YC6113柴油机噪声源识别及薄壁件低噪声结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力机械的辐射噪声取决于结构表面振动,通过控制振动来降低辐射噪声是机械工程师长期追求的目标。本文以YC6113柴油机为研究对象,对柴油机辐射噪声进行了全面系统的理论分析和试验研究。其主要研究内容和成果如下:
     首先在外特性下测试了发动机的整机噪声声压级,计算得到了声功率级。结果表明:在标定工况发动机的整机噪声声压级达到了97.21 dB(A)。测量结果表明:齿轮室面的噪声声压级明显高于其他测点,对整机噪声声功率级贡献最大;其次是进气侧、排气侧和顶面;飞轮侧的噪声值最低,对整机噪声的贡献最小。其次利用全声息技术和屏蔽消元法对发动机进气侧、排气侧、齿轮室侧以及顶面进行噪声源识别的测试,找出各个噪声辐射面噪声较大的地方。结果表明油底壳、齿轮室盖板以及缸盖罩等零部件辐射的噪声较大。
     针对油底壳、齿轮室盖板以及缸盖罩等薄壁零部件辐射噪声较大的试验结果,应用有限元法对上述三薄壁零部件进行了模态计算和低噪声结构优化。
     缸盖罩的模态计算表明其第四阶固有频率发生共振;因齿轮室盖板设计空间的限制,采用加筋和增加凸台的优化方案,优化后固有频率提高不多;对齿轮室盖板采用屏蔽措施。台架试验结果表明,屏蔽齿轮室盖板后发动机前端和整机噪声声压级在标定工况分别下降了1.40dB(A)和1.31dB(A)。
     油底壳模态计算表明,油底壳模态密集,整体刚度小;油底壳深底面、油底壳浅底面、油底壳侧面、油底壳浅底面以及连接深底面和浅底面的中间位置局部振动比较强烈。对上述四个部位采用增加冲压槽的优化方案,优化后一阶固有频率增加了17.4Hz,其它阶固有频率都有所增加。考虑到汽车在行驶中机油液面变化不能太大,油底壳增加了一块挡油板,并对挡油板进行低噪声结构优化。增加挡油板后固有频率进一步提高。试验结果表明,优化油底壳后柴油机在外特性转速下整机噪声声压级最大下降了0.56dB(A)。
     缸盖罩模态计算表明缸盖罩顶板的局部振动强烈,刚度最差,并且第八阶固有频率发生了共振。对顶板处采取了增加筋的宽度和筋的个数,并在顶板处增加迷宫盖板。增加筋的宽度和条数后固有频率有所提高;增加迷宫盖板后固有频率有所下降,但是其振动主要发生在迷宫盖板上,迷宫盖板对缸盖罩内部噪声有屏蔽作用。试验结果表明,优化缸盖罩后顶面和整机噪声最大下降了0.5dB(A)和0.54dB(A)。
     台架试验表明,通过以上方案的改进发动机噪声在标定工况整机噪声只有95.30dB(A),比原来降低了1.51dB(A),取得了良好的效果,达到了控制柴油机结构噪声辐射的目的。本文的研究方法,对现代发动机及其薄壁件低噪声结构设计具有重要的工程参考意义。
The radiated noise of the dynamical mechanism comes from its surface vibration. It is mechanical engine's aim to decrease the radiated noise through controlling vibration. This paper gives theoretic analyzed and experimental study to the radiated noise on YC6113.The main contents and productions are maintained as follow:
     This paper takes YC6113 diesel engine as research object. We first measure the pressure level of sound and acoustical power of the engine under the mode external characteristic. The study shows the whole pressure level of sound achieves 97.21 dB (A) at the demarcate point. The noise of gear is higher than other's, so it gives the most contribution to the noise of engine; The order of the noise from high to low are intake side, exhaust side and top side; the noise of flywheel is the lowest, it gives the least contribution to the noise of engine. Then we measure the intake side, exhaust side, gear and top side of the engine in order to identify the source of the noise, using the acoustic holography by electro beam scanning and shield technique, to find out where is the place the noise radiates extrusive. It is showed that the parts of oil pan, gear cover and valve mechanism cover give larger noise radiation.
     According to the experimentation, the shell components such as oil pan、gear cover and valve mechanism cover give larger noise radiation. Then using finite element method, we put up mode calculation and structure optimization to the shell components above-mentioned to decrease their radiated noise.
     The mode calculation of the gear cover shows that the fourth mode frequency is sympathetic vibration. On account of the limited space of gear cover, we only use the optimize method of adding rib and convexity, the inherence frequency optimized fore-and-aft increase few, the noise of the whole engine changes few too. After shielding the gear cover, the noise of the front-engine and the whole engine decrease 1.40dB(A) and 1.31 dB(A) respectively at the demarcate point.
     The mode calculation of the oil pan shows that the mode of oil pan is dense, the whole rigidity is small, vibration of the deep-underside、side face、shallow- underside of the oil pan, and the middle part which joint the deep-underside and the shallow- underside is strong. We use optimize method which adding punch trough to the four sides above-mentioned, the first inherence frequency increases 17.4Hz,other inherence frequency also increase. Considering the lubricating oil level can't fluctuate too intensively, we add a oil baffle-plate on the oil pan, and then optimize it. The inherence frequency increases farther after adding a oil baffle-plate. The experimentation result shows that the pressure level of sound of noise of the whole engine decreases 0.56 dB(A) at the demarcate point.
     The mode calculation of valve mechanism cover shows that vibration of the top-board of valve mechanism cover is intense, the rigidity is the worst, and the eighth inherence frequency arise sympathetic vibration. Then we take methods as increasing width and number of rib and adding labyrinth-board on the top-board. The inherence frequency increases after increasing width and number of rib, and the inherence frequency decreases after adding labyrinth-board. But vibration centralizes on the labyrinth-board. The noise of top side and the whole engine noise descend 0.5dB (A) and 0.54dB (A) respectively.
     Thought the amelioration of the scheme upwards, the noise of the whole engine is 95.30dB (A), which is 1.51dB (A) lower relative to the original engine, the effect is salience. It is feasible to control the noise of diesel engine by using structure optimization. It will have the reference meaning in the optimize design of the modern engine and its device.
引文
[1]盛美萍、王敏庆,噪声与振动控制技术基础,科学出版社,2001年08月第1版
    [2]周湧麟、李树珉,汽车噪声原理、检测与控制,中国环境科学出版社,1995年10月第1版
    [3]何渝生,汽车噪声控制,机械工业出版社,1995年10月第1版
    [4]周龙保,内燃机学,机械工业出版社,2005年10月第2版
    [5]管迪华,模态分析技术,清华大学出版社,1996年5月第1版
    [6]张志华、周松、黎苏,内燃机排放与噪声控制,哈尔滨工程学院出版社,1999年11月第1版
    [7]钱人一,车用发动机噪声控制,同济大学出版社,1997年9月第1版
    [8]方舟群等,噪声控制,北京出版社,1986年2月第1版
    [9]马大猷,噪声与振动控制工程手册,机械工业出版社,2002年4月第1版
    [10]E.C.Grover,N.Lalor.A Review of Low Noise Diesel Engine Design At I.S.V.R,Journal of Sound and Vibration,Volume 28(3),1973
    [11]N.Lalor,M.Petyt.Modes of Engine Structure Vibration as A Source of Noise,SAE 7502002
    [12]W.Clare.Shape Optimization of Engine Structure for Low Noise,Ph.D,University of Southampton,1988
    [13]张亮,袁兆成等,流固耦合有限元法用于油底壳模态计算,振动与冲击,2003(4),p100-102
    [14]Walter Zottin and Luis Miguel Valdes Lopez Mahle Metal Leve S.A Beatings Performance Simulation with Elasto-Hydrodynamic Lubrication(EHL)ModeI.SAE TECHNICAL PAPER SERIES E 2000-01-3299
    [15]傅志方、华宏星,模态分析理论与应用,上海交通大学,2000年7月第1版
    [16]杨连生等,内燃机设计,中国农机出版社,1981年8月第1版
    [17]R.R.Craig,M.C.C.Bampton,Coupling of substructttres for dynamics analyses,ATAA Journal,1968,6(7)1313-1319
    [18]H.Xu and G.J.Jones,S.Aoyama and K.Ushijima,Y.Okamoto and K.Kitahara.Simulation of Bearing Wear and Its Influence upon Bearing Performance Based on Easton hydro dynamic Analysis SAE 1999-01-1522
    [19]Hao Xu,Omar Mian and Derrick Parker The Impact of Axial Bearing Profile on Engine Bearing Performance SAE 2003-01-1387
    [20]Eberhardt,Privitzer Oil Pan Design Improvements Based on Finite Element Modal Analysis Results,SAE 951122
    [21]Rafat,Ali,Finite Element Study of a Composite Material Sump Pan of an IC Engine,SAE 950942,1995.
    [22]X.M.Zhang,Frequency analysis of submerged cylindrical shells with the wave propagation approach International Journal of Mechanical Sciences 44(2002)1259-1273
    [23]Kamura H,etal.Experimental study of the correction between crank shaft vibrations,engine 2 structure vibrations,and engine noise in high speed engines.SAE Paper 951290,1995.
    [24]Thomas Resch,Borislav Klarin,Analysis of Engine Dynamics Under Transient Run-Up Conditions SAE TECHNICAL PAPER SERIES2004-01-1454
    [25]K.J.Bathe and E.L.Wilson.Numerical Methods in Finite Element Analysis.Prentice-Hall,Inc,1976.
    [26]S.Cescoto and R.Charillier,Frictional Contact Finite Elements Based on Mixed Volitional Principles.International Journal for Numerical Method inEngineering.Vol.36 pp 1681-1701(1992)
    [27]陆晓军、梁杰,492Q发动机油底壳实验振动模态分析,中国公路学报,第14卷第1期
    [28]卞云龙,王丽,环境噪声污染对人体健康的影响。云南环境科学,Vol.18,No.4,1999
    [29]任文堂等,交通噪声及其控制,北京:人民交通出版社,1984
    [30]董岩等,减小内燃机薄壁部件表面振动响应的研究,小型内燃机与摩托车,2001(30),p5-8
    [31]王荣昌,应稼年,王文亮,结构优化设计中的灵敏度分析,振动与冲击,1996,15(1):p1-4
    [32]R.Southall,M.Trimm,Noise and Vibration Technology for the Perkins V6 HSDI Demonstration Engine,SAE,972004
    [33]陈秀娟,实用噪声与振动控制,北京:化学工业出版社,1996
    [34]韩松涛,内燃机油底壳辐射噪声的计算研究,汽车技术,2004(6),p15-17
    [35]Sybert A F,Hamilton D A,Hayes P A,Prediction of radiated noise from machine components using the BEM and the ray eight integral,Noise Control Engineering Journal,1998,46(3):p 1-6
    [36]刘月辉,郝志勇等.车用柴油机表面辐射噪声的研究[J]。汽车工程,2002,24(3);213-216.
    [37]M.F.Russell.Diesel Engine Noise Control at Source,SAE 8202238
    [38]张俊红,郭军华等.柴油机噪声源识别的研究[J].拖拉机与农用运输车.2004(5):12-13,17.
    [39]Beild.Christian.Noise on Small Capacity Spark Ignition Engines by Structure Optimization,Ph.D,Technische Universities Graz
    [40]葛蕴珊,李慧明等,柴油机中薄板部件的辐射噪声控制,内燃机工程,2004(1),p71-75
    [41]邓晓龙,张宗杰等,FEM/BEM方法预测发动机油底壳噪声辐射,华中科技大学学报(自然科学版),2003(5),p80-82
    [42]徐林玉,杨云,赵骞.汽车整车噪声源分析及降噪措施研究[J].天津汽车。2003(2),19-20.
    [43]Sergio Chiesaetal.Launch Vehicles Conceptual Design and Structural Analysis:an Integrated Approach via FEM.AircraftDesign.1999(2)
    [44]Scuba Yowl.The Role of Static and Dynamic Finite Element Analysis in Designing Low Noise Cylinder Blocks.SAE Paper 830251
    [45]Z.D.Yan,et al.Investigation on Thermal Loading of the High Speed Small Air-Cooled Diesel Engines.SAE Paper 911305
    [46]Zeneca Johannes all-In-cylinder Cold Flow Simulation Using a Finite Element Method.Computer Methods in Applied Mechanics andEngineering.2001(190):3069-3080
    [47]邓晓龙,张宗杰等,内燃机油底壳加强板声学优化,内燃机工程,2003(1),p47-50
    [48]王正兴,代会军,粘弹性阻尼材料在板结构中的优化计算,噪声与振动控制,2000(6),p18-22
    [49]桂洪斌,赵德有等,敷设粘弹性阻尼的加筋板振动和阻尼分析,中国造船,2002(3),p40-47
    [50]廖日东、左正兴等。发动机零部件有限元技术应用的新进展.内燃机学报.1999,17(2):p190-197
    [51]陈传森、黄云清等.有限元高精度理论.长沙:湖南科学技术出版社.1995.p4-37
    [52]陈屹,谢华,现代设计方法及其应用,北京:国防工业出版社,2004
    [53]吴炎庭,袁卫平,内燃机噪声振动与控制,北京::机械工业出版社,2005
    [54]韩松涛,内燃机的振动噪声控制及现代设计方法学研究[博士学位论文],天津大学,2002
    [55]张国忠主编,现代设计方法在汽车设计中的应用。沈阳:东北大学出版社,2002
    [56]蒋维铭,郑忠华,6105QA柴油机油底壳辐射噪声控制的实验研究,武汉工学院学报,1990,12(1):7-16
    [57]Leo.Alting.The Life Cycle Concept as a Basic for Sustainable Industrial Production.Annals of the CIRP.Vol42.No(1),1993.
    [58]Wang S Y,Sun Y,Gallagher R H,Sensitivity Analysis in Shape Optimization of Continuum Structures,Comp.and struck,1985,20:p855-867
    [59]Hafttka R R,Adlman H M,Recent Development in Structural Sensitivity Analysis,Structural Optimization I,Springer,New York,1989:p137-151
    [60]Bakshi P,Pandey P C.Analytical Response Sensitivity using Hybrid Finite Elements,Comp.and Struck.2000,70:p281-297