新型金属磷酸盐/亚磷酸盐化合物的合成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于Zn-P-M-T(M:过渡金属元素,T:有机胺)合成体系,利用水热/溶剂热合成方法,合成了一系列具有新颖结构的金属亚磷酸和金属磷酸盐开放骨架化合物,并对其结构、性质及合成因素作了详细研究。主要内容包括:
     在水热体系中合成了一例具有独特发光性质和表面光电压性质的新颖层状磷酸亚磷酸锌化合物[C_6H_(12)(NH_3)_2][Zn_4(HPO_3)_2(PO_4)_2(H_2O)_2](ZnHPO-CJ47)。ZnHPO-CJ47在紫外灯照射下呈天蓝色,其发射光谱具有多个可分辨的高强度发射峰,这在金属磷酸盐和亚磷酸盐化合物中尚属首次报道。此外,该化合物在外加负电场时还具有p-型半导体的特性。电子自旋共振技术测试表明,这种特殊荧光现象以及光电压产生的原因是由于ZnHPO-CJ47中存在复杂的结构缺陷。同时在该合成体系中,通过掺杂不同过渡金属得到与ZnHPO-CJ47同构的化合物[M_(2x)Zn_(2(1-x))(HPO_3)_2(PO_4)_2(H_2O)_2][C_6H_(12)(NH_3)_2] (M=Co,Mn)(ZnCoHPO-CJ47,ZnMnHPO-CJ47),并对其荧光性质与ZnHPO-CJ47进行了比较。
     在相似的溶剂热体系中,通过加入不同的过渡金属成功合成了两例新型双金属磷酸盐化合物(Zn_(0.67)Co_(0.33)PO_4H)_8[(CH_3)_2NH]_4 (ZnCoPO-CJ48)和(Zn_2Mn_1P_3O_(12)H)_4[H_3O(CH_3)_2NH]_4 (ZnMnPO-CJ49)。系统的研究了过渡金属的掺入对这两例化合物合成的影响。ZnCoPO-CJ48是第一例具有中性骨架的二维层状双金属磷酸锌钴化合物,ZnMnPO-CJ49是一例具有16-元环超大孔道的三维磷酸锌锰化合物。有趣的是,二者的结构都基于相同的具有端羟基的四元环结构基元。
     以具有24-元环超大微孔亚磷酸锌ZnHPO-CJ1为目标化合物,选择理论预测适合该目标化合物无机骨架生成的三种有机胺,正丙胺、环戊胺和环己胺为模板剂,在水热体系下成功合成了与ZnHPO-CJ1同构的超大微孔亚磷酸锌化合物(C_6H_(14)N)_2[Zn_3(HPO_3)_4] (ZnHPO-CJ2), (C_5H_(12)N)_2[Zn_3(HPO_3)_4] (ZnHPO-CJ3)和(C_3H_(10)N)_2[Zn_3(HPO_3)_4] (ZnHPO-CJ4),并详细讨论了不同有机胺对其骨架结构形成的影响。
Open-framework materials of metal phosphates have exhibited many fascinating structural features and potential applications in catalysis, separation, biology, electrical conductivity, magnetism and photochemistry. Particularly, metal phosphites are of interest because the existence of pseudo pyramidal HPO_32- units in the framework can reduce the M-O-P connectivity and generate novel open frameworks. As a part of the renaissance in the study of open-framework metal phosphates, metal phosphites appear to show structural diversity and versatility similar to that of the phosphates. So far, series compounds of vanadium phosphite, iron phosphite, cobalt phosphite, manganese phosphite, zinc phosphite and chromic phosphite have been successfully synthesized, and their magnetic and luminescent properties have also been studied.
     This work focuses on the synthesis and characterization of new metal phosphites/phosphates in the hydrothermal or solvothermal system through selecting suitable templating agents. We aim to develop new bimetal phosphites and bimetal phosphates with novel framework architectures, study their potential applications in the photoluminescence, and futher conclude the formational regularities of them that will further assist in the rational design and synthesis of new microporous materials. Main results include:
     1. A layered zinc phosphate/phosphite [C_6H_(12)(NH_3)_2][Zn_4(HPO_3)_2(PO_4)_2(H_2O)_2] (denoted as ZnHPO-CJ47) with unique luminescent and photoelectronic properties. Unlike the known luminescent open-framework materials with single wide emission band, ZnHPO-CJ47 exhibits strikingly strong blue emissions with multi resolved peaks, which is firstly observed in metal phosphates/phosphites. It shows p-type conduction character under negative electric-field strength. These properties may be caused by the complex lattice defects revealed by EPR studies. Under similar reaction system, two heteroatom incorporated derivatives [M_(2x)Zn_(2(1-x))(HPO_3)_2(PO4)_2(H_2O)_2][C_6H_(12)(NH_3)_2] (M=Co/Mn) (ZnCoHPO-CJ47, ZnMnHPO-CJ47) with distinct luminescent property have been successfully synthesized. All of them emit blue light, the unique emission is caused by the complex lattice defects existed in the framework, and the incorporation of Co and Mn atoms into the framework may fill some defects, resulting in the decrease of the emission peaks and the blue shift of emission broad.
     2. Two new metal phosphates (Zn_(0.67)Co_(0.33)PO_4H)_8[(CH_3)_2NH]_4 (ZnCoPO-CJ48) and (Zn_2Mn_1P_3O_(12)H)_4[(CH_3)_2NHH_3O]4 (ZnMnPO-CJ49) have been solventhermally synthesized. ZnCoPO-CJ48 is the first layered heteroatom incorporated zincophosphate with neutral framework, which is constructed by the connection of MO4 tetrahedra (M=Zn, Co) and PO_3OH tetrahedra forming a novel 2-D sheet. And the structure is connected by the H-bonding between inorganic layer and template to formed pseudo 8-ring channels. Three-dimensional zinc-manganese phosphate ZnMnPO-CJ48 with 16-ring channels was obtained under the similar synthetic conditions. Its structure can be conceptually generated from the layered structure analogous of ZnCoPO-CJ48 connected by a 4-ring building unit. In this work, the synthetic conditions of these two compounds were discussed detailed.
     3. Three new open-framework zincophosphites ZnHPO-CJn (n=2, 3, 4) possessing desired extra-large 24-ring channels of ZnHPO-CJ1 have been successfully prepared through selecting computationally predicted organic amines, such as cyclohexanamine, cyclopentylamine and n-propylamine molecules as the templates or SDAs. Structure comparison of these compounds indicates that the organic amines influence the resulting structure symmetry, cell parameters, and the opening sizes through the size and shape control although they have similar templating abilities.
     4. In the hydrothermal system, three new open-framework vanadium phosphate (VPO-1, 2, 3) possessing 24-ring large pore have been successfully synthesized using n-butylamine, propylamine and piperidine as the templates, respectively. These compounds possess isostructural three-dimensional (3D) open-framework structure with multi-directional intersecting 8-ring, 16-ring channels.
     5. The morphology control of ZnHPO-CJ2 crystal was investigated by microwave irradiation in mixed-solvents system through incorporation additional metal source. The results show that the microwave synthesis technology can greatly decrease the reaction time and obtaine pure, high-quality large single crystals of ZnHPO-CJ2. In mixed-solvents system, beside ZnHPO-CJ2, a zinc phosphite with one-dimensional can also be prepared.
     6. By using benzylamine as SDA, a new zinc phosphite (C7H10N)8[Zn4(HPO3)8] has been hydrothermally synthesized, and its structure and fluorescence properties have characterized. Its structure consists of ZnO4 and HPO3 basic building units. The ZnO4 tetrahedra and HPO3 pseudo pyramids are connected to form an infinite 1-D chain along c-axis. Protonated benzylamine cations were located on both sides of the 1-D inorganic chain through hydrogen bonds.
引文
[1]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [2] Everett D H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry [J]. Pure and Applied Chemistry, 1972, 31:578-638.
    [3] Cronstedt A F, Vetenskaps K. Acad Handle Stockholm, 1756, 17, 120.
    [4] Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism [J]. Microporous and Mesoporous Materials, 2005, 82, 1-78.
    [5] Barrer R M. Synthesis of a zeolitic mineral with chabazite-like sorptive properties [J]. J. Chem. Soc. 1948, 127–132.
    [6] Breck, D W, Eversole W G, Milton R M, et al. The properties of a new synthetic zeolite, Type A [J]. Crystalline Zeolites. I. Phys. Inorg. Chem. 1956, 78, 5963–5971.
    [7] Barrer R M, White E A D. J. Chem. Soc., 1952, 1561.
    [8] Grandio P, Schneider F H, Schwartz A B, et al. Toluene Disproportion over Zeolite catalysts [J] Am. Chem. Soc., Div.Petrol. Chem. Prepr. 1971, 16: B70.
    [9] Chen N Y, Kaeding W W, Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts [J]. Journal of the American Chemical Society, 1971, 101: 6783-6784.
    [10] Baerlocher Ch, McCusker L B, Olson D H. Atlas of Zeolite Framework Types [M/OL]. 6th ed. Elsevier Science, 2007. http://www.iza-structure.org/
    [11] Argauer R J, Landolt G R. US Patent [P]. 3,702, 866, 1972.
    [12] (a) Lercher J A, Jentys A. In Handbook of Porous Solids; Schüth F, Sing K S W, Weitkamp J Eds; Wiley-VCH: Weinheim Germany, 2002; (b) Ramaswamy P, Sivasanker S. Selective oxidation reactions over titanium and vanadium metallosilicate molecular sieves [J]. Catalysis Letters,1993, 22, 239-249; (c) Mal N K, Ramaswamy A V, Oxidation of ethylbenzene over Ti-, V- and Sn-containing silicalites with MFI structure [J]. Applied Catalysis A: General, 1996, 143, 75-85;(d) Tu?ar N N, Logar N Z, Ar?on I, et al. Manganese-Containing Silica-Based Microporous Molecular Sieve MnS-1: Synthesis and Characterization [J]. Chemistry of Materials, 2003, 15, 4745-4750.
    [13] Wilson S T, Look B M, Messina C A, et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J]. Journal of the American Chemical Society, 1982, 104, 1146-1147.
    [14] Flanigen E M, Lok B M, Patton R L, et al. Aluminophosphate Molecular Sieves and the periodic Table Proc Of the 7th Intl Zeolite Conf Kodansha-Elsevier[C]. Murakam Y, Lijima A, Ward J W (Eds), 1986, 103-112.
    [15] (a) Yu J, Xu R. Rich Structure Chemistry in the Aluminophosphate Family [J]. Accounts of Chemical Research, 2003, 36, 481-490; (b) Yu J, Xu R. Insight into the Construction of Open-framework Aluminophosphates [J]. Chemical Society Reviews, 2006, 35, 593-604.
    [ 16 ] (a) Wang K, Yu J, Miao P, et al. A new layered aluminophosphates [C4H12N2][Al2P2O8(OH)2] templated by piperazine [J]. Chemistry of Materials, 2001, 11, 1898-1902; (b) Kongshaug K O, Fjellvag H, Lillerud K P. Layered aluminophosphates I crystal structure of two novel layered aluminophosphates solved ab initio from powder diffraction data [J]. Microporous and Mesoporous Materials, 1999, 32, 17-28; (c) Kongshaug K O, Fjellvag H, Lillerud K P. Layered aluminophosphates II crystal structure and thermal behaviour of the layered aluminophosphate UiO-15 and its high temperature variants [J]. Journal of Materials Chemistry, 1999, 9, 1591-1598; (d) Riou D, Loiseau Th, Férey G, Structure determination of (N2C2H10)4(NH4)AlP4O16: A new aluminophosphate templated by ethylenediamine[J]. Journal of Solid State Chemistry, 1992, 99, 414-418; (e) Yan W, Yu J, Shi Z, et al. A novel open-framework aluminophosphates [AlP2O6(OH)2][H3O] containing propeller-like chiral motifs [J]. Chemical Communications, 2000, 15: 1431-1432; (f) Yu J, Terasaki O, Williams I D, Qiu S, Xu R. Solvothermal synthesis and characterization of new aluminophosphate layers templated by imidazolium ions [J]. Supramolecular Science, 1998, 5, 297-302; (g) Jones R H, Thomas J M, Xu R, et al. Synthesis and structure of a one-dimensionally extended aluminum phosphate Et3NH+(H2AlP2O8)- [J]. Journal of the Chemical Society, Chemical Communications,1990,17, 1170-1172; (h) Wei B, Zhu G, Yu J, et al.Solvothermal synthesis and characterization of a new 3-D open-framework aluminophosphate [Al2P3O12][C4N3H16] [J]. Chemistry of Materials, 1999,11, 3417-3419; (i) Yu J, Sugiyama K, Togashi N, et al. Synthesis and characterization of a new 2-D aluminophosphate layer [Al2P3O10(OH)2][C6NH8] and structural diversity in anionic aluminophosphates with Al2P3O123- stoichiometry [J]. Chemistry of Materials, 1998, 10, 3636-3642; (j) Thomas J M, Jones R H, Xu R, et al. A novel porous sheet aluminophosphate Al3P4O163-1.5[NH3(CH2 )4NH3 ]2+ [J]. Journal of the Chemical Society, Chemical Communications, 1992, 929-931; (k) Chippindale A M, Cowley A R, Huo Q, et al. Synthesis and structure of a new layered aluminium phosphate: [BuNH3]3[Al3P4O16] [J]. Journal of the Chemical Society, Dalton Transactions, 1997,15, 2639-2643; (l) Oliver S, Kuperman A, Lough A, et al. Aluminophosphate chain-to-layer transformation[J]. Chemistry of Materials, 1996, 7, 2391-2398; (m) Vidal L, Gramlich V, Patarin J, et al. Synthesis and structure of Mu-4, the new layered aluminophosphate [(C2H5)2NH2 ]4[Al8P10O40H2][H2O]2.5 [J]. European Journal of Solid State and Inorganic Chemistry, 1998, 35, 545-563; (n) Huo Q, Xu R, Li S, et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20 [J]. Journal of the Chemical Society, Chemical Communications, 1992, 875-876; (o) Jones R H, Thomas J M, Chen J, et al. Structure of an unusual aluminium phosphate ([Al5P6O24H]2-2[N(C2H5)3H]+.2H2O) JDF-20 with large elliptical apertures[J]. Journal of Solid State Chemistry, 1993, 102, 204-208; (p) Yan W, Yu J, Shi Z, et al. An anionic framework aluminophosphate [(CH2)6N4H3H·2O] [Al11P12O48] and computer simulation of the template positions [J]. Microporous and Mesoporous Materials, 2001, 50, 151-158; (q) Yan W, Yu J, Xu R, et al. An anionic aluminophosphate molecular sieve with br?nsted acidity [J]. Chemistry of Materials, 2000, 12, 2517-2519; (r) Feng P, Bu X, Stucky G D. Control of structural ordering in crystallinelamellar aluminophosphates with periodicity from 51 to 62 ? [J]. Inorganic Chemistry, 2000, 39, 2-3; (s) Xing H, Li J, Yan W, et al. Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7 [J]. Chemistry of Materials, 2008, 20, 4179-4181; (t) Zhang M, Zhou D, Li J, et al. Synthesis and Characterization of a New Layered Fluoroaluminophosphate (C4H11NOH)3.5[Al4(PO4)5F].0.5H3Owith Extra-Large 16-Rings [J]. Inorganic Chemistry, 2007, 46, 136-140.
    [ 17 ] Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-membered rings [J]. Nature, 1988, 331, 698-699.
    [18] Estermann M E, McCusker L B, Boelocher C, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature, 1991, 352, 320-323.
    [19] Bu X, Feng P, Gier T E, et al. Syntheses and crystal structures of two zeolite related structures with novel framework topologies [J]. Microporous and Mesoporous Materials, 1998, 25, 109–117.
    [20] (a) Akolekar D B, Kaliaguine S. Synthesis, characterization, thermal stability, acidity and catalytic properties of large-pore MAPO-46 [J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4141-4147; (b) Akolekar D B. Novel, crystalline, large-pore magnesium aluminophosphate molecular sieve of type 50: Preparation, characterization, and structural stability [J]. Zeolites, 1995, 15, 583-590; (c) Akporiaye D E, Andersen A, Dahl I M, et al. Synthesis and characterization of the magnesium silicoaluminophosphates MAPSO-43 and MAPSO-39 [J]. The Journal of Physical Chemistry, 1995, 99, 14142-14148; (d) Wright P A, Jones R H, Natarajan S, et al. Synthesis and structure of a novel large-pore microporous magnesium-containing aluminophosphate (DAF-1) [J]. Journal of the Chemical Society, Chemical Communications, 1993, 633-635; (e) Song X, Li Y, Gan L, et al. Heteroatom-Stabilized Chiral Framework of Aluminophosphate Molecular Sieves [J]. Angewandte Chemie International Edition, 2009, 48, 314-317; (f) Kongshaug K O, Fjellv?g H, Lillerud K P. Synthesis and characterization of the open-framework magnesium aluminophosphate UiO-28 [J]. Journal of Materials Chemistry, 2001, 11, 1242-1247; (g) Noble G W, Wright P A, Lightfoot P, et al. Microporous Magnesium Aluminophosphate STA-1: Synthesis with a Rationally Designed Template and Structure Elucidation by Microcrystal Diffraction [J]. Angewandte Chemie International Edition, 1997, 36, 81-83; (h) Maple M J, Philp E F, Slawin AMZ, et al. Azamacrocycles and the azaoxacryptand 4, 7, 13, 16, 21,24-hexaoxa- 1,10-diazabicyclo[8.8.8]hexacosane as structure-directing agents in the synthesis of microporous metalloaluminophosphates [J]. Journal of Materials Chemistry, 2001, 11, 98-104; (i) Noble G W, Wright P A, Kvick A. The templated synthesis and structure determination by synchrotron microcrystal diffraction of the novel small pore magnesium aluminophosphate STA-2 [J]. Journal of the Chemical Society, Dalton Transactions, 1997, 4485-4490; (j) Parnham E R, Morris R E. The Ionothermal Synthesis of Cobalt Aluminophosphate Zeolite Frameworks [J]. Journal of the American Chemical Society, 2006, 128, 2204-2205.
    [ 21 ] (a) Parise J B. Preparation and structural characterization of two metallophosphate frameworks clathrating diprotonated ethylenediamine: AlPO4-12(en) and GaPO4-12(en) [J]. Inorganic Chemistry, 1985, 24, 4312-4316; (b) Parise J B. Some gallium phosphate frameworks related to the aluminium phosphate molecular sieves: X-ray structural characterization of {(PriNH3)[Ga4(PO4)4·OH]}·H2O [J]. Journal of the Chemical Society, Chemical Communications , 1985, 606-607; (c) Parise J B. Preparation and structure of a gallium phosphate framework with clathrated isopropylamine [J]. Acta Crystallographica Section C, 1986, 42, 144.
    [22] (a) Yang G, Feng S, Xu R. Crystal structure of the gallophosphate framework: X-ray characterization of Ga9P9O36OH·HNEt3 [J]. Journal of the Chemical Society, Chemical Communications, 1987, 1254-1255; (b) Wang T, Yang G, Feng S, et al. A novel mixed octahedral–tetrahedral framework: X-ray characterization of a microporous gallophosphate, Ga2P2O8(OH)H2O·NH4H·2O·0.16 PrOH (GaPO4-C7) [J]. Journal of the Chemical Society, Chemical Communications, 1989, 948-949; (c) Feng S, Xu X, Yang G, et al. Hydrothermal synthesis and crystal structure of the microporous gallophosphate [NH4]4[Ga8P8O32(OH)4(H2O)4]·4H2O·0.64PrOH with an octahedral–tetrahedral framework [J]. Journal of the Chemical Society, Dalton Transactions, 1995, 2147-2149.
    [23]霍启升,吉林大学博士学位论文,1992.
    [24] Estermann M E, McCusker L B, Boelocher C, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature, 1991, 352,320-323.
    [25] Loiseau T, Férey G. Oxyfluorinated Microporous Compounds: VII. Synthesis and Crystal Structure of ULM-5, a New Fluorinated Gallophosphate Ga16(PO4)14(HPO4)2(OH)2F7, [H3N(CH2)6NH3]4, 6H2O with 16-Membered Rings and Both Bonding and Encapsulated F1 [J]. Journal of Solid State Chemistry, 1994, 111, 403-415.
    [26] Sassoye C, Loiseau T, Taulelle F, et al. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31) [J]. Chemical Communications, 2000, 943-944.
    [27] Walton R I, Millange F, Loiseau T, et al. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions [J]. Angewandte Chemie International Edition, 2000, 39, 4552-4555.
    [ 28 ] Lin C H, Wang S L, Lii K H. [Ga2(DETA)(PO4)2]·2H2O (DETA = Diethylenetriamine): A Novel Porous Gallium Phosphate Containing 24-Ring Channels[J]. Journal of the American Chemical Society, 2001, 123, 4649-4650.
    [ 29 ] Yu J, Chen J, Xu R. Formation of single-crystal cobalt-substituted gallophosphate LTA from an alcoholic system [J]. Microsporous Materials, 1996, 5, 333-336.
    [30] (a) Bond A D, Chippindale A M, Cowley A R, et al. Synthesis and characterisation of transition-metal-substituted gallium phosphates with the laumontite structure [J]. Zeolites, 1997, 19, 326-333; (b) Chippinale A M, Bond A D, Cowley A R, et al. MnGaPO-2: Synthesis and Characterization of [MnGa(PO3OH)2(PO4)][C6N2H14], a New Microporous Manganese?Gallium Phosphate [J]. Chemistry of Materials, 1997, 9, 2830-2835; (c) Lin C., Wang S. Chiral Metal Gallophosphates Templated by Achiral Triamine: Syntheses and Characterizations of A[Mn(H2O)2Ga(PO4)2]3 and A[Zn3Ga(PO4)4]·H2O (A = H3DETA) [J]. Chemistry of Materials, 2002, 14, 96-102.
    [31] Yang G, Sevov S C. Zinc Phosphate with Gigantic Pores of 24 Tetrahedra [J]. Journal of the American Chemical Society, 1999, 121, 8389-8390.
    [32] Rodgers J A, Harrison W T A. H3N(CH2)6NH3·Zn4(PO4)2(HPO4)2·3H2O: a novel three-dimensional zinc phosphate framework containing 5- and 20-rings [J]. Journal of Materials Chemistry, 2000, 10, 2853-2856.
    [ 33 ] Harrison W T A, Gier T E, Stucky G D, et al. NaZnPO4H·2O, anOpen-Framework Sodium Zincophosphate with a New Chiral Tetrahedral Framework Topology [J]. Chemistry of Materials, 1996, 8, 145-151.
    [34] Wany Y, Yu J , Guo M, et al. [{Zn2(HPO4)4}{Co(dien)2}]·H3O A Zinc Phosphate with Multidirectional IntersectingHelical Channels [J]. Angewandte Chemie International Edition, 2003, 42, 4089-4092.
    [35] N. Guillou, Q. Gao, M. Nogues, R. E. Morris, M. Hervieu, G. Férey, A. K. Cheetham, C. R. Acad. Sci. Ser. IIC, 1999, 2, 387; N. Guillou, Q. Gao, P. M. Forster, J. S. Chang, M. Nogués, S. E. Park, G. Férey, A. K. Cheetham, Angew. Chem. Int. Ed., 2001, 40, 2831; Q. Gao, N. Guillou, M. Noguès, A. K. Cheetham, G. Férey, Chem. Mater., 1999, 11, 2937; N. Guillou, Q. Gao, M. Noguès, A. K. Cheetham, G. Férey, Solid State Sci., 2002, 4, 1179.
    [36] K. H. Lii, Y. F. Huang, V. Zina, Chem. Mater., 1998, 10, 2599; M. Cavellec, D. Riou, J. M. Greneche, G. Férey, J. Magn. Mater., 1996, 163,173; M. Cavellec, D. Riou, J. M. Greneche, G. Férey, Inorg. Chem., 1997, 36, 2187; M. Cavellec, J. M. Greneche, G. Férey, Micropor. Mesopor. Mater., 1998, 20,45;那丽艳,吉林大学硕士学位论文,2000.
    [37] J. Chen, R. H. Jones, S. Natatajan, M. B. Hurthouse, J. M.Thomas, Angew. Chem. Int. Ed. Engl., 1994, 33, 6; S. Natarajan, S. Neeraj, C. N. R. Rao, Inorg. Chem., 2002, 39, 1426; Y. Liu, L. Na, W. Q. Pang, R. R. Xu, J. Solid State Chem., 2000, 149, 107; Y. Ke, G. He, J. Li, S. Lu, New J. Chem., 2001, 25, 1627; A. N. Christensen, J. C. Hanson, J. Chem. Soc., Dalton Trans., 2001, 1611.
    [38] J. Escobal, T. Rojo, Chem. Mater., 2000, 12, 376; A. M. Chippindale, F. O. M. Gaslain, A. R. Cowley, A. V. Powell, J. Mater. Chem., 2001, 11, 3172; K. O. Kongshaug, H. Fjellvag, K. P. Lillerud, J. Solid State Chem., 2001, 156, 32.
    [39] V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, C. J. O’Connor, Science, 1993, 259, 1596; N. Calin, C. Serre, S. C. Sevov, J. Chem. Mater., 2003, 13, 531; V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, Angew. Chem. Int. Ed., 1993, 32, 610; V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, Chem. Mater., 1993, 5, 1595; V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, C. J. O’Connor, Y. S. Lee, Chem. Mater., 1993, 5, 1690.
    [40] M. Shieh, K. J. Martin, P. J. Squattrito, A. Clearfield, Inorg. Chem., 1990, 29, 958.
    [41] Bonavia G, DeBord J, Haushalter R C, et al. Hydrothermal Synthesis andCharacterization of Two- and Three-Dimensional Solids of the Oxovanadium(IV)- Phosphite System. The Structures of [HN(Me)(CH2CH2)2N(Me)H]- [(VO)4(OH)2(HPO3)4], [H2N(CH2CH2)2NH2][(VO)3(HPO3)4(H2O)2], and [VO(HPO3)(H2O)] [J]. Chemistry of Materials, 1995, 7, 1995-1998.
    [42] J. A. Rodgers, W. T. A. Harrison, Chem. Commun., 2000, 2385.
    [43] L. E. Gordon, W. T. A. Harrison, Inorg. Chem., 2004, 43, 1808.
    [44] J. Liang, Y. Wang, J. H. Yu, Y. Li, R. R. Xu, Chem. Commun., 2003, 882.
    [45] Liang J, Li J, Yu J, et al. [(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite Containing Extra-Large 24-Ring Channels [J]. Angewandte Chemie International Edition, 2006, 45, 2546–2548.
    [46] Yang Y, Zhao Y, Yu J, Wu S, Wang R, Doping-Induced Structure Variation of 1,3-Cyclohexane-Bis(methylamine)-Templated Zinc-Phosphorus Open Structures [J]. Inorg. Chem. 2008, 47, 769–771
    [47] G. Bonavia, J. DeBord, R. C. Haushalter, D. Rose, J. Zubieta, Chem. Mater., 1995, 7, 1995. [ 48 ] Zhao L, Li J, Chen P, et al. 2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An Open-Framework Cobalt Phosphite Containing Extra-Large 18-ring Channels [J]. Chemistry of Materials, 2008, 20, 17-19.
    [49] S. Fernandez, J. L. Mesa, J. L. Pizarro, L. Lezama, M. I. Arriortua, T. Rojo, Angew. Chem. Int. Ed., 2002, 41, 3683.
    [50] Li N, Xiang S, Hydrothermal synthesis and crystal structure of two novel aluminophosphites containing infinite Al–O–Al chains [J]. J. Mater. Chem., 2002, 12, 1397–1400.
    [51] Li N, Ma Y, Xiang S, Guan N, Capturing an Aluminophosphite Intermediate in the New Route of Synthesizing Zeolite-like Aluminophosphates [J]. Chem. Mater. 2006, 18, 975-980. [ 52 ] Lu A, Song H, Li N, Xiang S, Guan N, Wang H, Novel Large Aluminophosphite Cage Unit as the Building Blocks To Form a Framework Structure Containing Multidimensional 12-Ring Channels [J]. Chem. Mater. 2007, 19, 4142-4147.
    [53] Fu W, Wang L, Shi Z, Li G, Feng S, et al The First Organically Templated Beryllium Phosphite [NH3(CH2)3NH3]·Be3(HPO3)4: Hydrothermal Synthesis andX-ray Crystal Structure [J]. Crystal Growth & Design, 2004, 4, 297.
    [54] L. Wang, S. H. Shi, J. W. Ye, Q. R. Fang, Y. Fan, D. M. Li, J. N. Xu, T. Y. Song, Inorg. Chem. Commun., 2005, 8, 271; Z. Yi, C. Chen, S. G. Li, G. H. Li, H. Meng, Y. J. Cui, Y. L. Yang, W. Q. Pang, Inorg. Chem. Commun., 2005, 8, 166; L. Wang, T. Y. Song, J. N. Xu, Y. Wang, Z. F. Tian, S. H. Shi, Micro. Meso. Mater., 2006, 96, 287.
    [55]杨玉林,稀反应体系下开放骨架结构的磷酸镓(亚磷酸镓)微孔晶体的水热合成研究,吉林大学博士论文,2004.
    [56] Lin Z, Zhang J, Zheng S, Yang G, A Novel Open-Framework Zinc Phosphite, Zn3(HPO3)4·Ni(en)2(H2O)2, Templated by a Transition-Metal Complex [J]. Eur. J. Inorg. Chem. 2004, 953-955.
    [57] Lin Z, Zhang J, Zheng S, Yang G, Synthesis and characterization of a novel open-framework nickel-zinc phosphite with intersecting three-dimensional 16-ring channels [J]. J. Mater. Chem., 2004, 14, 1652-1655.
    [58] Liang J, Li J, Yu J, Chen P, Li L, Xu R, [Ni(C6N2H14)2][Zn4(H2O)(HPO3)5]: A new open-framework zinc phosphite with intersecting 8-, 12- and 16-ring channels [J]. Journal of Solid State Chemistry 2006, 179, 1977–1983.
    [59] Liang J, Li J, Yu J, Pan Q, Fang Q, Xu R, Synthesis and characterization of two new open-framework zinc phosphites [M(C6N4H18)][Zn3(HPO3)4] (M = Ni, Co) with multi-directional intersecting 12-membered ring channels [J]. Journal of Solid State Chemistry 2005, 178, 2673–2679.
    [60] Lai Y, Lii K, Wang S. 26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. Journal of the American Chemical Society, 2007, 129, 5350-5351.
    [61] D-B Xiong, M-R Lia, W Liu, H-Hong Chen, X-X Yang, J-T Zhao, Synthesis, structure and luminescence property of two lanthanum phosphite hydrates: La2(H2O)x(HPO3)3 (x = 1, 2) [J]. Journal of Solid State Chemistry 2006, 179, 2538–2544.
    [62]张冬,金属亚磷酸盐和硒酸盐的合成与表征,吉林大学博士论文,2006.
    [63] Lin Z, Fan W, Gao F, Chino N, Yokoi T, Okubo T, A New Organically Templated Zinc Phosphite Synthesized in Phosphorous Acid Flux and Its Hydrothermal Analogue [J]. Crystal Growth & Design, 2006, 6, 2435-2437.
    [64] Lin Z, Dehnen S, Flux synthesis of (3,4)-connected zinc phosphites with differentframework topologies [J]. Journal of Solid State Chemistry 2009, 182, 3143–3148.
    [65] Luo X, Gong M, Chen Y, Lin Z, Flux Synthesis of Two New Open-Framework Zinc Phosphites with 16-Ring Channels [J]. Microporous and Mesoporous Materials 2010, 131, 418-422. [ 66 ] Lin Z, Nayek H, Dehnen S, Flux synthesis of three-dimensional open-framework zinc phosphate and manganese phosphite-oxalate with 12-ring channels [J]. Microporous and Mesoporous Materials 2009, 126, 95-100.
    [67] Lin Z, Nayek H, Dehnen S, Transformation of a Layered Zinc Phosphite to a Three-Dimensional Open-Framework Structure with Intersecting 16- and 12-Ring Channels [J]. Inorganic Chemistry 2009, 48, 3517-3519.
    [68] (a) Cheng J, Xu R, Yang G. Synthesis, structure and characterization of a novel germanium dioxide with occluded tetramethylammonium hydroxide [J]. Journal of the Chemical Society, Dalton Transactions, 1991, 1537-1540; (b) Cheng J, Xu R, Syntheses and characterization of two novel germanium dioxide frameworks with occluded ethylenediamine (EDA) and 1,3-propylenediamine (1,3-PDA) [J]. Journal of the Chemical Society, Chemical Communications, 1991, 483-485; (c) Jones R H, Chen J S, Thomas J M, et al. Synthesis and structure of a new microporous anionic derivative of germanium dioxide: [Ge18O38(OH)4]8-[(C2N2H10)2+]4.2H2O [J]. Chemistry of Materials, 1992, 4, 808-812.
    [69] Sun J, Bonneau C, Cantíná, et al. The ITQ-37 mesoporous chiral zeolite [J]. Nature, 2009, 458, 1154-1157.
    [70] Zou X, Conradsson T, Klingstedt M, et al. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative [J]. Nature, 2005, 437, 716-719.
    [71] (a) Lin Z, Zhang J, Zhao J, et al. A Germanate Framework Containing 24-Ring Channels, Ni-Ge Bonds, and Chiral [Ni@Ge14O24(OH)3] Cluster Motifs Transferred from Chiral Metal Complexes [J]. Angewandte Chemie International Edition, 2005, 44, 6881-6884; (b) Lin Z, Zhang J, Yang G. Synthesis and Structure of KBGe2O6: The First Chiral Zeotype Borogermanate with 7-Ring Channels [J]. Inorganic Chemistry, 2003, 42, 1797-1799; (c) Zhang H, Zhang J, Zheng S, et al. K2[Ge(B4O9)]·2H2O: A Unique 3D Alternating Linkage Mode of a B4O9Cluster and GeO4 Unit in Borogermanate with Two Pairs of InterweavingDouble Helical Channels [J]. Inorganic Chemistry, 2004, 43, 6148-6150; (d) Zhang H, Zhang J, Zheng S, et al. (C4N3H15)[(BO2)2(GeO2)4]: The First Organically Templated 3D Borogermanate Showing 1D 12-Rings, Large Channels, and a Novel Zeolite-type Framework Topology Constructed from Ge8O24 and B2O7Cluster Units [J]. Inorganic Chemistry, 2005, 44, 1166-1168.
    [72] Ren X, Li Y, Pan Q, et al. A Crystalline Germanate with Mesoporous 30-Ring Channels [J]. Journal of the American Chemical Society, 2009, 131, 14128-14129.
    [73] Rowsell J L C, Yaghi O M. Metal-organic frameworks: a new class of porous materials [J]. Microporous and Mesoporous Materials, 2004, 73, 3-14.
    [74] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402: 276-279.
    [75] Yaghi OM, Li H, Davis C, et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res. 1998, 31, 474-484.
    [76] (a) Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks [J]. Chemical Society Reviews, 2009, 38, 1257-1283; (b) Li Q, Zhang W, Miljani? O ?, et al. Docking in Metal-Organic Frameworks [J]. Science, 2009, 325, 855-859; (c) Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture [J]. Science, 2008, 319, 939-943.
    [77] Férey G, Mellot-Draznieks C, Serre C, et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible [J]. Accounts of Chemical Research, 2005, 38, 217-225.
    [78] (a) C?téA P, Benin A I, Ockwig N W, et al. Porous, Crystalline, Covalent Organic Frameworks [J]. Science, 2005, 310, 1166-1170; (b) C?téA P, El-Kaderi H M, Furukawa H, et al. Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks [J]. Journal of the American Chemical Society, 2007, 129, 12914-12915.
    [79] Y-C Liao, C-H Lin, S-L Wang, Direct White Light Phosphor: A Porous Zinc Gallophosphate with Tunable Yellow-to-White Luminescence [J]. Journal of theAmerican Chemical Society, 2005, 127, 9986-9987.
    [80] Feng P. Photoluminescence of open-framework phosphates and germinates [J]. Chemical Communications, 2001, 1668-1669.
    [81] Lin C, Yang Y, Chen C, et al. Unequivocal Heteroatom Insertion into a 24-Ring Channel Gallophosphate and Its Ph otoluminescence [J]. Chemistry of Materials, 2006, 18, 2095-2101.
    [82] Li Y, Zhang H, L Y, et al. Hydrothermal synthesis and characterization of magnesium substituted aluminophosphate with unique intersecting 12-membered ring channels in three dimensions [J]. Microporous and Mesoporous Materials, 2006, 97, 1-8.
    [83] P-C Jhang, Y-C Yang, Y-C Lai, W-R Liu, S-L Wang, A Fully Integrated Nanotubular Yellow-Green Phosphor from an Environmentally Friendly Eutectic Solvent [J]. Angew. Chem. Int. Ed. 2009, 48, 742-745.
    [84] J. Liang, J. Y. Li, J. H. Yu, Q. H. Pan, Q. R. Fang, R. R. Xu, J. Solid State Chem. 2005, 178, 2673.
    [85] S. Fernandez, J. L. Mesa, J. L. Pizarro, L. Lezama, M. I. Arriortua, R. Olazcuaga, T. Rojo, Chem. Mater. 2000, 12, 2092; S. Fernandez, J. L. Pizarro, J. L. Mesa, L. Lezama, M. I. Arriortua, R. Olazcuaga, T. Rojo, Inorg. Chem. 2001, 40, 3476.
    [86] S. Fernandez, J. L. Pizarro, J. L. Mesa, L. Lezama, M. I. Arriortua, T. Rojo, Int. J. Inorg. Mater. 2001, 3, 331.
    [87] S. Fernandez, J.L. Mesa, J.L. Pizarro, A. Pen, J.P. Chapman, M.I. Arriortu, Materials Research Bulletin 2004, 39, 1779-1790.
    [88] S. Fernandez, J. L. Pizarro, J. L. Mesa, L. Lezama, M. I. Arriortua, R. Olazcuaga, T. Rojo, Chem. Mater. 2002, 14, 2300.
    [89]唐有祺,桂琳琳.逆向而行——功能体系的分子工程学研究[M].湖南科学技术出版社,1997.
    [90] Yu J H, Xu R R. Toward the rational design and synthesis of inorganic microporous and related materials [J]. Stud. Surf. Sci. Catal., 2004, 154, 1-13.
    [91] Lewis D W, Freeman C M, Catlow C R A. Predicting the templating ability of organic additives for the syntheses of microporous materials [J]. J. Phys. Chem., 1995, 99, 11194-11202.
    [92] Demontis P, Suffritti G B. Structure and dynamics of zeolites investigated bymolecular dynamics [J]. Chem. Rev., 1997, 97, 2845-2878.
    [93] Lewis D W, Willock D J, Catlow C R A, et al. De novo design of structure directing agents for the synthesis of microporous solids [J]. Nature, 1996, 382, 604-606.
    [94] Lewis D W, Sankar G, Wyles J K, et al. Syntheses of a small-pore microporous material using a computationally designed template [J]. Angew. Chem. Int. Ed., 1997, 36, 2675-2677.
    [95] Catlow C R A, Coombes D S, Lewis D W, et al. Computer modeling of nucleation, growth and templating in hydrothermal synthesis [J]. Chem. Mater., 1998, 10, 3249-3265.
    [96] Freeman C M, Lewis D W, Harris T V, et al. Simulating the behavior of organic-molecules in zeolites [J]. Computer-Aided Molecular Design, 1995, 326-340.
    [97] Wagner P, Nakagawa Y, Lee G S, et al. Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39 [J]. J. Am. Chem. Soc., 2000, 122, 263-273.
    [98] Li J Y, Yu J H, Yan W, et al. Structures and templating effect in the formation of 2D layered aluminophosphates with Al3P4O163- stoichiometry [J]. Chem. Mater., 1999, 11, 2600-2606.
    [99] Yu J H, Li J Y, Wang K X, et al. Rational synthesis of microporous aluminophosphates with inorganic open-framework analogous to Al4P5O20H·C6H18N2 [J]. Chem. Mater., 2000, 12, 3783-3787.
    [100] Li J, Yu J, Xu R. Computational simulation study towards the synthesis of extra-large microporous materials [J]. Microporous Mesoporous Mater., 2007, 101, 406-412.
    [101] Burton A, Elomari S, Chen C Y, et al. SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites [J]. Chem. Eur. J., 2003, 9, 5737-5748.
    [102] Castro M, Garcia R, Warrender S J, et al. Co-templating and modelling in the rational synthesis of zeolitic solids [J]. Chem. Commun., 2007, 3470-3472.
    [103] Jandeleit B, Schaefer D J, Powers T S, et al. Combinatorial materials science and catalysis[J]. Angew. Chem. Int. Ed., 1999, 38, 2494-2532.
    [104] Akporiaye D E, Dahl I M, Karlsson A, et al. Combinatorial approach to the hydrothermal synthesis of zeolites [J]. Angew. Chem. Int. Ed., 1998, 37,609-611.
    [105] Klein J, Lehmann C W, Schmidt H W, et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis [J]. Angew. Chem. Int. Ed., 1998, 37, 3369-3372.
    [106] Choi K, Gardner D, Hilbrandt N, et al. Combinatorial methods for the synthesis of aluminophosphate molecular sieves[J]. Angew. Chem. Int. Ed., 1999, 38, 2891-2894.
    [107] Newsam J M, Bein T, Klein J, et al. High throughput experimentation for the synthesis of new crystalline microporous solids [J]. Microporous Mesoporous Mater., 2001, 48, 355-365.
    [108] Song Y,Yu J H, Li G H, et al. Combinatorial approach for the hydrothermal syntheses of open-framework zinc phosphates [J]. Chem. Commun., 2002, 1720-1721.
    [109] Song Y, Li J Y, Yu J H, et al. Towards rational synthesis of microporous aluminophosphate AlPO4-21 by hydrothermal combinatorial approach[J]. Top. Catal., 2005, 35, 3-8.
    [1] A. Clearfield, Organically Pillared Micro- and Mesoporous Materials [J]. Chem. Mater. 1998, 10, 2801.
    [2] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Willams, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283, 1148.
    [3] C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors [J]. Science, 1999, 286, 945.
    [4] S.R. Batten, R. Robson, Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed. Engl. 1998, 37, 1460.
    [5] M.J. Zaworotko, From Disymmetric Molecules to Chiral Polymers: A New Twist for Supramolecular Synthesis [J]. Angew. Chem. Int. Ed. Engl. 1998, 37, 1211.
    [6] W.T.A. Harrison, T.M. Nenoff, M.M. Eddy, T.E. Martin, G.D. Stucky, Organic templates in zincophosphate synthesis: Zn5(PO4)2(HPO4)4H·2O·2H2N2C6H12, containing two distinct eight-ring channels and Zn3(PO4)(HPO4)2·HN2C6H12, containing tetrahedral three-rings and Zn–N bonds [J]. J. Mater. Chem. 1992, 2, 1127.
    [7] S. Neeraj, S. Natarajan, C.N.R. Rao, A Zinc Phosphate Possessing Ladder-like Layers Made Up of Three- and Four-Membered Rings and Infinite Zn?O?Zn Chains [J]. Chem. Mater. 1999, 11, 1390.
    [8] K.H. Lii, Y.F. Huang, V. Zima, C.Y. Huang, H.M. Lin, Y.C. Jiang, F.L. Liao, S.L. Wang, Syntheses and Structures of Organically Templated Iron Phosphates [J]. Chem. Mater. 1998, 10, 2599.
    [9] A.K. Cheetham, G. Ferry, T. Loiseau, Open-Framework Inorganic Materials [J]. Angew. Chem. Int. Ed. 1999, 38, 3268.
    [10] J. Liang, J.-Y. Li, J.-H. Yu, P. Chen, Q.-H. Fang, F.-X. Sun, R.-R. Xu, [(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite ContainingExtra-Large 24-Ring Channels [J]. Angew. Chem. Int. Ed. 2006, 45, 2546.
    [11] Y. L. Lai, K. H. Lii, S. L. Wang, 26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. J. Am. Chem. Soc. 2007, 129, 5350.
    [12] Y. Cui, Y. Xing, G. Li, Y. Liu, H. Meng, L. Liu, W. Pang, Syntheses, crystal structures and magnetic properties of two new bimetallic phosphates M(phen)(H2O)(VO)(H2O)(HPO4)2 (M=Ni, Co; PHEN=1,10-phenanthroline) [J]. J. Solid State Chem. 2004, 177, 3080.
    [13] Y. Song, P. Y. Zavalij, N. A. Chernova, M. S. Whittingham, Synthesis and Characterization of a New Layered Ethylene-Diammonium Manganese(II) Phosphate, (C2N2H10)Mn2(PO4)2·2H2O [J]. Chem. Mater., 2003, 26, 4968.
    [14] W. Chen, Y. Zhao, Y. U. Kwon, A Templated Bimetallic Phosphate Open-structure with 16-MR Channels [J]. Chem. Lett. 2004, 33, 1616
    [15] a) X. M. Zhang, M. L. Tong, S. H. Feng, X. M. Chen, The unique dual role of zinc atoms in a mixed zinc–vanadium phosphate [Zn(phen)Zn(VO)(PO4)2] [J]. J. Chem. Soc., Dalton Trans., 2001, 2069; b) R. C. Finn, J. Zubieta, Hydrothermal synthesis and structural characterization of organically templated zinc vanadium phosphates: [Zn(2,2’-bipyridine)(VO2)(PO4)], [Zn(2,2’:6’,2’’-terpyridine) (VO2)(PO4)] and [Zn(1,10-phenanthroline)(ZnVO)(PO4)2] [J]. J. Chem. Soc., Dalton Trans., 2002, 856.
    [16] Y. Ke, G. He, J. Li, Y. Zhang, S. Lu, A new mixed divalent metal phosphate with zeolite thomsonite framework topologyElectronic supplementary information (ESI) available: TGA and DTA spectra of ZCP-THO [J]. New J. Chem., 2001, 25, 1627.
    [17] T. Jüstel, H. Nikol, C. Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays [J]. Angew. Chem. Int. Ed. 37 (1998) 3084.
    [18] P. Y. Feng, Photoluminescence of open-framework phosphates and germanates [J]. Chem. Commun. 2001, 1668.
    [19] C. H. Lin, Y. C. Yang, C. Y. Chen, S. L. Wang, Unequivocal Heteroatom Insertion into a 24-Ring Channel Gallophosphate and Its Photoluminescence [J]. Chem. Mater., 2006, 18, 2095.
    [20] Y. C. Liao, Y. C. Jiang, S. L. Wang, Discrete Water Hexamers and Template-Assisted Molecular Recognition in an Elastic Zincophosphate Lattice [J]. J. Am. Chem. Soc. 2005, 127, 12794.
    [21] Y. C. Liao, C. H. Lin, S. L. Wang, Direct White Light Phosphor: A Porous Zinc Gallophosphate with Tunable Yellow-to-White Luminescence [J]. J. Am. Chem. Soc. 2005, 127, 9986.
    [22] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, A Zeolitic Organo?Metallophosphate Hybrid Material with Bimodal Porosity [J]. J. Am. Chem. Soc. 2004, 126, 1320.
    [23] SMART and SAINT (software package), Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [24] SHELXTL, version 5.1, Siemens Industrial Automation Inc., Madison, WI, 1997.
    [25] a)W. T. A. Harrison, (NC5H12)2·Zn3(HPO3)4: A Low-Density Framework Built Up from a Fully Connected (3,4) Net of ZnO4 Tetrahedra and HPO3 Pseudo Pyramids [J]. J. Solid State Chem. 2001, 160, 4-7; b)W. T. A. Harrison, M. L. F. Phillips, T. M. Nenoff, (CN4H7)2·Zn3(HPO3)4, a three-dimensional framework zincophosphite: an example of template–template co-operation [J] Int. J. Inorg. Mater. 2001, 3, 1033-1038; c) Z.-E. Lin, J. Zhang, S. -T. Zheng, G.-Y. Yang, Synthesis and characterization of a novel open-framework nickel–zinc phosphite with intersecting three-dimensional 16-ring channels [J]. J. Mater. Chem. 2004, 14, 1652-1655.
    [26] Wang, Y.; Yu, J.; Du, Y.; Shi, Z.; Zou, Y.; Xu, R. Hydrothermal synthesis and characterization of a new inorganic–organic hybrid layered zinc phosphate–phosphite (C6H15N2)2Zn4(PO4)2(HPO3)2 [J]. J. Chem. Soc., Dalton Trans. 2002, 4060-4063.
    [27] Fu, W.; Shi, Z.; Zhang, D.; Li, G.; Dai, Z.; Chen, X.; Feng, S. Hydrothermal synthesis and characterization of organically templated zincophosphites with two- and three-dimensional structures, [CH3CH(NH3)CH2NH3]·[Zn2(HPO3)3]·H2O and [H3N(CH2)6NH3]·[Zn3(HPO3)4] [J]. J. Solid State Chem. 2003, 174,11-18.
    [28] Kim, H. Y.; Kim, J. H.; Park, M.; Im, O. S. Photoelectric, stoichiometric and structural properties of n-ZnO film on p-Si [J]. Thin Solid Films 2001, 398–399, 93–98.
    [29] Kikuchi, H.; Kitano, M.; Takeuchi, M.; Matsuoka, M.; Anpo, M.; Kamat, P. V. Extending the Photoresponse of TiO2 to the Visible Light Region: Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method [J]. J. Phys. Chem. B 2006, 110, 5537-5541.
    [30] Kronik, L.; Shapira, Y. Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering [J]. Surf. Interface Anal. 2001, 31, 954–965.
    [1] A. Clearfield, Organically Pillared Micro- and Mesoporous Materials [J]. Chem. Mater. 1998, 10, 2801.
    [2] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Willams, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283, 1148.
    [3] C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors [J]. Science, 1999, 286, 945.
    [4] S.R. Batten, R. Robson, Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed. Engl. 1998, 37, 1460.
    [5] M.J. Zaworotko, From Disymmetric Molecules to Chiral Polymers: A New Twist for Supramolecular Synthesis [J]. Angew. Chem. Int. Ed. Engl. 1998, 37, 1211.
    [6] W.T.A. Harrison, T.M. Nenoff, M.M. Eddy, T.E. Martin, G.D. Stucky, Organic templates in zincophosphate synthesis: Zn5(PO4)2(HPO4)4H·2O·2H2N2C6H12, containing two distinct eight-ring channels and Zn3(PO4)(HPO4)2·HN2C6H12, containing tetrahedral three-rings and Zn–N bonds [J]. J. Mater. Chem. 1992, 2, 1127.
    [7] S. Neeraj, S. Natarajan, C.N.R. Rao, A Zinc Phosphate Possessing Ladder-like Layers Made Up of Three- and Four-Membered Rings and Infinite Zn?O?Zn Chains [J]. Chem. Mater. 1999, 11, 1390.
    [8] K. H. Lii, Y. F. Huang, V. Zima, C. Y. Huang, H. M. Lin, Y. C. Jiang, F. L. Liao, S.L. Wang, Syntheses and Structures of Organically Templated Iron Phosphates [J]. Chem. Mater. 1998, 10, 2599.
    [9] Y. Cui, Y. Xing, G. Li, Y. Liu, H. Meng, L. Liu, W. Pang, Syntheses, crystal structures and magnetic properties of two new bimetallic phosphates M(phen)(H2O)(VO)(H2O)(HPO4)2 (M=Ni, Co; PHEN=1,10-phenanthroline) [J]. J. Solid State Chem. 2004, 177, 3080.
    [10] Y. Song, P. Y. Zavalij, N. A. Chernova, M. S. Whittingham, Synthesis andCharacterization of a New Layered Ethylene-Diammonium Manganese(II) Phosphate, (C2N2H10)Mn2(PO4)2·2H2O [J]. Chem. Mater., 2003, 26, 4968.
    [11] W. Chen, Y. Zhao, Y. U. Kwon, A Templated Bimetallic Phosphate Open-structure with 16-MR Channels [J]. Chem. Lett. 2004, 33, 1616.
    [12] a) X. M. Zhang, M. L. Tong, S. H. Feng, X. M. Chen, The unique dual role of zinc atoms in a mixed zinc–vanadium phosphate [Zn(phen)Zn(VO)(PO4)2] [J]. J. Chem. Soc., Dalton Trans., (2001) 2069; b) R. C. Finn, J. Zubieta, Hydrothermal synthesis and structural characterization of organically templated zinc vanadium phosphates: [Zn(2,2’-bipyridine)(VO2)(PO4)], [Zn(2,2’:6’,2’’-terpyridine)(VO2) (PO4)], and [Zn(1,10-phenanthroline)(ZnVO)(PO4)2] [J]. J. Chem. Soc., Dalton Trans., 2002, 856.
    [13] Y. Ke, G. He, J. Li, Y. Zhang, S. Lu, A new mixed divalent metal phosphate with zeolite thomsonite framework topology [J]. New J. Chem., 2001, 25, 1627.
    [14] M. Hartmann; L. Kevan, Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties [J]. Chemical Review, 1999, 99, 635.
    [15] P. Y. Feng, Photoluminescence of open-framework phosphates and germanates [J]. Chem. Commun. 2001, 1668.
    [16] Y-L Lai, K-H Lii, S-L Wang, 26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. J. Am. Chem. Soc. 2007, 129, 5350-5351
    [17] P. Feng, X. Bu, G. D. Stucky, Hydrothermal Syntheses and Structural Characterization of Zeolite Analogue Compounds Based on Cobalt Phosphates [J]. Nature, 1997, 388, 735-741.
    [18] X. W. Song, Y. Li, L. Gan, Z. P. Wang, J. H. Yu, R. R. Xu, Heteroatom-Stabilized Chiral Framework of Aluminophosphate Molecular Sieves [J]. Angew. Chem. Int. Ed. Engl. 2009, 48, 314-317.
    [19] J. Y. Li, J. H. Yu, W. F. Yan, Y. Xu, W. Xu, S. L. Qiu, R. R. Xu, Structures and Templating Effect in the Formation of 2D Layered Aluminophosphates with Al3P4O163- Stoichiometry [J]. Chem. Mater. 1999, 11, 2600.
    [20] SMART and SAINT (software package), Siemens Analytical X-ray InstrumentsInc., Madison, WI, 1996.
    [21] SHELXTL, version 5.1, Siemens Industrial Automation Inc., Madison, WI, 1997.
    [22] J. Yu, J. Chen, R. Xu, Short communication Formation of single-crystal cobalt-substituted gallophosphate LTA from an alcoholic system [J]. Micropor. Mater. 1996, 5, 333.
    [23] J. Liang, J. Y. Li, J. H. Yu, P. Chen, L. Li, R. R. Xu, [(C4H12N)2][Zn3(HPO3)4]: An Open-FrameworkZinc Phosphite Containing Extra-Large 24-Ring Channels [J]. J. Solid State Chem. 2006, 179, 1977.
    [24] a) W. T. A. Harrison, (NC5H12)2·Zn3(HPO3)4: A Low-Density Framework Built Up from a Fully Connected (3,4) Net of ZnO4 Tetrahedra and HPO3 Pseudo Pyramids [J]. J. Solid State Chem. 2001, 160, 4-7; b) W. T. A. Harrison, M. L. F. Phillips, T. M. Nenoff, (CN4H7)2·Zn3(HPO3)4, a three-dimensional framework zincophosphite: an example of template–template co-operation [J]. Int. J. Inorg. Mater. 2001, 3, 1033-1038; c) Z.-E. Lin, J. Zhang, S. -T. Zheng, G.-Y. Yang, Synthesis and characterization of a novel open-framework nickel–zinc phosphite with intersecting three-dimensional 16-ring channels [J]. J. Mater. Chem. 2004, 14, 1652-1655.
    [25] S. Neeraj, A. K. Cheetham, Synthesis of open-framework zinc phosphates from organophosphorus amides [J]. Chem. Commun., 2002, 16, 1738–1739.
    [1] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chemical Reviews, 1997, 97, 2373-2420.
    [2] Davis M E. The Quest For Extra-Large Pore, Crystalline Molecular Sieves [J]. Chemistry A European Journal, 1997, 3, 1745-1750.
    [3] Davis M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417, 813-821.
    [4] Kuehl G H, Timken H K C. Acid sites in zeolite Beta: effects of ammonium exchange and steaming [J]. Microporous and Mesoporous Materials, 2000, 35-36, 521-532.
    [5] Wang Z, Wang H, Mitra A, et al. Pure-Silica Zeolite Low-k Dielectric Thin Films [J]. Advanced Materials, 2001, 13, 746-749.
    [6] Thomas J M, Raja R. The advantages and future potential of single-site heterogeneous catalysts [J]. Topics in Catalysis, 2006, 40, 3-17.
    [7] Wilson S T. Synthesis of AlPO4, -Based Molecular Sieves [J]. Stud. Surf. Sci. Catal. 1991, 58, 137-151.
    [8] Wilson S T. Phosphate-based molecular sieves: Novel synthetic approaches to new structures and compositions [J]. Stud. Surf. Sci. Catal. 2001, 137, 229-260.
    [9] Raveendran P, Fu J, Wallen S L. Completely―Green‖Synthesis and Stabilization of Metal Nanoparticles [J]. Journal of the American Chemical Society, 2003, 125, 13940-13941.
    [10] DAHL J A, MADDUX B L S, HUTCHISON J E. Toward Greener Nanosynthesis [J]. Chemical Reviews, 2007, 107, 2228-2269.
    [11] Lee H, Zones S I, Davis M E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J]. Nature 2003, 425, 385-388.
    [12] Zones S I, Lee H, Davis M E, et al. Strategies in developing routes to commercialization of novel high silica zeolites [J]. Stud. Surf. Sci. Catal. 2005, 158, 1-10.
    [13] Xie B, J Song, Ren L, et al. Organotemplate-Free and Fast Route forSynthesizing Beta Zeolite [J]. Chemistry of Materials, 2008, 20, 4533-4535.
    [14] Wilson S T, Lok B M, Messina C A. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J]. Journal of the American Chemical Society, 1982, 104,1146-1147.
    [15] Yu J, Xu R. Rich Structure Chemistry in the Aluminophosphate Family[J]. Accounts of Chemical Research, 2003, 36, 481-490.
    [16] Yu J, Xu R. Insight into the Construction of Open-framework Aluminophosphates [J]. Chemical Society Reviews, 2006, 35, 593-604.
    [17] Thomas J M, Raja R, Sankar G, et al. Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen [J]. Nature 1999, 398, 227-230.
    [18] Thomas J M, Raja R, Sankar G, et al. Molecular Sieve Catalysts for the Regioselective and Shape- Selective Oxyfunctionalization of Alkanes in Air [J]. Accounts of Chemical Research, 2001, 34, 191-200.
    [19] Rao C N R, Natarajan S, Choudhury A, et al. Aufbau Principle of Complex Open-Framework Structures of Metal Phosphates with Different Dimensionalities [J]. Accounts of Chemical Research, 2001, 34, 80-87.
    [20] Chong K, Sivaguru J, Shichi T, et al. Use of Chirally Modified Zeolites and Crystals in Photochemical Asymmetric Synthesis [J]. J Journal of the American Chemical Society, 2002, 124, 2858-2859.
    [21] Joy A, Uppili S, Netherton M R, et al. Photochemistry of a Tropolone Ether and 2,2-Dimethyl-1-(2H)-naphthalenones within a Zeolite: Enhanced Diastereoselectivity via Confinement [J]. Journal of the American Chemical Society, 2000, 122, 728-729.
    [22] Cowley A R, Jones R H, Teat S J, et al. Multiwavelength X-ray diffraction studies of ZnGaPOs; distinguishing isoelectronic framework cations [J]. Microporous and Mesoporous Materials, 2002, 51, 51-64.
    [23] Cheetham A K, Rao C N R, Feller R K. Structural diversity and chemical trends in hybrid inorganic–organic framework materials [J]. Chemical Communications, 2006, 4780-4795.
    [24] Martens J A, Jacobs P A. Stud. Surf. Sci. Catal. 1994, 856, 53.
    [25] Weckhuysen B M, Rao R R, Martens J A, et al. Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution [J]. European Journal of Inorganic Chemistry, 1999, 565-577.
    [26] Brosius R, Martens J A. Reaction mechanisms of lean-burn hydrocarbon SCR over zeolite catalysts [J].Topics in Catalysis, 2004, 28, 119-130.
    [27] Boulard S, Gilot P, Brosius R, et al. Perturbation and tracer chromatography study of hydrocarbon adsorption from simulated exhaust gas on Fe-MFI and MOR type zeolite catalysts [J]. Topics in Catalysis, 2004, 30-31, 49-53.
    [28] Vidal L, Gramlich V, Patarin J, et al. Synthesis and structure of Mu-4, the new layered aluminophosphate [(C2H5)2NH2 ]4[Al8P10O40H2][H2O]2.5 [J]. European Journal of Solid State and Inorganic Chemistry, 1998, 35, 545-563.
    [29] Yu J, Terasaki O, Williams I D, et al. Solvothermal synthesis and characterization of new aluminophosphate layers templated by imidazolium ions [J]. Supramolecular Science, 1998, 5, 297-3027.
    [30] Software Packages SMART and SAINT, Siemens Analytical X-ray, Instrument Inc, Madison, WI, 1996.
    [31] SHELXTL, Version 51, Siemens Industrial Automation Inc, 1997.
    [32] Lightfoot P, Cheetham A K, Sleight A W. Hydrothermal synthesis and crystal structure of a new layeredphosphate, K2Co3(P2O7)2·2H2O [J]. Journal of Solid State Chemistry, 1990, 85, 275-282.
    [33] Yan W, Yu J, Shi Z, et al. An anionic framework aluminophosphate [(CH2)6N4H3H·2O][Al11P12O48] and computer simulation of the template positions[J]. Microporous and Mesoporous Materials, 2001, 50, 151-158.
    [34] Wang K, Yu J, Shi Z, et al. Synthesis and characterization of a new three-dimensional aluminophosphate [Al11P12O48][C4H12N2][C4H11N2] with an Al/P ratio of 11:12 [J]. Journal of the Chemical Society, Dalton Transactions, 2001, 1809-1812.
    [35] Baerlocher Ch, Mccusker L B, Prokic S, et al. Exploiting texture to estimate the relative intensities of overlapping reflections [J]. Z. Kristallogr. 2004, 219, 803-812.
    [36] Li J, Yu J, Xu R. Database of AlPO Syntheses, http://izasc.ethz.ch/fmi/xsl/IZA-SC/ ol.htm.
    [37] Meyer L M, Haushalter R C. The First Octahedral-Trigonal Bipyramidal-Tetrahedral Framework Oxide: Hydrothermal Synthesis and Structure of K[Ni(H2O)2Al2(PO4)3] [J]. Chemistry of Materials, 1994, 6, 349-350.
    [38] Panz C, Polborn K, Behrens P. Inorg. Chim. Acta. 1998, 263, 73.
    [39] Bartl H, Fischer K. N. J B. Miner. Mh. 1967, 33.
    [40] Chippindale A M, Walton R I. Synthesis and characterisation of the first three-dimensional framework cobalt–gallium phosphate [C5H5NH][CoGa2P3O12] [J]. Journal of the Chemical Society, Chemical Communications, 1994, 2453-2454.
    [41] Bond A D, Chippindale A, Cowley A R, et al. Synthesis and characterisation of transition-metal-substituted gallium phosphates with the laumontite structure [J]. Zeolites, 1997, 19, 326-333.
    [42] Feng P, Zhang T, Bu X. Arsenate Zeolite Analogues with 11 Topological Types [J]. Journal of the American Chemical Society, 2001, 123, 8608-8609.
    [43] Cowley A R, Jones R H, Teat S J, et al. Multiwavelength X-ray diffraction studies of ZnGaPOs, distinguishing isoelectronic framework cations [J]. Microporous and Mesoporous Materials, 2002, 51, 51-64.
    [1] Chu, P.; Dwyer, F.G.; Clark, V. J. US, Crystallization method employing microwave radiation and its application in zeolite synthesis. Patent 19900321, 1988.
    [2] Girnus, I.; Hoffmann, K.; Marlow, F.; et al. Large CoAPO-5 single crystals: Microwave synthesis and anisotropic optical absorption [J]. Micropor. Mater., 1994, 2, 543.
    [3] Park, M.; Komarneni, S. Rapid synthesis of AlPO4-11 and cloverite by microwave hydrothermal processing [J]. Micropor. Mesopor. Mater. 1998, 20, 39.
    [4] Zhao, J. P.; Cundy, C.; Dwyer, Synthesis of zeolites in a microwave heating environment [J]. J. Stud. Surf. Sci. Catal., 1997, 105, 181.
    [5] Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of a High-Permeance NaA Zeolite Membrane by Microwave Heating [J]. Adv. Mater., 2000, 12, 195.
    [6] Park, S. E.; Kim, D. S.; Chang, J. S.; et al. Synthesis of MCM-41 using microwave heating with ethylene glycol [J]. Catal. Today, 1998, 44, 301.
    [8] Arafat, A.; Jansen, J. C.; Ebaid, A. R.; et al. Microwave preparation of zeolite Y and ZSM-5 [J]. Zeolites, 1993, 13, 162.
    [9] Cundy, C. S.; Plaisted, R. J.; Zhao, J. Remarkable synergy between microwave heating and the addition of seed crystals in zeolite synthesis-a suggestion verified [J]. Chem. Commun., 1998, 14, 1465.
    [10] Motuzas, J.; Julbe, A.; Noble, R. D.; et al. Rapid synthesis of silicalite-1 seeds by microwave assisted hydrothermal treatment [J]. Micropor. Mesopor. Mater., 2005, 80, 73.
    [11] Heyden, H.; Minoa, S.; Bein, T. AlPO-18 nanocrystals synthesized under microwave irradiation [J]. J. Mater. Chem., 2006, 16, 514.
    [12] Newalkar, B. L.; Komarneni, S.; Katsuki, H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process [J]. Chem. Commun., 2000, 23, 2389.
    [13] Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of a High-Permeance NaA ZeoliteMembrane by Microwave Heating [J]. Adv. Mater., 2000, 12, 195.
    [14] Serrano, D. P.; Uguina, M. A.; Sanz, R.; et al. Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating [J]. Micropor. Mesopor. Mater., 2004, 69, 197.
    [15] Yan, W.; Hagaman, E. W.; Dai, S. Functionalization of Aluminophosphate AlPO4-H1 (VPI-5) with Phenylphosphonic Acid [J]. Chem. Mater., 2004, 16, 5182.
    [18] SMART and SAINT (software package), Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [19] SHELXTL, version 5.1, Siemens Industrial Automation Inc., Madison, WI, 1997.