Banach空间中广义方程的迭代解法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究两类广义方程.首先,我们考虑如下广义方程问题:(p1)0∈f(x)+F(x),
     其中,X,Y是Banach空间.f:Ω(?)X→Y是单值函数,Ω是X中的开子集,F:X(?)2Y是具有闭图像的集值映射.其次我们考虑如下形式的广义方程:(p2) O∈T(x),
     其中,X是Banach空间,T:x(?)2x是图像为局部闭的集值映射.本文主要内容包含两部分:
     在第一部分中,特别是在第三章,我们引进并研究了当f是光滑函数,即f是Fr(?)chet可微的,并且f可用经典的线性化表示时.解决广义方程(P1)的高斯牛顿方法.我们给出了高斯-牛顿法的半局部和局部收敛性.更进一步,我们研究了当f是非光滑函数,即f不具有Fr(?)chet导数,并且f不具有经典的线性化表示时,解决广义方程(P1)的高斯-牛顿方法.同样给出了高斯-牛顿法的半局部和局部收敛性.
     在第二部分中,特别是在第四章,我们通过选取有界的下极限非零的常数序列{入κ},引进了解决广义方程(P2)的高斯型临近点算法.我们建立了该高斯型临近点算法的收敛准则,它保证了在一般的条件下:由该算法生成的序列的存在性及其收敛性.更精确的说.我们分析了当T是度量正则时,该高斯型临近点方法的半局部和局部收敛性.并且,我们研究了该算法的稳定性.
In this work, we deal with two types of generalized equations. Firstly, we consider the following generalized equation problem (P1)0∈f(x)+F(x), where X and Y are Banach spaces,f:Ω(?)X→Y is single-valued function,Ω is an open subset of X and F:X(?)2Y is set-valued mapping with closed graph, and secondly we consider the generalized equation of the following form (P2)0∈T(x), where X is a Banach space and T:X(?)2x is a set-valued mapping with locally closed graph. This work consists two parts and the main works we have done in this dissertation that are organized as follows.
     In the first part, particulaly in Chapter3, We introduce and study the Gauss-Newton method for solving the generalized equation (P1) when f is smooth function, that is, when f is Frechet differentiable and it can be expressed as a classical linearization. We provide here semilocal and local convergence of the Gauss-Newton method. Furthermore, we introduce and study the Gauss-Newton method for solving the generalized equation (P1) when f is nonsmooth function, that is, when f doesn't possess a Frechet derivative and the classical linearization of f is no longer available. We also present here semilocal and local convergence of the Gauss-Newton method.
     In the second part, specifically in Chapter4, we introduce the Gauss-type proximal point algorithm for solving the generalized equation (P2) by choosing a sequence of bounded constants{λk} which are away from zero. We establish the convergence criteria of the Gauss-type proximal point algorithm, which guarantees the existence and the convergence of any sequence generated by the algorithm under mild conditions. More precisely, semilocal and local convergence of the Gauss-type proximal point method are analyzed when T is metrically regular. We also study the stability properties of this algorithm.
引文
[1]Anh P.N., Muu L. D., Nguyen V. H., Strodiot J. J.:Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities, J. Optim. Theory Appl.,124 (2005) 285-306.
    [2]Aragon Artacho F. J., Dontchev A. L., Geoffroy M. H.:Convergence of the proximal point method for metrically regular mappings, ESAIM:Proceedings,17 (2007) 1-8.
    [3]Aragon Artacho F. J., Geoffroy M. H.:Uniformity and inexact version of a proximal point method for metrically regular mappings, J. Math. Anal. Appl.,335 (2007) 168-183.
    [4]Argyros I. K.:On a nonsmooth version of Newton's method based on Holderian assump-tions, International Journal of Computer Mathematics,84 (12) (2007),1747-1756.
    [5]Argyros I. K.:Advances in the Efficiency of Computational Methods and Applications, River Edge, NJ World Scientific,2000.
    [6]Argyros I. K., Hilout S.:Local convergence of Newton-like methods for generalized equa-tions, Appl. Math. and Comp.,197 (2008), pp.507-514.
    [7]Aubin J. P.:Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res.9 (1984),87-111.
    [8]Aubin J. P., Frankowska H.:Set-valued Analysis. Birkh(?)user, Boston,1990.
    [9]Auslender A., Teboulle M.:Lagrangian duality and related multiplier methods for vari-ational inequality problems, SIAM J. Optim.,10 (2000) 1097-1115.
    [10]Aze D.:A unified theory for metri.c regularity of multifunctions, Journal of Convex Analysis,13 (2) (2006),225-252.
    [11]Bauschke H. H., Burke J. V., Deutsch F. R., Hundal H.S., Vanderwerff J. D.:A new proximal point iteration that converges weakly but not in norm, Proc. Amer. Math. Soc. 133 (2005) 1829-1835.
    [12]Bonnans J. F.:Local analysis of Newton-type methods for variational inequalities and nonlinear programming, Appl. Math. Optim.,19 (1994),161-186.
    [13]Burdakov,O. P.:On some properties of Newton's method for solving smooth and non-smooth equations, Preprint, Universitfit Dresden, Germany, July 1991.
    [14]Burke J. V., Ferris M. C.:A Gauss-Newton method for convex composite optimization. Math. Program.71 (1995),179-194.
    [15]Dedieu J. P., Kim M. H.:Newton's method, for analytic systems of equations with con-stant rank derivatives. J. Complexity 18 (2002),187-209.
    [16]Dedieu J. P., Shub M.:Newton's method for overdetermined systems of equations. Math. Comp.69 (2000),1099-1115.
    [17]Dontchev A. L.:Local analysis of a Newton-type method based on partial linearization, Lectures in Applied Mathematics,32 (1996),295-306.
    [18]Dontchev A. L.:Local convergence of the Newton method for generalized equation. C. R. A. S Paris Ser.I 322 (1996),327-331.
    [19]Dontchev A. L.:The Graves theorem, revisited. J. Convex Anal.,3 (1996),45-53.
    [20]Dontchev A. L.:Uniform, convergence of the Newton method for Aubin continuous maps. Serdica Math. J.,22 (1996),385-398.
    [21]Dontchev A. L., Hager W. W.:An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc.,121 (1994),481-489.
    [22]Dontchev A. L., Rockafellar R. T.:Regularity and conditioning of solution mappings in variational analysis, Set-valued Anal.,12 (2004),79-109.
    [23]Dontchev A. L., Rockafellar R. T.:Ample parameterization of variational inclusions, SIAM J. Optim.,12 (2001), pp.170-187.
    [24]Dontchev A. L., Rockafellar R. T., Implicit functinos and solution mappings:A view from variational analysis, Springer Science+Business Media, LLC, New York,2009.
    [25]Dontchev A. L., Quincampoix and Zlateva M:Aubin criterion for metric regularity, J. Convex Anal.,13 (2) (2006),281-297.
    [26]Dontchev A. L., Lewis A. S., Rockafellar R.T.:The radius of metric regularity, Trans. AMS.,355 (2002) 493-517.
    [27]Eaves, B. C.:Computing stationary points, again, in O. L Mangasarian, R. R. Meyer, and S. M. Robinson (eds), Nonlinear Programming 3 Academic Press, New York,1978, pp,391-405.
    [28]Facchinei F., Pang J.-S.:Finite-Dimensional Variational Inequalities and Complemen-tarity Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2003.
    [29]Farouq N.:Pseudomonotone variational inequalities:convergence of proximal methods, J. Optim. Theory Appl.,109 (2001) 311-326.
    [30]Ferris M. C., Pang J. S.:Engineering and economic applications of complementarity problems. SIAM Rev., 39 (1997),669-713.
    [31]Ferris M. C.:Finite convergence of the proximal point algorithm, Math. Programming 50 (1991) 359-366.
    [32]Geoffroy M.H., Hilout S.,Pietrus A.:Acceleration of convergence in Dontchev'sitera-tive methods for solv-ing variational inclusions, Serdica Math. J. (2003),45-54.
    [33]Geoffroy M. H., Pietrus A.:A General Iterative Procedure for Solving Nonsmooth Gen-eralized Equations, J. Comp. Optim. Appl.,31 (2005),57-67.
    [34]Geremew W., Mordukhovich B. S., Nam N. M.:Coderivative calculus and metric regu-larity for constraint and variational systems, Nonlinear Analyis,70 (2009),529-552.
    [35]Harker P. T., Xiao, B.:Newton's method for the nonlinear complementarity problem:A B-differentiable equation approach, Math. Programming 48 (1990),339-357.
    [36]Haliout S., Pietrus A.:A semilocal convergence of the secant-type method for solving a generalised equations, Possitivity 10 (2006),693-700.
    [37]Han, S. P., Pang, J.-S., Rangaraj, N.:Globally convergent Newton methods for nons-mooth equations, Math. Operations Res.17 (1992),586-607.
    [38]Harker P. T., Pang, J.-S.:A damped-Newton method for the linear complementarity problem, in E. Altgower and K. Georg (eds), Computational Solution of Nonlinear Sys-tems of Equations, AMS Lectures on Applied Mathematics 26, American Mathematical Society, Providence, RI 1990,265-284.
    [39]He J. S., Wang J. H., Li C.:Newton's method for underdetemined systems of equations under the modified y-condition. Numer. Funct. Anal. Optim.,28 (2007),663-679.
    [40]Ioffe A. D.:Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk,55 (2000), no.3 (333) 103-162:English translation in:Russian Math. Surveys 55 (2000),501-558.
    [41]Ioffe A. D., Tikhomirov V. M.:Theory of extremal problems, Studies in Mathematics and its Applications, North-Holland, Amsterdam,1979.
    [42]Ip, C. M., Kyparisis, J.:Local convergence of quasi-Newton methods for B-differentiable equations, Math. Programming 56 (1992),71-89.
    [43]Iusem, A. N.:A generalized proximal point algorithm for the variational inequality problem in Hilbert space, SIAM J. Optim.8 (1998) 197-216.
    [44]Iusem A. N., Pennanen T., Svaiter B. F.:Inexact variants of the proximal point algo-rithm without monotonicity, SIAM J. Optim.,13 (2003),1080-1097.
    [45]Jean-Alexis C., Pietrus A.:On the convergence of some methods for variational inclu-sions, Rev. R. Acad. Cien. serie A. Mat.,102 (2) (2008),355-361.
    [46]Josephy N. H.:Newton's Method for Generalized Equations, Technical Summary Report No.1965, Mathematics Research Center, University of Wisconsin-Madison, June 1979; available from Online Information for the Defense Community, under Accession Number ADA077096.
    [47]Josephy N. H.:Quasi-Newton Methods for Generalized Equations, Technical Summary Report No.1966, Mathematics Research Center, University of Wisconsin-Madison, June 1979; available from Online Information for the Defense Community, under Accession Number:ADA077097.
    [48]Josephy N. H.:A Newton Method for PIES energy model, Technical Summary Report No.1971, Mathematics Research Center, University of Wisconsin-Madison, June 1979; Available from Online Defense Technical Information Center, under Accession Number ADA077102.
    [49]Josephy N. H.:Hogan's PIES example and lemke's algorithm, Technical Summary Re-port No.1972, Mathematics Research Center, University of Wisconsin-Madison, June 1979; Available from National Technical Information Service, Springfield, VA 22161, under Accession Number:ADA077103.
    [50]Kantorovich L. V., Akilov G. P.:Functional Analysis in Normed Spaces, Oxford:Perg-amon Press,1982.
    [51]Kaplan A., Tichatschke R.:Proximal point methods and nonconvex optimization, J. Global Optim.,13 (1998) 389-406.
    [52]Kaplan A., Tichatschke R.:Proximal-based regularization methods and succesive ap-proximation of variational inequalities in Hilbert spaces, Control and Cybernetics 31(3) (2002),521-544.
    [53]Kiwiel, K. C.:Proximal minimization methods with generalized Bergman function, SIAM J. Control Op-tim.35 (1997) 1142-1168.
    [54]Klatte D., Kummer B.:Nonsmooth equation in optimization:regularity, calculus, meth-ods and applications, Nonconvex optimization and its application,60 Dordrecht:Kluwer Academic Publishers,2002.
    [55]Kojima, M., Shindo, S.:Extension of Newton and quasi-Newton methods to systems of PC 1 equations, J. Oper. Res. Soe. of Japan 29 (1986),352-374.
    [56]Konnov I. V.:Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl.119 (2003) 317-333.
    [57]Kummer B.:Newton s method fort non-diferentiable functions, in Advances in Math-ematical Optimization, J. Guddat et al., eds., Akademi-Verlag, Berlin,1988,114-125.
    [58]Kummer B.:Newton's method based on generalized derivatives for nonsmooth functions: convergence analysis. In Systems Modelling and optimization, P. Kall (eds), Lecture Notes in Control and Inform. Sci. Vol.180, Springer-verlag 1992,3-16.
    [59]Kummer B.:Approximations of multifunctions and superlinear convergence, In Re-cent Development in Optimization, R. Durier and C. michelot (eds), Lecture Notes in Econom. and Math. Systems Vol.429, Springer-verlag 1995,243-251.
    [60]Li C., Zhang W. H., Jin X. Q.:Convergence and uniqueness properties of Gauss-Newton's method, Comput. Math. Appl.,47 (2004),1057-1067.
    [61]Li C., Wang X. H.:On convergence of the Gauss-Newton method for convex composite optimization. Math. Program. Ser. A 91 (2002),349-356.
    [62]Li C..Ng K. F.:Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization. SIAM J. Optim.,18 (2007),613-642.
    [63]Luque F. J.:Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control Optim.22 (1984) 277-293.
    [64]Mangasarian O. L.:Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J. Appl. Math.,31 (1976),89-91.
    [65]Marino G., Xu H. K.:Convergence of generalized proximal point algorithms, Commun. Pure Appl. Anal.,3(4) (2004),791-808.
    [66]Marinov R. T.:Convergence of the method of chords for solving generalized equations, Rendiconti del Circolo Matematico di Palermo 58 (2009),11-27.
    [67]Martinet B.:R(?)gularisation d'inequations variationnelles par approximations succes-sives, Rev. Fr. Inform. Rech. Oper.,3 (1970),154-158.
    [68]Mordukhovich, B. S.:Variational Analysis and Generalized Differentiation I:Basic Theory, Springer Berlin Heidelberg, New York,2006.
    [69]Mordukhovich B. S.:Sensitivity analysis in nonsmooth optimization:Theoretical As-pects of Industrial Design (D. A. Field and V. Komkov. eds.), SIAM Proc. Appl. Math.. 58 (1992),32-46.
    [70]Mordukhovich B. S.:Complete characterization of opennes, metric regularity, and Lip-schitzian properties of multifunctions, Trans. Amer. Math. Soc,340(1) (1993),1-35.
    [71]Mordukhovich B. S., Wang B.:Restrictive metric regularity in variational analysis, Nonlinear Analysis 63 (5-7) (2005),805-811.
    [72]Noor M. A.:Proximal methods for mixed variational inequalities, J. Optim. Theory Appl.115 (2002) 447-452.
    [73]Noor M. A., Akhter M., Noor K.I.:Inertial proximal methods for mixed quasi variational inequalities, Non-linear Funct. Anal. Appl.8 (2003) 489-496.
    [74]Noor M. A.:Some developments in general variational inequalities, Appl. Math. Corn-put.152 (2004) 199-277.
    [75]Pang, J,-S.:Newton's method for B-differentiable equations, Math. Open Res.15 (1990), 311-341.
    [76]Pang, J.-S.:Solution differentiability and continuation of Newton's method for varia-tional inequality problems over polyhedral sets, J. Optim. Theory Appt.66 (1)(1990), 121-135.
    [77]Pang, J.-S.:A B-differentiable equation-based, globally and locally quadratically con-vergent algorithm for nonlinear programs, complementarity and variational inequality problems, Math. Programming 51 (1991),101-132.
    [78]Pang, J-S.:Convergence of splitting and Newton methods for complementarity problems: an application of some sensitivity results, Math. Programming 58 (1993),149-160.
    [79]Pennanen T., Local convergence of the proximal point algorithm and multiplier methods without monotonicity, Math. Oper. Res.,27 (2002),170-191.
    [80]Penot J. P.:Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal.,13 (1989),629-643.
    [81]Pietrus A.:Does Newton's method for set-valued maps converges uniformly in mild differentiability context?, Rev. Colombiana Mat.,34 (2000),49-56.
    [82]Pietrus A.:Generalized equations under mild differentiability conditions, Rev. R. Acad. Cienc. Exact. Fis. Nat.,94 (1) (2000),15-18.
    [83]Qi, L.:Convergence analysis of some algorithms for solving nonsmooth equations. Math. Open. Res.,18 (1) 1993,227-244.
    [84]Qi, L., Sun, J.:A nonsmooth version of Newton's method, Math. Programming 58 (1993),353-367.
    [85]Ralph, D.:Global convergence of damped Newton's method for nonsmooth equations, Math. Oper. Res.,19 (2) 1994,352-389.
    [86]Rashid M. H., Yu S. H., Li C, Wu S. Y.:Convergence Analysis of the Gauss-Newton Method for Lipschitz-like Mappings, J. Optim. Theory AppL, Submitted.
    [87]Rashid M. H., Wang J. H., Li C.:Convergence Analysis of Gauss-type Proximal Point Method for Metrically Regular Mappings, J. Nonlinear Conv. Anal., Accepted.
    [88]Robinson S. M.:Generalized equations and their solutions, part I:basic theory, Math. Progamming Stud.,10 (1979),128-141.
    [89]Robinson S. M.:Generalized equations and their solutions, part II:applications to non-linear programming, Math. Programming Stud.,19 (1982),200-221.
    [90]Robinson S. M.:Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity, Math. Program. Studies,30 (1987),45-66.
    [91]Robinson S. M.:Extension of Newton's method to nonlinear functions with values in a cone, Numer. Math.,19 (1972),341-347.
    [92]Robinson, S. M.:Perturbed Kuhn-Tucker points and rates of convergence for a, class of nonlinear-programming algorithms, Math. Programming 7 (1974),1-16.
    [93]Robinson, S. M.:An implicit function theorem for a class of nonsmooth functions, Math. Oper. Res.,16 (1991) 292-309.
    [94]Robinson S. M.:Newton's method for a class of nonsmooth functions, Set-Valued Anal-ysis,2 (1994),291-305.
    [95]Robinson S. M.:Normal maps induced by linear transformations, Math. Oper. Res.,17 (1992),691-714.
    [96]Rockafellar R. T.:Lipschitzian properties of multifunctions, Nonlinear Anal.,9 (1984), 867-885.
    [97]Rockafellar R. T.:Augmented Lagrangians and applications of the proximal point algo-rithm in convex programming, Mathematics of Operation Research 1 (1976),97-116.
    [98]Rockafellar R. T.:Monotone operators and the proximal point algorithm, SIAM J. Control Optim.,14 (1976),877-898.
    [99]Rockafellar R. T., Wets R.:Variational Analysis, A Series of Comprehensive Studies in Mathematics, Vol.317, Springer, (1998).
    [100]Rockafellar R. T., Wets R. J.-B.:Variational Analysis, Springer-Verlag, Berlin,1997.
    [101]Solodov M. V., Svaiter B. F.:A hybrid projection-proximal point algorithm, J. Convex Anal.,6(1)(1999),59-70.
    [102]Solodov M. V., Svaiter B. F.:A hybrid approximate extragradient-proximal point al-gorithm using the enlargement of a maximal monotone operator, Set-Valued Anal.,7 (1999),323-345.
    [103]Spingarn J. E.:Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim.,4(1981/82),123-150.
    [104]Xiao B., Harker P. T.:A nonsmooth Newton method for variational inequalities: Theory-I, Math. Programming 65 (1994),151-194.
    [105]Xiu N., Zhang J.:On finite convergence of proximal point algorithms for variational inequalities, J. Math. Annl. Appl.,312 (2005) 148-158.
    [106]Xu X. B., Li C.:Convergence of Newton's method for systems of equations with con-stant rank derivatives. J. Comput. Math.25,705-718 (2007)
    [107]Xu X. B., Li C.:Convergence criterion of Newton's method for singular systems with constant rank derivatives, J. Math. Anal. Appl.,345 (2008),689-701.
    [108]Yamashita N., Fukushima M.:The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem, SIAM J. Optim.11 (2000) 364-379.
    [109]Yang Z., He B.:A relaxed approximate proximal point algorithm, Ann. Oper. Res.,133 (2005),119-125.
    [110]Wilson, R. B.:A simplicial algorithm for concave programming, Dissertation, Graduate School of Business Administration, Harvard University, Boston, MA.1963.