L, FISCHER G. Infrared spectral, structural, and conformational Studies of zwitterionic L-tryptophan [J]. J. Phys. Chem. A, 1999, 103: 9995-10003.
    [46] CCDC-719421 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Crystal data for the complex 1/Hg2+ (C48 H48 Hg N6 O8 S2): Mw = 1101.63, crystal dimensions: 0.22×0.10×0.05 mm3, Triclinic, space group: P1 , a = 9.694(2) ?, b = 14.896(4) ?, c = 16.783(5) ?,α= 87.210(11)°,β= 87.610(11)°,γ= 85.290(11)°, V = 2410.8(12) ?3, Z = 2,ρcalcd = 1.518 g cm-3,μ(MoKα) = 3.337 mm-1, F(000) = 1108, T = 291(2) K, 2θmax = 55.02. 18562 reflections measured, of which 13763 were unique (Rint =0.0565). Final R1 = 0.0453 and wR2 = 0.0789 for 10458 observed reflections with I > 2σ(I), Flack parameter = 0.000(5).
    [47] DOMAILLE D W, QUE E L, CHANG C J. Synthetic fluorescent sensors for studying the cell biology of metals [J]. Nat. Chem. Biol., 2008, 4: 168-175.
    [1] LI H -W, LI Y, DANG Y -Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for Mercury (II) ions [J]. Chem. Commun., 2009, 4453-4455.
    [2] MA L, LI Y, LI L, et al. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells [J]. Chem. Commun., 2008, 6345-6347.
    [3] SONG J, TALBOT K, HEWITTT J, et al. Differential contributions of Glu(96), Asp(102) and Asp(111) to coagulation Factor V/Va metal ion binding and subunit stability [J]. Biochem. J., 2009, 422: 257-264.
    [4] VEDULA L S, JIANG J Y, ZAKHARIAN T, et al. Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: Probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate- 233-Mg-B(2+) motif [J]. Arch. Biochem. Biophys., 2008, 469: 184-194.
    [5] NOLAN E M, RYU J W; JAWORSKI J, et al. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization [J]. J. Am. Chem. Soc., 2006, 128: 15517-15528.
    [6] PAZOS E, TORRECILLA D, LOPEZ M V, et al. Cyclin a probes by means of intermolecular sensitization of terbium-chelating peptides [J]. J. Am. Chem. Soc., 2008, 130: 9652-9653.
    [7]刘国湘,胡文祥,氨基酸酯化方法的比较及其红外光谱研究[J].氨基酸和生物资源, 1995, 17: 36-39.
    [8]王景桃,丁西明,不对称卟啉化合物的合成及其与氨基酸甲酯的作用[J].感光科学与光化学, 1998, 16(4): 331-337.
    [9] SHINKAI H, NISHIKAWA M, SATE Y, et al. N-(Cyclohexylcarbonyl)-D- phenylalanines and related compounds. A new class of oral hypoglycemic agents.2 [J]. J. Med. Chem., 1989, 32: 1436-1441.
    [10] SHI W, MA H. Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media [J]. Chem. Commun., 2008, 1856-1858.
    [11] ZHAN X -Q, QIAN Z -H, ZHENG H, et al. Rhodamine thiospirolactone. Highly selective and sensitive reversible sensing of Hg(II) [J]. Chem. Commun., 2008, 1859-1861.
    [12] ROPER E D, TALANOV V S, GORBUNOVA M G, et al. Optical determination of thallium(I) and cesium(I) with a fluorogenic calix[4]arenebis(crown-6 ether) containing one pendent dansyl group [J]. Anal. Chem., 2007, 79: 1983-1989.
    [13] VALEUR B, LERAY I. Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes: a review [J]. Inorg. Chim. Acta, 2007, 360: 765-774.
    [14] TIAN M, IHMELS H. Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe [J]. Chem. Commun., 2009, 3175-3177.
    [15] WANG J, QIAN X, CUI J. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity [J]. J. Org. Chem., 2006, 71: 4308-4311.
    [16] NODA I. Recent advancement in the field of two-dimensional correlation spectroscopy [J]. J. Mol. Struct., 2008, 883: 2-26.
    [17] WU D, HUANG W, LIN Z, et al. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments [J]. Inorg. Chem., 2008, 47: 7190-7201.
    [18] HUANG J, XU Y, QIAN X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor [J]. J. Org. Chem., 2009, 74: 2167-2170.
    [19] HA-THI M -H, PENHOAT M, MICHELET V, et al. Highly selective and sensitive phosphane sulfide derivative for the detection of Hg2+ in an organoaqueous medium [J]. Org. Lett., 2007, 9: 1133-1136.
    [20] PANDEY S, AZAM A, PANDEY S, et al. Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing [J]. Org. Biomol. Chem., 2009, 7: 269-279.
    [21] Crosby G A, Demas J N. The measurement of photoluminescence quantum yields [J]. J. Phys. Chem., 1971, 75: 991-1024.
    [22] GUY J, CARON K, DUFRESNE S, et al. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: Elucidation of the maleimide fluorescence quenching mechanism [J]. J. Am. Chem. Soc., 2007, 129: 11969-11977.
    [23] Liu X, Qi C, Bing T, et al. Highly selective phthalocyanine-thymine conjugate sensor for Hg 2+ based on target induced aggregation [J]. Anal. Chem., 2009, 81: 3699-3704.
    [24] Liu L, Zhang G, Xiang J,et al. Fluorescence "turn on" chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties [J]. Org. Lett., 2008, 10: 4581-4584.
    [25] CCDC-747910 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
    [26] LIN-VIEN D, COLTHUP N B, FATELEY W G, et al. The handbook of infrared and raman characteristic frequencies of organic molecules [B]. Academic Press, INC., San Diego, CA, 1991.
    [27] CAO X -L, FISCHER G. Infrared spectral, structural, and conformational Studies of zwitterionic L-tryptophan [J]. J. Phys. Chem. A, 1999, 103: 9995-10003.
    [28] KIM I B, BUNZ U F H. Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water [J]. J. Am. Chem. Soc., 2006, 128: 2818-2819.
    [29] CHE Y, YANG X, ZANG L. Ultraselective fluorescent sensing of Hg2+ through metal coordination-induced molecular aggregation [J]. Chem. Commun., 2008, 1413-1415.
    [1] LI H -W, LI Y, DANG Y -Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for Mercury (II) ions [J]. Chem. Commun., 2009, 4453–4455.
    [2] AOKI S, KAWATANI H, GOTO T, et al. A double-functionalized cyclen with carbamoyl and dansyl groups (cyclen = 1,4,7,10-tetraazacyclododecane): a selective fluorescent probe for Y(3+) and La(3+) [J]. J. Am. Chem. Soc., 2001, 123: 1123-1132.
    [3] MéTIVIER R, LERAY I, VALEUR B. Lead and Mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores [J]. Chem. Eur. J., 2004, 10: 4480-4490.
    [4] MA L, LI Y, LI L, et al. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells [J]. Chem. Commun., 2008, 6345-6347.
    [5]刘国湘,胡文祥,氨基酸酯化方法的比较及其红外光谱研究[J].氨基酸和生物资源, 1995, 17: 36-39.
    [6]王景桃,丁西明,不对称卟啉化合物的合成及其与氨基酸甲酯的作用[J].感光科学与光化学, 1998, 16(4): 331-337.
    [7] SHINKAI H, NISHIKAWA M, SATE Y, et al. N-(Cyclohexylcarbonyl)-D- phenylalanines and related compounds. A new class of oral hypoglycemic agents. 2 [J]. J. Med. Chem., 1989, 32: 1436-1441.
    [8] MA L, LIU Y, Wu Y. A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water [J]. Chem. Commun., 2006, 2702-2704.
    [9] PALMER J T, BRYANT C, WANG D -X, et al. Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effectiveinhibitors of cathepsin K [J]. J. Med. Chem., 2005, 48: 7520-7534.
    [10] NOLAN E M, LIPPARD S J. Tools and Tactics for the Optical Detection of Mercuric Ion [J]. Chem. Rev., 2008, 108: 3443-3480.
    [11] WHITE B R, LILJESTRAND H M, HOLCOMBE J A. A 'turn-on' FRET peptide sensor based on the mercury binding protein MerP [J]. Analyst, 2008, 133: 65-70.
    [12] JOSHI B P, PARK J, LEE W I, et al. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor [J]. Talanta, 2009, 78: 903-909.
    [13] TRUMPLER S, LOHMANN W, MEERMANN B, et al. Interaction of thimerosal with proteins-ethylmercury adduct formation of human serum albumin and beta-lactoglobulin A [J]. Metallomics, 2009, 1: 87-91.
    [14] KRUPP E M, MESTROT A, WIELGUS J, et al. The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants [J]. Chem. Commun., 2009, 4257-4259.
    [15] LIU F K, WEI G T. Bovine serum albumin as the additive of chiral mobile phase for enantiometric separation of dansyl-amino acids with size-exclusion chromatography [J]. J. Chin. Chem. Soc., 2002, 49: 611-618.
    [16] BENESI H A, HILDEBRAND J H. Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J]. J. Am. Chem. Soc., 1949, 71: 2703-2707.
    [17] ZHANG X, XU H -P, DONG Z -Y, et al. Highly efficient dendrimer-based mimic of glutathione peroxidase [J]. J. Am. Chem. Soc., 2004, 126: 10556-10557.
    [18] HASAN E A, COSGROVE T, ROUND A N. Nanoscale thin film ordering produced by channel formation in the inclusion complex of R-cyclodextrin with a polyurethane composed of polyethylene oxide and hexamethylene [J]. Macromolecules, 2008, 41: 1393-1400.
    [19] Liu Y, Yu M, Chen Y, et al. Convenient and highly effective fluorescence sensing for Hg2+ in aqueous solution and thin film [J]. Bioorg. Med. Chem., 2009, 17: 3887-3891.
    [20] OKTAR C, YILMAZ L, OZBELGE H O, et al. Selective mercury uptake by polymer supported hydroxyethyl sulfonamides [J]. React. Funct. Polym., 2008, 68: 842-850.