基于小波分析和相关向量机的非线性径流预报模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径流预报不仅是水资源研究领域中的一项重要内容,而且是水资源规划及综合开发利用、防洪抗旱、水利枢纽运行管理等重大决策问题的基本依据,对国民经济发展具有十分重要的意义。作为自然学科与技术科学领域内的一个研究热点,径流预报存在的主要难点在于预报精度较低,并且由于较少考虑水文系统不确定性,在实际工作中难以有效指导生产实践,国内外众多学者一直致力于研究能有效解决上述问题的各种方法。然而,水文系统是一个复杂的巨系统,其水文要素时空变化的高度非线性和不确定性使得问题的描述和模型的求解极为困难,至今缺乏令人满意的解决方法,亟待进一步发展新的理论并探索其技术实现方法。因此,径流预报先进理论与方法的研究始终是学术和工程界的研究前沿。本文通过对水文要素的非线性、历史数据误差和模型误差的不确定性分析,采用小波分析和相关向量机方法,对径流预报的理论与方法进行了深入研究。针对水文系统的非线性特征,研究并提出了Biased小波网络,并通过对自适应Metropolis算法的改进和基于相关向量机的不确定性分析方法的研究,建立了非线性径流预报模型。研究结论不仅证明了算法处理参数估计问题的有效性,而且体现了Biased小波网络处理非线性数据样本的能力及减少计算冗余的特点,显示了相关向量机处理不确定信息的优势,进一步发展了径流预报的理论。研究成果成功应用于凤滩和三峡流域径流预报工程实践,为水库优化运行和调度决策提供了科学依据。主要研究工作和创新性成果如下:
     针对小波变换的冗余问题,提出Biased小波网络(Biased Wavelet Neural Network,BWNN)结构及其学习算法。BWNN是一种自适应小波网络,其核心是利用Biased小波函数,根据不同的训练样本优化网络结构参数,减少计算冗余。基于梯度下降的网络学习算法,具有简单、清晰、有效的特点。通过对凤滩水库月径流预报的研究表明,BWNN能够克服陷入局部极小、引起振荡效应等问题,达到提高径流预报精度的目标,为非线性预报建模提供了一条有效的新途径。
     针对传统MCMC算法不能自适应地给出“建议分布”的问题,提出一种改进的MCMC算法(Improved Adaptive Metropolis,IAM)。IAM算法选取正态分布做为“建议分布”来实现对目标函数的取样,通过改进协方差的求解方法,加速了算法收敛速度,减少了不稳定因素,研究成果不仅丰富了MCMC理论,而且为径流频率预报问题的解决提供了有力的工具。
     建立基于IAM的径流量频率参数估计方法。结合径流频率预报中线型选择和参数估计问题,采用IAM算法对P-III型分布曲线进行参数估计。IAM算法不仅能够获得参数的后验分布等统计信息,而且可以使样本多样性得以丰富和保持,减少收敛于局部最优区域的可能性,提高参数估计的质量和计算速度。以凤滩水库年、最大旬径流量频率分析为应用背景,得到了满意的参数估计结果,能够反映与模型参数不确定性相关的频率预报范围,验证了算法的良好性能。
     建立基于相关向量机(Relevance Vector Machine,RVM)的径流预报不确定性研究框架。针对一般非线性预报方法较少考虑模型本身不确定性的问题,提出小波消噪、相关向量回归建模、基于IAM模型选择和递推循环多步预报的径流预报框架。该框架充分利用了相关向量机能够输出预测值分布、使用更少数量的相关向量和对核函数没有限制等特点,并且,通过提出有效的模型选择方法,实现了训练精度和模型复杂度的有效权衡。宜昌站日径流预报的应用实例表明,该模型不仅能够提供较好的预报结果,而且为后期调度决策提供了更多的信息,使得预报人员在决策中能够考虑预报的不确定性,定量地估计各种决策的风险和后果。
As one of the most important facets in water resources research, streamflow forecast not only plays the great role in national economy, but also is the basis for crucial decisions, such as water resources planning and its comprehensive utilization, flood control, and hydropower station operation. Since streamflow forecast is a tough topic in both science and technology research area, low forecast precision, and less concern of hydrology system uncertainty, are the main obstacles in streamflow forecast, which lead to difficulities in supervising engineering practice. Thereby researchers at domain and abroad are always dedicated to seeking for effective methods to solve above problems. However, hydrology system is a complex and huge system, and its high nonlinearity and uncertainty when changing in space and time make it hard to describe and resolve proposed models, which are lake of satisfying results so far and starve for new theories and technology. Consequently, the research of advanced theory and technology of streamflow forecast is a hot science topic all the time. Based on the ananlysis of nonlinear hydrology factors, and uncertain historical records and modeling, the thesis explores thorough streamflow forecast research by adopting modern nonlinear scientific techniques. Focusing on the built nonlinear streamflow forecast models, biased wavelet neural network, improved adaptive Metropolis algorithm, and uncertain research frame using relevance vector machine are put forward, which exhibit the performance of wavelet neural network in managing data samples amd reducing calculation redundancy, testify the validity of algorithm in parameter estimation, acquire the predominance of relevance vector machin in treating with uncertain information, and develop streamflow forecast theory. The research results are successfully applied in engineering practice of streamflow forecast in Fengtan and Three Gorges valleys, and supplies good references for hydropower optimal regulation and decision-makers. The study work and innovations are listed as follows:
     By studying the nonlinear modeling abilities of wavelet analysis theory and relevance vector machine, annual streamflow forecast model is established with the combination of wavelet analysis and AR, as the wavelet decomposition can reveal the details of streamflow time series and explore their evolving process and characteristics. The simulation results show that such coupled method supplies good forecasts results, which are also better than single AR. According to the application of wavelet theory into“Choangyang Water”, trends of the streamflow time series are detected. The uncertainty analysis capability of relevance vector machine is then validated by function regression example.
     Biased wavelet neural network (BWNN) and its corresponding learning algorithm are proposed for the purpose of dealing with the redundancy in wavelet transform. BWNN is an adaptive wavelet network constructed by biased wavelets, and the form of such wavelets can adapt to special applications during learning period, while not just regulate the parameters of fixed wavelets, which reduce the redundancy to certain extent. The presented learning algorithm based on gradient decent also holds the treats of simple, clarity and efficiency. When applied to month streamflow forecast of Fengtan reservoir, BWNN can not only reach the goal of increasing forecast precision, but also avoid falling into local minimum and arising oscillation, which furnishes a new effective approach to nonlinear forecast modeling.
     Aiming at resolving the issue of designing appropriate“proposal distribution”in Markov Chain Monte Carlo (MCMC), an improved adaptive Metropolis algorithm (IAM) is developed in the thesis. IAM selects normal density distribution to sample in objective function, and ameliorates the way of computing covariance matrix, which accelerate the algorithm convergence speed and lessen uncertainty factors influence. The achievements enrich the MCMC theory, and as well as provide a powerful tool for streamflow frequency forecast.
     Parameter estimation of Pearson-III distribution using IAM is brought forward to figure out the problems of curve selection and parameter estimation in streamflow frequency forecast. IAM can obtain certain useful statistical information such as posterior distribution of parameters. By keeping the richness of sample data, IAM is able to reduce the probability of converging at the local optimal area, which advances the quality and speed of final estimators. Based on the instances of annual and a period of ten days streamflow frequency calculation in Fengtan reservoir, satisfying results are obtained, and can reflect the forecast range related to uncertainty of model parameters, which simultaneously verify the better performance of IAM.
     The research frame of stramflow forecast uncertainty based on relevance vector machine (RVM) is established in allusion to the less attention of model uncertainty in most nonlinear forecast methods. With the analysis of components in streamflow time series, the frame is composed of wavelet denoising, RVM modeling, model selection based on IAM, and multi-step forecast by recursive calculation. The proposed frame avails of the prominent characteristics of RVM in outputting forecast distribution, using less relevance vectors, and confining no limitation to kernel function. Further more, the valid presented model selection method implements the trade-off between training precision and model complexity. The application to daily streamflow forecast of Yichan station indicated that, the frame is capable of supplying good forecast results, and the equipped uncertainty distribution offers more information for reservoir regulation decision, which redounds to quantitatively estimate different risks when concerning forecast uncertainty.
引文
[1]长江水利委员会主编.水文预报方法.水利电力出版社,1993
    [2]叶守泽,夏军.水文科学研究的世纪回牟与展望.水科学进展,2002,13(1):93~104
    [3]芮孝芳.中国的主要水问题及水文学的机遇.水利水电科技进展,1999,6:18~21
    [4]李中锋,刘昌明,杨志峰等.对我国水资源问题的哲学思考.科技导报,2002,(9):39~42
    [5]罗慧,苏正军,刘安麟等.基于复杂性的生态系统可持续演化特征分析.气象科技,2005,33(5):442~444
    [6]张学真,胡安众.水资源研究中的系统思维.水资源保护,2006,22(2):84~87
    [7]罗慧,万迪昉,刘旻.基于复杂性的黄土高原生态可持续发展的随机动态规划与博弈分析.管理工程学报,2004,18(2):49~54
    [8]俘春生,黄强,刘涵.复杂性诊断方法及其在水资源系统中的应用.系统仿真学报,2005,17(11):2649~2651
    [9]林三益.水文预报.北京:中国水利水电出版社,2001
    [10]范钟秀.中长期水文预报.南京:河海大学出版社,1999
    [11]赵人俊.流域水文模型的比较分析研究.水文,1989(6)
    [12] Kuczera G. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty.Water Resources Research,1983,19(5):1151~1162
    [13] Beven K.J.. Prophecy, reality and uncertainty in distributed hydrological modeling.Advances in Water Resources,1993,16(1):41~51
    [14]芮孝芳.流域水文模型研究中的若干问题.水科学进展,1997,8(1):94~98
    [15]夏军.水问题的复杂性与不确定性研究与进展.北京:中国水利水电出版社,2004
    [16] Wood E.F.. Analysis of the effects of parameter uncertainty in deterministic hydrologic models. Water Resources Research,1976
    [17] Beven K.J., Binley A.M.. The future of distributed models: Model calibration and uncertainty prediction.Hydrological Processes,1992,6(3):279~298
    [18] Uicens G.J..Bayesian approach to hydrologic time series modeling. Water Resources Research,1974
    [19]郭生练,李兰,曾光明.气候变化对水文水资源系统影响评价的不确定性分析.水文,1995,(6):8~14
    [20] Krzysztofowicz R.. Bayesian theory of probabilistic deterministic hydrologic model. Water Resources Research,1999,35 (9):2739~2750
    [21] Montanari A., Brath A.. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research,2004,40(1)
    [22] Vrugt J.A., Diks C G. H., Gupt H. V. et al.. Improved treatment of uncertainty in hydrologic modeling:Combining the strengths of global optimization and data assimilation. Water Resources Research,2005,41(1)
    [23]熊立华,郭生练.分布式流域水文模型.北京:中国水利水电出版社,2004
    [24] Gupta V.K., Sorooshian S.. The relationship between data and the precision of parameter estimates of hydrologic models. Journal of Hydrology,1985,81(1):55~77
    [25] Kuczera, G... On validity of first-order prediction limits for conceptual hydrological models.Journal of Hydrology,1988,103:229~247
    [26] Freer J., Beven A.M., Ambroise B.. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resources Research,1996,32(7):2161~2173
    [27] Franks S.W., Gineste P., Beven K.J. et al.. On constraining the prediction of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resources Research,1998,34(4):787~797
    [28] Krzysztofowicz R., J. Maranzano C.. Hydrologic uncertainty processor forprobabilistic stage transition forecasting. Journal of Hydrology,2004,293:57~73
    [29]朱伯承著.统计天气预报.上海:上海科学技术出版社,1981
    [30]黄嘉佑编著.气象统计分析与预报方法.北京:气象出版社,2000
    [31] Box G.E.P., Jenkins G.M.. Time series analysis: forecasting and control. SanFransciso:Holden-Day,1976
    [32]洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景.地球科学进展,1999,14(6):559
    [33]王振龙主编.时间序列分析.北京:中国统计出版社,2000
    [34]张恒喜,郭基联.小样本多元数据分析方法及应用.西安:西北工业大学出版社,2002
    [35]丁晶,邓育仁.随机水文学.成都:成都科技大学出版社,1988
    [36]卢华友,邵东国,郭元裕.丹江口水库径流长期预报研究.武汉水利电力大学学报,1996,29(6):6~10
    [37] Mohammad Karamouz, Banafsheh Zahraie.Seasonal streamflow forecastin using snow budget and El oscillation climate signals. Journal of Hydrological Engineering,2004,9(6):523~533
    [38] Marques C.A.F., Ferreira J.A., Castanheira J.M., et al..Singular spectrum analysis and forecasting of hydrological time series.Physics and Chemistry of the Earth,2006,31(18):1172~1179
    [39] Fang Liu, Jian-Zhong Zhou, Jun-Jie Yang et al.. The application of fuzzy system with recursive least squares method to mid and long-term runoff forecast. In: Proceedings of World Water and Environmental Resources Congress 2005. Anchorage, Alaska, USA. May 15~19, 2005. ASCE
    [40]方红,郑文瑞.径流预报的模糊神经网络方法.吉林大学学报(地球科学版),2004,34(10):80~82
    [41] Emery A., Coppolar Jr., Lucien Duckstein et al.. Fuzzy rule-based methodology for estimating monthly groundwater recharge in a temperate watershed. Journal of Hydrological Engineering,2002,7(4):326~335
    [42]陈守煜,王大刚.基于遗传算法的模糊优选BP网络模型及其应用.水利学报,2003,(5):116~121
    [43] C.T. Cheng, C.P. Ou, K. W. Chau. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. Journal of Hydrology,2002,72~86
    [44] Pao-Shan Yu, Tao-Chang Yang. Fuzzy multi-objective function for rainfall-runoff model calibration. Journal of Hydrology,2000,1~14
    [45] Chang F.J., Chen Y.C..A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction.Journal of Hydrology,2001,245(1):153~164
    [46]王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析.水科学进展,1994,5(2):87~94
    [47] Gregory B.P..Does the river run wild? Assesing chaos in hydrological system. Advances in Water Resources,1999,23(3):253~250
    [48] Liu Q., Islam S., Le Y..Phase-space analysis of daily streamflow: characterization and prediction.Advances in Water Resources,1998,21(6):463~475
    [49]张利平,王德智,夏军等.混沌相空间相似模型在中长期水文预报中的应用.水力发电,2004,33(11):5~11
    [50] B.Sivakumar, K.-K. Phoon, S.-Y. Liong et al.. A Systematic approach to noise reduction in chaotic hydrological time series. Journal of Hydrology,1999,219:109~135
    [51] S.Y. Liong, M.F.K. Pasha, C.D.Doan et al.. Determination of optimal and stable prediction parameters values in chaotic time series. World Water Congress 2001,ASCE
    [52] A. Elshorbagy, S.P. Simonvic, U.S. Panu. Noise reduction in chaotic hydrological time series: facts and douts. Journal of Hydrology,2002,256:147~165
    [53]王文,许武成.混沌时间序列可预报时间长度分析.河海大学学报(自然科学版),2004,32(4):367~371
    [54]王红瑞,宋宇,刘昌明等.混沌理论及在水科学中的应用与存在的问题.水科学进展,2004,15(3):400~407
    [55] A.H.加卢什金.阎平凡译.神经网络理论.北京:清华大学出版社,2002
    [56]杨建刚.人工神经网络实用教程.浙江:浙江大学出版社,2001
    [57] Fang Rengcun, Zhou Jianzhong, Liu Fang et al.. Short-term load forecasting using interval arithmetic backpropagation neural network . Proceedings of the fifth international conference on Machine Learning and Cybernetics,August 2006,Dalian
    [58]苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社,2002.7~8
    [59]屈亚玲,周建中,刘芳,杨俊杰,李英海.基于改进的Elman神经网络的中长期径流预报.水文,2006,26(1):45~50
    [60] Morlet J., Arens G.., Fourgeau et al.. Wave propagation and sampling theory and complex waves. Geophysics,1982,47(2):222~236
    [61] Mallat S.G.. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. PAMI,1989,(117):674~693
    [62]崔锦泰.程正兴译.小波分析导论.西安:西安交通大学出版社,1995
    [63] Mallat S.G..A wavelet tour of signal processing.San Diego:Academic Press,1999
    [64] Thuillard Marc.Wavelets in soft computing.Singapore:River Edge,N.J.:World Scientific,2001
    [65]杨福生.小波变换的工程分析与应用.北京:科学出版社,2003
    [66]林振山,邓自旺.子波气候诊断技术的研究.北京:气象出版社,1999
    [67] Wang Shenwen, Ding Jing. Wavelet network model and its application to the prediction of hydrology. Nature and Science,2003,1(1):66~70
    [68]王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社,2005
    [69] Paulin Coulibaly, Donald H.Burn. Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research,2004,40,1~14
    [70]王红瑞,叶乐天,刘昌明等.水文序列小波周期分析中存在的问题及改进方式.自然科学进展,2006,16(8):1002~1008
    [71] D. Labat, R. Ababou, A. Mangin. Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. Journal of Hydrology,2000,238,149~178
    [72]蒋晓辉,刘昌明,黄强.黄河上中游天然径流多尺度变化及动因分析.自然资源学报,2003,18(2):142~147
    [73]刘俊萍,田峰巍,黄强等.等基于小波分析的黄河河川径流变化规律研究.自然科学进展,2003,13(4):383~387
    [74]曹启辉,王文圣,汤成友.一种新的小波网络组合预测模型.人民长江,2006,37(11):65~67
    [75]万星,丁晶,张晓丽.小波神经网络在径流预测中的应用研究.人民黄河,2005,27(10):33~36
    [76] Zhang Q.H., Benvensite A.. Wavelet Networks. IEEE Transactions on Neural Networks,1992,3(6):889~898
    [77]徐晓霞,陈涛,王晓升.基于正交最小二乘的小波神经网络.电子学报,1998,20(5):604~610
    [78] Stephen A. Billings, Hua-Liang Wei. A new class of wavelet networks for nonlinear system identification. IEEE Transaction on Neural Networks,2005,16(4):862~874
    [79] Pasquale Daponte, Gianpaolo Mercurio, Sergio Rapuano. A wavelet network-based method for the digital telecommunication system monitoring. IEEE Transactions on Instrumentation and Measurement,2001,50(6):1773~1780
    [80] Yann C.H., Chao M.H.. Evolving wavelet networks for power transformer condition moritioring. IEEE Transactions on Power Delivery,2002,17(2):412~416
    [81]陈哲,冯天瑾.小波分析与神经网络结合的研究进展.电子科学学刊,2000,22(3):496~504
    [82]刘志刚,王晓茹,钱清泉.小波网络的研究进展与应用.电力系统自动化,2003,27(6):73~79
    [83] Zhang Jun, Welter G., Miao Y. et al. Wavelet neural networks for function learning.IEEE Trans. on Signal Processing,1995,43(6):1485~1497
    [84] Baskshi B.R, Stephanopoulous G.. Wave-net: A multiresolution, hiererchical neural network with localized learning.American Institute Chemical Engineer Journal,1993,39(1):57~81
    [85] Szu H., Telfer B., Kadambe S.. Neural network adaptive wavelets for signal representation and classification. Optical Engineering,1992,36(9):1907~1916
    [86] Roberto K.H.G., Takashi Yoneyama. A competitive wavelet network for signal clustering. IEEE Transactions on Systems, Man and Cybernetics- Part B,2004,34(2):1282~1288
    [87]刘芳,周建中,方仍存等.基于有偏小波网络的时间序列分析.计算机工程,2007,33(5):10~12
    [88]赵永龙,丁晶,邓育仁.相空间小波网络模型及其在水文中长期预测中的应用.水科学进展,1998,9(3):252~257
    [89] Fang Liu, Jian-Zhong Zhou, Jun-Jie Yang et al.. Biased wavelet neural network and its application to streamflow forecast. In: J. Wang et al. (Eds.): ISNN 2006. Lecture Notes in Computer Science, Vol. 3971. Springer-Verlag, Berlin Heidelberg New York (2006) 880~888
    [90] Valadimir N.Vapink著.许建华,张学工译.统计学习理论.北京:电子工业出版社,2004
    [91] Valadimir N.Vapink. The Nature of Statistical Learning Theory. N.Y: Springer-Verlag,1995
    [92] Vapnik V., Golowich S., Smola A.. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M.,Jordan M.,Petsche T.(eds.). Neural Information Processing Systems,MIT Press,1997
    [93]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32~42
    [94] T.B. Trafalis, Huseyin Ince. Support vector machine for regression and application on financial forecasting. Proceedings of International Joint Conference on NeuralNetworks 2000,348~353
    [95]张浩然,韩正之,李昌刚.基于支持向量机的非线性系统辨识.系统仿真学报,2003,15(1):119~121
    [96] Drucker H., Burges C., Kaufman L. et al.. Support vector regression machines. In: MozerM, JordanM , Petsche T(eds.). Neural Information Processing Systems,MIT Press,1997
    [97] Fabrice Rossi, Nathalie Villa.Support vector machine for functional data classification.Neurocomputing,2006,68(7):730~742
    [98]尉询楷,李应红,张朴等.基于支持向量机的时间序列预测模型分析与应用.系统工程与电子技术,2005,27(3):529~532
    [99] Nian She, Daniel Basketfield.Long range forecast of streamflow using support vector machine. Proceedings of EWRI 2005,ASCE
    [100] Mohammad S. K., Paulin Coulibaly. Application of support vector machine in lake water level prediction. Journal of Hydrological Engineering,11(3):199~205
    [101]张土乔,俞亭超.提高支持向量机洪水峰值预报精度研究.水力发电学报,2002,24(2):35~39
    [102] Pao S.Y., Shien T.C., I-Fan Chang. Support vector regression for real-time flood stage forecasting. Journal of Hydrology,2006,328(3):704~716
    [103]卢敏,张展羽.径流预测的支持向量机应用研究.中国农村水利水电,2006,(2):47~49
    [104]林剑艺,程春田.支持向量机在中长期径流预报中的应用.水利学报,2006,37(6):681~686
    [105] Grayman Walter M.. Editorial: Incorporating uncertainty and variability in engineering analysis. Journal of Water Resources Planning and Management,2005,5
    [106] Lucy Marshall, David Nott, Ashish Sharma. A comparative study of Markov Chain Monte Carlo method for conceptual rainfall-runoff modeling. Water Resources Research, 2004, Vol.40, W02501
    [107] M.Thiemann, M.Trosset, H.Gupta et al..Bayesian recursive parameter estimation for hydrologic models.Water Resources Research,2001,37(10)
    [108] TIPPING, M.E..The relevance vector machine. In: Proceedings of Advances in Neural Information Processing Systems 12,Cambridge,Mass: MIT Press. 2000,652~658
    [109] Christopher M.B., Miachel E. Tipping. Variation relevance vector machines. Uncertainty in Artificial Intelligence Processings,2000,46~53
    [110] Tipping M.E.. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research,2001,1(3):211~244.
    [111] Tipping M.E., Faul A..Fast marginal likelihood maximisation for sparse Bayesian models. In: Proceedings of the Ninth International Workshop on Social Intelligence Statistics,Key West,2003
    [112] Carl E.R., Joaquin Q.C.. Healing the relevance vector machine through augmentation. Proceedings of the 22th International Conference on Machine Learning,Bonn,Germany,2005
    [113] David P.W., Bhaskar D.R.. Sparse Bayesian learning for basis selection. IEEE Transaction On Signal Processing,2004,52(8):2153~2164
    [114] Shevarde S.K., Sundararajian S., Keerthi S.S.. Predictive approaches for sparse model learning. In: ICONIP 2004,Lecture Notes in Computer Science,2004,3316:434~439.
    [115] Nikolay Nikolaev, Peter Tino. Sequential relevance vector machine learning from time series. Proceedings of International Joint Conference on Neural Networks,Montreal,Canada,2005,1308~1313
    [116] Oliver Williams, Andrew Blake, Roberto Cipolla. Sparse Bayesian lerning for efficient visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1292~1304
    [117] S. Chen, S.R.Gunn, C.J. Harris. The relevance vector machine technique for channel equalization application. IEEE Transactions on Neural Networks,2001,12(6):1529~1532
    [118]王帅伟,麦永浩,杨辉华等.关联向量机及其在入侵检测中的应用探讨.成都信息工程学院院报,2005,20(3):270~274
    [119]孙宗海,孙优贤.关联向量机在微生物发酵传感器故障诊断中的应用.高校化学工程学报,2004,18(4):483~487
    [120]刘遵雄,张德运,孙钦东等.基于相关向量机德电力负荷中期预测.西安交通大学学报,2004,38(10):1005~1008
    [121] Fang Liu, Jian-Zhong Zhou, Jun-Jie Yang et al.. Nonlinear hydrological time series forecasting based on the relevance vector regression. In: Irwin King et al.(Eds.): ICONIP 2006. Lecture Notes in Computer Science, Vol. 4233. Springer-Verlag,Berlin Heidelberg,New York(2006):880~889
    [122]张旭东,陈峰,方廷建等.稀疏贝叶斯及其在时间序列预测中的应用.控制与决策,2006,21(5):585~588
    [123]路子赟,张旭东.基于稀疏贝叶斯学习的相关向量跟踪.仪器仪表学报,2005,26(8):387~391
    [124]郭齐胜,杨秀月,王杏林等.系统建模.北京:国防工业出版社,2006
    [125]佟春生,畅建霞,王义民.系统工程的理论与方法概论.北京:国防工业出版社,2005
    [126] Daubechies, I.. Ten Lecture Notes on Wavelets. Philadelphia:SIAM,1992
    [127]孙延奎.小波分析及其应用.北京:机械工业出版社,2005
    [128] Percival D.B., Andrew T.W..Wavelet methods for time series analysis. Cambridge:Press of the University of Cambridge,2000
    [129]王红瑞,叶乐天,刘昌明等.水文序列小波周期分析中存在的问题及改进方式.自然科学进展,2006,16(8):1002~1008
    [130]纪忠萍,谷德军,谢炯光.广州近百年来气候变化的多时间尺度分析.热带气象学报,1999,15(1):48~55
    [131] Jianqing Fan, Qiwei Yao. Nonlinear time series: nonparametric and parametricmethods. New York:Springer,2005
    [132] Holger Kantz, Thomas Schreiber. Nonlinear time series analysis. Cambridge:Cambridge University Press,1997
    [133] Pati Y C, Krishnaprasad P.S.. Analysis and synthesis of feedforward neural network using discrete affine wavelet. IEEE Trans. on Neural Networks,1993,4(1):73~75
    [134] Baskshi B.R, Stephanopoulous G... Wave-net: a multi resolution, hierarchical neural network with localized learning. American Institute Chemical Engineer Journal,1993,39(1):57~81
    [135] Nuding U., Zetzsche C.. Learning the selectivity of V2 and V4 neurons using non-linear multi-layer wavelet networks. BioSystems,2006,(11):1~7
    [136] Rafael C. G., Richard E. W.. Digital image processing. Second Edition,Academic Press,1999
    [137]李贤彬,丁晶,李后强.基于子波变换序列的人工神经网络组合预测.水利学报,1999,(2):1~4
    [138]金龙等.多步预测的小波神经网络模型.大气科学,2000,24(1):71~86
    [139]吕淑萍.小波网络建模预报方法研究及其在股市预测中的应用:[博士学位论文].哈尔滨工程大学图书馆,2004
    [140]吕伟杰.小波网络与多模型自适应控制理论的研究:[博士学位论文].天津大学图书馆,2002
    [141]朗方年,袁晓,周激流等.小波变换系数冗余性分析.自动化学报,2006,32(4):568~577
    [142] Charles K.C., Laura Montefusco, Luigia Puccio. Wavelets: theory, algorithms, and applications. San Diego:Academic Press,1994
    [143] Yuan X..Wavelet Lectures. Chengdu:School of Electric and Information,Sichuan University,2003
    [144] Cohen,A., Kovancevic, J..Wavelets: The mathematical background. Proc. IEEE,1996,84:514~522
    [145] Galvao R. K. H., Yoneyama Takashi, Rabello T. N.. Signal representation by Adaptive Biased Wavelet Expansions. Digital Signal Processing,1999,9:225~240
    [146] Galvao R. K. H., Yoneyama Takashi, Rabello T. N.. A competitive wavelet network for signal clusting. IEEE Transations on System, Man and Cybernetics,2004,34(2):1282~1288
    [147] Yacine Oussar, Gerard Dreyfus. Initialization by selection for wavelet network training. Neurocomputing,2000,(34):131~143
    [148]丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究-I相空间嵌入滞时的确定.水科学进展,2003,14(4):407-411
    [149]谢自银,刘九夫,张建云.P-III型分布次序统计量期望值数值计算.水文,2005,25(6):24~29
    [150]谢崇宝,袁宏源,郭元裕.P-III型理论频率曲线参数估计-模糊极值法.水文,1997,(3):1~8
    [151] SL 44-93.水利水电工程设计洪水计算规范
    [152]梁忠民,宁方贵,王钦钊.权函数水文频率分析方法的一种应用.河海大学学报,2001,29(4):95~98
    [153] Armando Brath, Alberto Montanari, Greta Moretti. Assessing the effect on flood frequency of land use change via hydrological simulation(with uncertainty). Journal of Hydrological,2006,324(1):141~153
    [154]王春霞,黄振平,马军建等.几种频率曲线稳健性初步研究.河海大学学报,(自然科学版),2004,32(4):380~383
    [155] Greenwood J.A., Landwehr J.M., Matalas N.C. et al. Probability-weighted moments: Definition and relation to parameters of distribution expressible in inverse form. Water Resources Research,1979,15(5):1049~1054
    [156]金光炎.水文频率分析述评.水科学进展,1999,10(3):319~327
    [157]金光炎.矩、概率权重矩与线性矩的关系分析.水文,2005,25(5):1~6
    [158]马秀峰.计算水文频率参数的权函数法.水文,1984,21:1~8
    [159] Key S.M.. Morden spectral estimation: Theory and Application. Englewood Cliffs,NJ:Prentice-Hall,1988
    [160] Daniel R.H.O.. Nonparametric Bayesian flood frequency estimation. Journal of Hydrology,313(2003),79~96
    [161]徐宗本.计算智能(第一册):模拟进化计算.北京:高等教育出版社,2004
    [162]梁忠民,丛树铮.水文频率分析中的一种贝叶斯方法.河海大学学报,1994,22(1):7~12
    [163]李向阳.水文模型参数优选及不确定性分析方法研究:[博士学位论文].大连理工大学图书馆,2005
    [164]张洪刚.贝叶斯概率水文预报系统及其应用研究:[博士学位论文].武汉大学图书馆,2005
    [165]茆诗松,王静龙,濮晓龙.高等数理统计.北京:高等教育出版社,1998
    [166] Metropolis N., Rosenbluth A.W., Rosenbluth M.N et al.. Equation of state calculations by fast computing machines. Joural of Chemical Physics,1951,21:1087~1092
    [167] Hastings W.K.. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika,1970,57:97~109
    [168] Walsh B. Markov Chain Monte Carlo and Gibbs sampling. University of Arizona,2002:1~24
    [169] Geweke J.. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo J.M. et. al.. Bayesian Statistics 4. Oxford University Press,1992:169~193
    [170]王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究.环境科学,2006,27(1):24~30
    [171] Heikki Haario, Eero Saksman, Johanna Tamminen. An adaptive Metropolis algorithm. Bernoulli 2001,7(2):223~242
    [172] Gilks W.R., Richardson S., Speieglhalter D.J... Markov Chain Monte Carlo in Practice. Chapman&Hall,1996
    [173] Tanner M.A.. Tools for Statistical Inference. Springer-Verlag,1993
    [174] Gelman A., Rubin D.B.. Inference from iterative simulation using multiple sequences. Statistics Science,1992,7(4):457~511
    [175]范金城,吴可法.统计推断导引.北京:科学出版社,2001
    [176] Beven K., Binley A.. The future of distributed models:model calibration and uncertainty. Hydrological processes,1992,6:279~298
    [177]刘光文.泛谈水文计算误差.水文,1992,(1)
    [178]刘光文.皮尔逊III型分布参数估计.水文,1990,(4)
    [179] Mingjun Zhong. A varational method for learning sparse Bayesian regression. Neurocomputing. 2006,68:2351-2355
    [180] Willams C.K.I.. Prediction with Gaussian processes: from linear regression to linear prediction and beyond learning in graphical models. MIT Press,1999
    [181] Mackay D.J.. Information theory, inference, and learning algorithms. Cambridge:Cambridge University Press,2003
    [182] Dempester A.P., Laird N., Rubin D.B.. Maximimam likelihood estimation from incomplete data via the EM algorithm. J. Roy Statist Soc. B.,1977,39:1~38