氧化铝生产种分过程中气—液两相流动的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶种分解过程是复杂的结晶和传质过程,是拜耳法生产氧化铝的关键工序之一,它对氧化铝产品的产量和质量均有重要影响,并对其它的工序也存在间接作用。由于国内铝土矿资源情况与国外的有很大差别,其种分过程与国外种分过程有不同之处,因此,对具有中国特色的种分过程的机理和动力学的研究具有很重要的现实意义。
     本文通过对晶种分解过程及主要设备的详细研究,综合利用多相流体力学、计算流体力学及传输过程等理论,构建了晶种分解过程多相流动的多流体模型;以商业软件CFX4.3为平台,研制开发了晶种分解过程多相流动的数值模拟系统。以两种不同结构的空气搅拌式种分槽为研究对象,完成了晶种分解过程气—液两相流动的三维数值模拟。数值模拟结果表明,种分槽内的流场分布对铝酸钠溶液的混合、槽内结疤等现象有着直接的影响;翻料管为喇叭套管的种分槽内溶液循环量大,副风管的的上提强化了种分槽下部溶液的扰动,其流场明显优于翻料管为直套管的种分槽。
     建立了晶种分解过程中的标量传输模型,并与气—液两相流动的多流体模型耦合,研制开发了晶种分解过程中铝酸钠溶液扩散及分解时间的数值模拟程序。计算结果表明,翻料管为直套管的种分槽内存在明显的溶液“短路”现象,溶液在槽内的分解时间低于翻料管为喇叭套管的种分槽。
     设计并制作了晶种分解水模型实验装置,对晶种分解过程铝酸钠溶液的扩散与分解时间进行了实验研究。实验结果表明,不使用挡板的情况下种分槽内存在溶液“短路”现象;实验结果与数值模拟结果相吻合,证实了数值模拟程序的可靠性。
The seeded precipitation is a complex crystallization and mass transfer process and is one of the key steps in the Bayer process for the production of alumina. It has great influence on alumina product's outputs and quality and also has indirect effect on other procedures. Owing to the difference of the bauxite with foreign one, China has its own precipitation process. The study of the mechanics and dynamics of the precipitation with Chinese character is significant.
     In this paper, multi-fluid model of multi-phase flow in the seed precipitation process was built based on the detailed study of the precipitation process, equipment and theories for multi-phase fluid dynamics, computational fluid dynamics and transmission. The numerical simulation system of multi-phase flow in the precipitation process was developed based on the commercial software CFX4.3. The air-liquid two-phase flow of the seed precipitation process in two air-agitated tanks with different structures was numerical simulated in three dimensions. The results showed that the flow field had a direct effect on the solution mixing and sediment in air-agitated tanks, and the flow field in the tank using horn riser tube was better than that of in the tank using straight riser tube since the solution circulation was increased by using horn tube and disturbance was enhanced by lifting the secondary windpipe.
     Scalar transport model in the precipitation process was built and coupled with multi-fluid model, the numerical simulation program of solution diffusion and precipitation time was developed in this paper. The results illustrated that there was obviously short-circuiting in the tank using straight riser tube, and precipitation time is less comparing with the tank using horn tube.
     Experimental apparatus for water model was design and the solution diffusion and precipitation time experiments were carried out in it. Experimental data showed that there was short-circuiting in the tank without baffle plate. And the experiment results agreed well with simulation situation, which proved that the numerical simulation program was credible.
引文
[1]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1993
    [2]沈贤春,李旺兴。世界铝工业可持续发展分析[J].轻金属,2004,(1):3-7
    [3]曹异生,唐健.氧化铝工业现状及市场前景分析[J].世界有色金属,2003,(12):10-14
    [4]周国宝.略论发展我国氧化铝工业战略取向[J].世界有色金属,2004,(1):25-27
    [5]杨兵.铝工业与铝土矿资源的协调发展[J].有色金属工业,2004,(1):33-34
    [6]毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的发展[J],矿业研究与开发,2003,(S1):33-35
    [7]钮因健.对我国铝土矿资源和氧化铝工业发展的认识[J].轻金属,2003,(3):3-8
    [8]罗天骄,魏昶,黄孟阳等。世界铝工业的现状与发展[J].云南冶金,2004,33(1):42-46
    [9]程立,陈肖虎.制取砂状氧化铝时分解过程的数学模型[J].贵州工业大学学报(自然科学版),2002(5):22-24
    [10]W.J.Crama,J.Visser.Modeling and computer simulation of alumina trihydrate preciption[J].Light Metals,1994,73-78
    [11]谢雁丽,吕子剑.铝酸钠溶液晶种分解[M].北京:冶金工业出版社,2003
    [12]周辉放.铝酸钠溶液分解过程的一些理论和实践问题的综述[J].铝镁通讯,1997(3):23-27
    [13]山田兴一.氢氧化铝从铝酸钠溶液中析出反应过程中晶核的产生及凝聚[J].轻金属,1982(4):14-18
    [14]G.T.Pearson.The Chemical Background to the Aluminium industry[J].Royal Istitute of Chemistry.London,1955(3):27-28
    [15]J.Scott.Extractive Metallurgy ofAluminium[M].NewYork,1965,1:65-90
    [16]Misra C,E.T.White.Kinetics of crystallization of aluminium trihydroxide from seeded caustic aluminate solution[J].Chemical Engineering Progress Symposium Serial.1970,67(110):53-65
    [17]周辉放,杨重愚,陈光渊.铝酸钠溶液中不同粒度品种的附聚行为[J]。铝 镁通讯,1992,2(4):12-15
    [18]周辉放,杨重愚,陈光渊等.铝酸钠溶液中晶种附聚机理研究[J].有色金属,1994,46(4):54-58
    [19]IO.A.BOJIOXOB,王延明译.铝酸钠溶液中氢氧化铝二次结晶形成机理[J).轻金属.1990(4):9-16
    [20]邱竹贤.铝冶金物理化学[M].上海:上海科学技术出版社,1985
    [21]《联合法生产氧化铝》编写组.联合法生产氧化铝-分解与蒸发[M].北京:冶金工业出版社,1974
    [22]H.H.叶列明等。氧化铝生产过程与设备,王延明,阎鼎欧,杨重愚等译[M].北京:冶金工业出版社,1987
    [23]郭烈锦等。两相与多相流动力学[M].西安:西安交通大学出版社,2002
    [24]陈学俊.多相流热物理研究的进展[J].西安交通大学学报,1994,28(5):1-8
    [25]Thom A.The flow past circular cylinder at low speeds[J].Proceedings of Royal Society of London,1933,(A141):652-666
    [26]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of field with free surface[J].Phys.Fluids,1952,8:2182-2188
    [27]Gentry R A,Martin R E,Daly B J.An Eulerian differencing method for unsteady compressible flow problems[J].J Comp Phys,1966,1:87-93
    [28]Patankar S V,Spalding D B.A finite difference procedure for solving the equations of the two-dimensional boundary layer[J].Int J Heat Mass Transfer,1967,10:1389-1411
    [29]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].Int J Heat and Mass Transfer,1972,15:1787-1806
    [30]Thompson J F,Thames F C,Mastin C W.Automatic numerical generation of body-fitted curve linear coordinate system for field containing any number of arbitrary two-dimensional bodies[J].J Comput Phys,1974,15:299-319
    [31]周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究[D]。长沙:中南大学,2002
    [32]陈卓.铜闪速炉系统数值熔炼模型及反应塔炉膛内形在线仿真监测研究 [D].长沙:中南大学,2002
    [33]周乃君.基于风粉监测的煤粉锅炉燃烧工况动态仿真与操作优化专家系统研究[D].长沙:中南大学,2003
    [34]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [35]岑可法,樊建人.王程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1989
    [36]Spalding D B.Mathematical models of Continuous Combustion,Emission from Continuous Combustion Systems[J].Plenum Press,1972
    [37]Soo S L.Fluid Dynamics of Multiphase Systems.Blaisdell,1967
    [38]Spalding D B.Basic tow-phase flow modeling in reactor safety and oerformance[J].EPRI Workshop Proceedings,2,1980
    [39]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991
    [40]Owen P R.Pneumatic transport[J].J Fluid Mech,1969,39:407-432
    [41]Choi Y D,Chung M K.Analysis of turbulent gas-solid suspension flow in a pipe[J].ASME J of Fluid Eng,1983,105:329-339
    [42]Danon H,Wolfshten M,Hetsroni G[J].Int J Multiphase Flow,1977,3(2):223
    [43]Abou-Arab T W,Roco M C.Solid phase contribution in the two phase turbulent kinetic energy equation[J].ASME J Fluid Eng,1990,112:351-361
    [44]Chen C P,Wood P E.A turbulent closure model for dilute gas-particle flows[J].Can J Chem Eng,1985,63:349-360
    [45]Adeniji-Fashold A,Chen C P.Int J of Heat and Mass Transfer,1990,33:691-701
    [46]Pourahimadi F,Humprey J A C.Modelling solid-fluid turbulent flows with application to prediction erosive wear physical chemicat hydrodynamics[J].1983,4(3):191-219
    [47]Elghobash S E,Abou-Arab T W.A two-equation turbulent model for two-phase fluids[J].Phys Fluids,1983,26(4):931-938
    [48]Sinclair J L,Jackson R.Gas-particle flow in a vertical pipe with particle-particle interaction[J].AIChE J,1989,35(9):1473-1486
    [49]Mello T M,Diamond P H,Levine H.Hydrodynamic models of a granular shear flow.Phys Fluids[J],1911,A(3):2067
    [50]Chung M K,Sung H J.Computational study of turbulent gas-particle flow in a ventury[J].ASME J of Fluid Eng,1986,I08:248-253
    [51]Dasgupta S,Jackson R,Sundaresun S.Turbulent gas-particle flow in vertical risers[J].AIChE J,1994,110(2):215-288
    [52]梅炽.有色冶金炉窑仿真与优化[M]。北京:冶金工业出版社,2001
    [53]周力行.湍流气粒两相流动与燃烧的理论与数值模拟[M].北京:科学出版社,1994
    [54]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [55]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992
    [56]Wilcox D D.Turbulence Modelling for CFD[M].California:Griffin Printing,1993
    [57]Spicka P,Dias M M,Lopes J C B.Gas-liquid flow in a 2D column:Comparison between experimental data and CFD modeling[J].Chemical Engineering Science,2001,56:6367-6383
    [58]谭欣星.复杂区域气液两相湍流流动的数值模拟研究[D].西安:西安交通大学,2002
    [59]Spalding D B.The calculation of free-convection phenomena in gas-liquid mixtures[J].ICHMT Seminar.Dubrovnik:1976
    [60]Launder B E,Spalding D B.The numerical computation of turbulent flows[J].Comput Meth in Appl Mech Eng,1974,3:269-289
    [61]Moukalled F,Darwish M,Sekar B.A pressure-based algorithm for multi-phase flow at all speeds[J].J of Comput Phy,2003,190:550-571
    [62]Krishna R,Van Baten J M.Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J].Chemical Engineering Science,2001,56:6249-6258
    [63]Jayanta S,Sergio V,Shantanu R et al.Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J].Chermical Engineering Science,1999,54:5071~5083
    [64]Meier H F,Aires J J N,Mori M.Comparison between staggered and collocated grids in the finite-volume method performance for single and multi-phase flows[J] . Computers and Chemical Engineering, 1999, 23: 247-262
    [65] Martine-Bazan C, Montanes J L, Lasheras J C. On the breakup of an air bubble injected into a fully developed turbulent flow[J]. J Fluid Mech. 1999, 40: 157-182
    [66] Furukawa J, Fukano T. Effects of liquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow[J] . Int J of Multiphase Flow, 2001, 27: 1109-1126
    [67] Sato Y, Sadatomi M, Sekoguchi K. Momentum and heat transfer in two-phase bubble flow[J]. Int J of Multiphase Flow, 1981, 7 (2): 167-178
    [68] Podowski M Z, Anglart H. On the mechanistic modeling of non-bubbly two-phase flows[J]. Proc 33~(rd) National Heat Transfer Conference, Albuquerque, New Mexico, 1999
    [69] Anglart H, Podowski M Z. Fluid mechanics of Taylor bubbles and slug flows in vertical channels[J]. Nuclear Science and Engineering, 2002, 140 (2):165-171
    [70] Antal S P, Podowski M Z, Kurul N et al. The development of multidimensional modeling capabilities for annular flows[J]. 3rd International Conference on Multiphase Flow, ICMF' 98 Lyon, France, 1998
    
    [71] 刘大有.关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J].力学进展,1994,24(1):66~74
    
    [72] Thompson J F, Warsi Z U, Mastin C W. Boundary-fitted coordinate systems for numerical solution of partial differential equations[J]. Comp Phys, 1982, 47 (1): 1-108
    [73] Yu T Y, Soni B K, Shih M H. CAGI: Computer aided grid interface [J]. the 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995
    [74] Slotnik J P, KandulaM, Buning P G. Navier-Stokes simulation of the space shuttle launch vehicle flight transonic flow field using a large scale Chimera grid system[J] . the 12~(th) AIAA Applied Aerodynamics Conference, Colorado, 1994
    [75] Thompson J F, Weatherill N P. Aspects of numerical grid generation: current science and art[J]. the 11~(th) AIAA Applied Aerodynamics Conference,Monterey,1993
    [76]Zeeuw D De,Powell K G.An alternatively refined Cartesian mesh solver for the Euler equations[J].J of Comp Phys,1993,104:56-58
    [77]CFX4.3 User Documentation.AEA Technology Engineering Software Ltd.
    [78]Liovic P,Rudman M,Liow J L.Numerical modeling of free surface flows in metallurgical vessels[J].Second International Conference on CFD in the Minerals and Process Industries,CSIRO,Melbourne,Australia,1999
    [79]Zhang L,Cai K,Shen Y.Effect of interphase lift force on fluid flow in air stirred cylindrical vessel[J].Ironmaking and Steelmaking,2000,27(2):138-143
    [80]王文琪.两相流动[M].北京:水利电力出版社,1989
    [81]徐祥,向文国,秦成虎。流化床密相区流动特性的数值模拟[J].热能动力工程,2004,19(2):131-135
    [82]周亨达.工程流体力学[M].北京:冶金工业出版社,1988
    [83]佟庆理.两相流动理论基础[M].北京:冶金工业出版社,1982
    [84]白晓宁,胡寿根.固液两相流管道水力输送的研究进展[J].上海理工大学学报,1999,21(4):366-342
    [85]刘大有.关于颗粒悬浮机理和悬浮功的讨论[J].力学学报,1999,31(6):661-671
    [86]韩文亮,郜国明,惠遇甲.动水中非均匀沙沉降规律的试验研究[J].泥沙研究,1998,3:62-67
    [87]周智青,董履仁。水模型实验中示踪剂对停留时间测定的影响[J].钢铁研究,1999,2:14-16