羧基功能化超顺磁性复合粒子的制备及其在免疫层析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超顺磁性的复合粒子在生物医学中的应用日趋深入、成熟。但在免疫检测中的应用,目前只集中在利用磁性复合粒子的磁性分离、富集、浓缩的功能上。而其本身具备的具有穿透性、高灵敏度的磁信号,却没有在生物检测中得到广泛深入的应用。原因之一就是现有的合成方式所制备的磁性复合粒子在尺寸大小、生物相容性、饱和磁化强度、胶体稳定性和标记效率等方面没有办法很好的兼顾,而且,作为较新的标记材料,在与原有的反应体系复合的时候需要进行相应的调整,才能形成有效的技术路线。
     本文通过制备新型Fe3O4/poly(St-co-MPS)/SiO2复合粒子,提高了粒子的稳定性,得到了尺寸合适、高磁化强度、高稳定性的复合粒子;随后,根据免疫检测的特点,对其表面进行了可控数量的羧基修饰,提高了生物相容性,通过系统的比对工作,确定了抗体偶联的调整条件,并针对免疫检测的两大类型:“夹心法”和“竞争抑制法”,进行了整体的匹配调整,改进了增速剂、封闭剂等条件,确定了针对不同样本(血液和尿液)检测的解决方案。
     最终制备的新型磁性复合粒子应用在对乙肝表面抗原和盐酸克伦特罗(瘦肉精)的检测中,达到了快速、高灵敏度的检测效果。并在国家指定的验证机构进行了严格的比对实验,分别达到了现有两个检测项目ELISA方法的灵敏度,而检测时间缩短至20分钟。从而确认了粒子制备和整个反应体系的有效性。
     总的来看,由此得到的技术路线,将快速免疫检测的灵敏度和可靠性大幅提高,也为目前这一领域所面临的技术瓶颈问题找到了解决办法,为其他纳米材料在生物检测方面的应用和相关基础研究提供了参考。
With the development of nanotechnology and biotechnology, many novel nano- materials are playing important roles in bio-assays as new labels. Because of their special characters, superparamagnetic composite particles are more and more widely used in immunoassays. However, most of these applications focus in separation, concentration and purification of analytes in specimens, while their penetrating and high-sensitive magnetic signal is seldom involved.
     As a rapid and simple detection method, the technology of lateral flow immunoassays (LFIAs) has gained wide acceptance in a variety of fields since its initial development in the 1990s. But because of the limits of the signal particles used in it, LFIAs can not be performed as a high sensitive assay. Thus, it limits the development of LFIAs in the past ten years. Recently, superparamagnetic LFIAs have suggested us a new way to approach more sensitive immunoassays. The signal can be detected“in”nitrocellulose membrane, not like optical absorbance labels, can just be detected“on”the membrane, because of the penetrability of magnetism. It can reduce the influence by membrane surface nonuniformity, and makes the assay more sensitive and reliable. Moreover, magnetism signal itself can’t be interfered by the color of test specimens, for example, whole blood and urine. Thus, some routine sample treatment courses, such as centrifugation of blood, extraction of urine, etc. can be avoided. And the test procedure is simplified.
     However, when we follow the routine procedures to prepare superparamagnetic composite particles, there are always some difficulties to give simultaneous considerations for the sizes, magnetism, stability, biocompatibility and labeling efficiency of the particles. These problems limit their applications on LFIAs. Furthermore, as a new signal labeling system, it has to be optimized thoroughly.
     Our studies took a different route to synthesize superparamagnetic composite particles to make them more suitable for LFIAs. First, Fe3O4/poly(St-co-MPS) composite particles were prepared by miniemulsion copolymerization of 3-trimethoxysilylpropylmeth- acrylate (MPS) and styrene(St). Subsequent growth of SiO2 layer by the conventional St?ber method allows the preparation of core-Shell superparamagnetic Fe3O4/poly(St-co-MPS)/SiO2 composite particles with controllable thickness of SiO2 shell. And then we made them carboxyl-functionalized on the surface with defined carboxyl density (MPs). The particles were highly magnetizable. And their saturation magnetization was as high as 45 emu/g at room temperature. Generally, they are sized-controlled, and has better biological compatibility, higher magnetism saturation, better condition tolerance, and more suitable for high sensitive magnetic LFIAs. The test signal can be read by superparamagnetic resonance reader (MAR, Quantum Design). Almost 100% of labeled analytes can be quantified through the whole thickness of membrane that makes the assay much more sensitive. Then, contents-controlled carboxyl groups were synthesized on particle surface. Finally, two surface-functionalized particles with high magnetism saturation and different carboxyl contents were achieved to study the improvement of labeling efficiency and detection sensitivity in next step.
     In chapter 3, we take human chorionic gonadotropin (hCG) detection as a model to study the application of magnetic composite particles we made and the optimization of the new system. The proper reaction time was determined as 20 minutes. Secondly, we regulated the surfactant and its working concentration for the system; Thirdly, the comparison on labeling efficiency and influence on sensitivity between two surface-functionalized particles with different carboxyl contents was done. The proper carboxyl content was determined. At last, the stability of the system was demonstrated by“aging process”.
     In chapter 4, we take human hepatitis surface antigen (HBsAg) detection as a sample to evaluate our novel particles for“sandwich”magnetic LFIAs. PreS1 antigen was introduced into the preparation of monoclonal antibody against HBsAg to improve the specificity of the assay. Secondly, we added EDTA into the system to reduce the non-specific reaction during the assay. Finally we prepared our new magnetic LFIAs strips for HBsAg. And we assessed them by national standard specimens, the sensitivity was equal to ELISA kit, but with shortened test time of 20 minutes. Then, we performed clinical assessment at officially certificated sites, Beijing 302 hospital and Beijing Ditan hospital. Totally 849 serum samples were tested by our strips, and simultaneously compared with ELISA kits from Abbott, US and Kehua, China. Eventually, our strips reached the sensitivity of 100%, specificity of 99.2% and 99.9% of accuracy. These results are much better than other rapid LFIAs.
     In chapter 5, we take Clentuterol detection as a sample to develop“competitive inhibition”magnetic LFIAs strips by our novel particles. First, we synthesized BSA-clenbuterol antigen to improve the specificity of the assay. Second, we used new blockers to reduce the interference of related compounds in urine specimens. And the stability of the system was enhanced. For the final magnetic LFIAs strips for clenbuterol we made after the optimizations, we tested them by national standard sample. The sensitivity was 0.5g/L, equal to ELISA kit, but with shortened test time of 20 minutes. The assessment on testing swine urine was performed at Shenzhen Entry-Exit Inspection and Quarantine Bureau. Totally 107 samples were tested, and compared with colloidal gold LFIAs strips from Zhongde Biotech. Randox ELISA kit was taken as the judgment . The sensitivity of our strips was 100%, better than colloidal gold LFIAs system.
     After all the works we did, the novel superparamagnetic composite particles we made were demonstrated as a suitable material for magnetic LFIAs, both in“sandwich”and“competitive inhibition”types. And all the related optimizations can also be a useful reference for the development of other magnetic LFIAs. Moreover, some results and phenomenon we got in the study are good points for theoretical researches in the relationship between nano-materials and bio-molecules.
引文
[1] FEYNMAN R P. Plenty of room at the bottom[C]. Proceedings of the American Physical Society Conference, Pasadena, 1959.
    [2] MAZZOLA L. Commercializing nanotechnology[J]. Nature Biotechnology, 2003,21(10): 1137-1143.
    [3] AITKEN R, CHAUDHRY M, BOXALL A, et al. Manufacture and use of nanomaterials : current status in the UK and global trends[J]. Occupational Medicine, 2006,56(5): 300.
    [4] SANGUANSRI P, AUGUSTIN M. Nanoscale materials development-a food industry perspective[J]. Trends in Food Science and Technology, 2006,17(10): 547-556.
    [5] OSMAN T, RARDON D, FRIEDMAN L, et al. The commercialization of nanomaterials: Today and tomorrow[J]. JOM Journal of the Minerals, Metals and Materials Society, 2006,58(4): 21-24.
    [6] SCHMID K, RIEDIKER M. Use of nanoparticles in Swiss industry: a targeted survey[J]. Environmental Science and Technology , 2008,42(7): 2253-2260.
    [7] WIESNER M, LOWRY G, ALVAREZ P, et al. Assessing the risks of manufactured nanomaterials[J]. Environmental science & technology, 2006,40 (14): 4336-4345.
    [8] HERMAN W, MARLOWE D, RUDOLPH H. Future trends in medical device technology: Results of an expert survey[J]. Rockville, MD: Food and Drug Administration, 1998.
    [9] MOZAFARI M. Nanomaterials and nanosystems for biomedical applications[M]. Springer Verlag, 2007.
    [10] KATZ E, WILLNER I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications[J]. Angewandte Chemie International Edition International Edition, 2004,43(45): 6042-6108.
    [11] MOHANPURIA P, RANA N, YADAV S. Biosynthesis of nanoparticles: technological concepts and future applications[J]. Journal of Nanoparticle Research, 2008,10(3): 507-517.
    [12] WHITESIDES G. The'right'size in nanobiotechnology[J]. Nature Biotechnology, 2003,21(10): 1161-1165.
    [13] PANKHURST Q, CONNOLLY J, JONES S, et al. Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics-London-D Applied Physics, 2003,36(13): 167-181.
    [14] PARAK W, GERION D, PELLEGRINO T, et al. Biological applications of colloidal nanocrystals[J]. Nanotechnology, 2003,14: R15-R27.
    [15]杨文胜,高明远,白玉白.纳米材料与生物技术[M].北京:化学工业出版社. 2005.
    [16] TATON T. Nanostructures as tailored biological probes[J]. Trends in Biotechnology, 2002,20(7): 277-279.
    [17] GANGOPADHYAY S, HADJIPANAYIS G, DALE B, et al. Magnetic properties of ultrafine iron particles[J]. Physical Review B, 1992,45(17): 9778-9787.
    [18] HYEON T. Chemical synthesis of magnetic nanoparticles[J]. Chemical Communications (Cambridge, England) , 2003,(8): 927-934.
    [19] HYEON T, LEE S S, PARK J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J]. Journal of the American Chemical Society, 2001,123(51): 12798-12801.
    [20] STEVENS P D, LI G, FAN J, et al. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions[J]. Chemical Communications (Cambridge, England) , 2005,(35): 4435-4437.
    [21] PUNTES V F, KRISHNAN K M, ALIVISATOS A P. Colloidal nanocrystal shape and size control: the case of cobalt[J]. Science, 2001,291(5511): 2115-2117.
    [22] SUN S, MURRAY C, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000,287(5460): 1989.
    [23] SUN S, ANDERS S, HAMANN H, et al. Polymer mediated self-assembly of magnetic nanoparticles[J]. Journal of the American Chemical Society 2002,124(12): 2884-2885.
    [24] ANDERS S, TONEY M, THOMSON T, et al. X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies[J]. Journal of Applied Physics, 2003,93: 6299.
    [25] SUN S, MURRAY C. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited)[J]. Journal of Applied Physics, 1999,85: 4325.
    [26] CHENG F, SU C, YANG Y, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005,26(7): 729-738.
    [27] KANG Y, RISBUD S, RABOLT J, et al. Synthesis and Characterization of Nanometer-Size Fe3O4 and [gamma]-Fe2O3 Particles[J]. Chemistry of Materials, 1996,8(9): 2209-2211.
    [28] FRIED T, SHEMER G, MARKOVICH G. Ordered two-dimensional arrays of ferrite nanoparticles[J]. Advanced Materials, 2001,13(15): 1158-1161.
    [29] YU W W, FALKNER J C, YAVUZ C T, et al. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts[J]. Chem Commun (Camb), 2004,(20): 2306-2307.
    [30] SI H, ZHOU C, WANG H, et al. Controlled synthesis of different types iron oxides nanocrystals in paraffin oil[J]. Journal of Colloid and Interface Science, 2008,327(2): 466-471.
    [31] PEREZ J, QUINTELA M, MIRA J, et al. Advances in the preparation of magnetic nanoparticles by the microemulsion method[J]. Journal of Physical Chemistry B, 1997,101(41): 8045-8047.
    [32] WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437(7055): 121-124.
    [33] CHEN X, DENG Z, LI Y, et al. Hydrothermal synthesis and superparamagnetic behaviors of a series of ferrite nanoparticles[J]. Chinese Journal of Inorganic Chemistry, 2002,18(5): 460-464.
    [34] YANG C, WANG G, LU Z, et al. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles[J]. Journal of Materials Chemistry, 2005,15(39): 4252-4257.
    [35] NEVEU S, BEE A, ROBINEAU M, et al. Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid[J]. Journal of Colloid and Interface Science, 2002,255(2): 293-298.
    [36] JANA N, CHEN Y, PENG X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach[J]. Chemistry of Materials, 2004,16(20): 3931-3935.
    [37] LI Z, SUN Q, GAO M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4[J]. Angewandte Chemie International Edition International Edition, 2005,44: 123-126.
    [38] LOPEZ-QUINTELA M. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control[J]. Current Opinion in Colloid & Interface Science, 2003,8(2): 137-144.
    [39] ZHANG J, POST M, VERES T, et al. Laser-Assisted Synthesis of Superparamagnetic Fe-Au Core-Shell Nanoparticles[J]. Journal of Physical Chemistry B, 2006,110(14): 7122-7128.
    [40] BAO J, CHEN W, LIU T, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation[J]. ACS Nano, 2007,1(4): 293.
    [41] GUPTA A, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005,26(18): 3995-4021.
    [42] GUAN N, LIU C, SUN D, et al. A facile method to synthesize carboxyl-functionalized magnetic polystyrene nanospheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,335(1-3): 174-180.
    [43] MA I, LOBB E, BILLINGHAM N, et al. Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study[J]. Macromolecules, 2002,35(25): 9306-9314.
    [44] BANERJEE S, CHEN D. Glucose-grafted gum arabic modified magnetic nanoparticles: Preparation and specific interaction with concanavalin A[J]. Chemistry of Materials, 2007,19(15): 3667-3672.
    [45] TURAL B, ZKAN N, VOLKAN M. Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates[J]. Journal of Physics and Chemistry of Solids, 2009,70(5): 860-866.
    [46] PORTET D, DENIZOT B, RUMP E, et al. Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: Effect of different bisphosphonate coatings[J]. Drug Development Research, 2002,54(4): 173-181.
    [47] NARAIN R, GONZALES M, HOFFMAN A, et al. Synthesis of monodisperse biotinylated p (NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin[J]. Journal of the American Chemical Society, 2004,126: 9938-9939.
    [48] TOPRAK M, MCKENNA B, MIKHAYLOVA M, et al. Spontaneous assembly of magnetic microspheres[J]. Advanced Materials, 2007,19(10): 1362-1368.
    [49] MACKOVA D, BENES M. Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations[J]. Journal of Separation Science, 2007,30(11).
    [50] GOMEZ-LOPERA S, PLAZA R, DELGADO A. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles[J]. Journal of Colloid and Interface Science, 2001,240(1): 40-47.
    [51] YU S, CHOW G. Carboxyl group (-COOH) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications[J]. Journal of Materials Chemistry, 2004,14(18): 2781-2786.
    [52] M?LLER-SCHULTE D, SCHMITZ-RODE T, BORM P. Ultra-fast synthesis of magnetic and luminescent silica beads for versatile bioanalytical applications[J]. Journal of Magnetism and Magnetic Materials, 2005,293(1): 135-143.
    [53] GAO J, LI L, HO P, et al. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood[J]. Advanced Materials, 2006,18(23): 3145-3148.
    [54] GUO J, YANG W, WANG C, et al. Poly (N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications[J]. Chemistry of Materials, 2006,18(23): 5554-5562.
    [55] WU J, YE Z, WANG G, et al. Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging[J]. Talanta, 2007,72(5): 1693-1697.
    [56] CHANG Q, ZHU L, YU C, et al. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles[J]. Journal of Luminescence, 2008,128(12): 1890-1895.
    [57] LIN Y, WU S, HUNG Y, et al. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous[J]. Chemistry of Materials, 2006,18(22): 5170-5172.
    [58] KOOLE R, VAN SCHOONEVELD M, HILHORST J, et al. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging[J]. Bioconjugation Chemistry, 2008,19(12): 2471-2479.
    [59] MARKOWITZ M, SCHOEN P, KUST P, et al. Surface acidity and basicity of functionalized silica particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,150(1-3): 85-94.
    [60] KRIESEL J, TILLEY T. Synthesis and chemical functionalization of high surface area dendrimer-based xerogels and their use as new catalyst supports[J]. Chemistry of Materials, 2000,12(4): 1171-1179.
    [61] QHOBOSHEANE M, SANTRA S, ZHANG P, et al. Biochemically functionalized silica nanoparticles[J]. the Analyst, 2001,126(8): 1274-1278.
    [62] SANTRA S, ZHANG P, WANG K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers[J]. Analytical Chemistry, 2001,73(20): 4988-4993.
    [63] HILLIARD L, ZHAO X, TAN W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies[J]. Analytica Chimica Acta, 2002,470(1): 51-56.
    [64] ZHAO X, BAGWE R, TAN W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion[J]. Advanced Materials, 2004,16(2): 173-176.
    [65] BAGWE R, HILLIARD L, TAN W. Surface modification of silica nanoparticles to reduce aggregation and non-specific binding[J]. Langmuir, 2006,22(9): 4357.
    [66] VO-DINH T. Nanotechnology in biology and medicine: methods, devices, and applications[M]. CRC Press, 2007.
    [67] HERMANSON G. Bioconjugate techniques[M]. Academic Press, 2008.
    [68] KOBAYASHI H, BRECHBIEL M. Nano-sized MRI contrast agents with dendrimer cores[J]. Advanced Drug Delivery Reviews, 2005,57(15): 2271-2286.
    [69] HU F, WEI L, ZHOU Z, et al. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J]. Advanced Materials, 2006,18(19): 2553-2556.
    [70] JU S, TENG G, ZHANG Y, et al. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood[J]. Magnetic Resonance Imaging, 2006,24(5): 611-617.
    [71] HUH Y, JUN Y, SONG H, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals[J]. Journal of the American Chemical Society, 2005,127(35): 12387-12391.
    [72] LI J, GE J, YIN Y, et al. Multiplexed affinity-based protein complex purification[J]. Analytical Chemistry, 2008,80(18): 7068.
    [73] HUBBUCH J, THOMAS O. High-gradient magnetic affinity separation of trypsin from porcine pancreatin[J]. Biotechnology and Bioengineering, 2002,79(3): 301-313.
    [74] MEDINA F, SEGUNDO C, SALCEDO I, et al. Purification of human lamina propria plasma cells by an immunomagnetic selection method[J]. Journal of Immunological Methods, 2004,285(1): 129-135.
    [75] LIU X, GUAN Y, YANG Y, et al. Preparation of superparamagnetic immunomicrospheres and application for antibody purification[J]. Journal of Applied Polymer Science, 2004,94(5): 2205-2211.
    [76] DOYLE P, BIBETTE J, BANCAUD A, et al. Self-assembled magnetic matrices for DNA separation chips[J]. Science, 2002,295(5563): 2237.
    [77] CORCHERO J, VILLAVERDE A. Biomedical applications of distally controlled magnetic nanoparticles[J]. Trends in Biotechnology, 2009.
    [78] ELAISSARI A. Colloidal biomolecules, biomaterials, and biomedical applications[M]. CRC, 2004.
    [79] LIBERTI P, RAO C, TERSTAPPEN L. Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood[J]. Journal of Magnetism and Magnetic Materials, 2001,225(1-2): 301-307.
    [80] CLAYTON A. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry[J]. Journal of Immunological Methods, 2001,247(1-2): 163-174.
    [81] BARLETTA J, BARTOLOME A, CONSTANTINE N. Immunomagnetic quantitative immuno-PCR for detection of less than one HIV-1 virion[J]. Journal of Virological Methods, 2009,157(2): 122-132.
    [82] LEE J, DEININGER R. Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence[J]. Luminescence, 2004,19(1): 31-36.
    [83] GEHRING A, GERALD CRAWFORD C, MAZENKO R, et al. Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium[J]. Journal of Immunological Methods, 1996,195(1-2): 15-25.
    [84] YAZDANKHAH S. Development and evaluation of an immunomagnetic separation-ELISA for the detection of Staphylococcus aureus thermostable nuclease in composite milk[J]. Veterinary Microbiology, 1999,67(2): 113-125.
    [85] HERRMANN M, VERES T, TABRIZIAN M. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA[J]. Lab on a Chip, 2006,6(4): 555-560.
    [86] GEHRING A, IRWIN P, REED S, et al. Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157: H7[J]. Journal of Immunological Methods, 2004,293(1-2): 97-106.
    [87] LU C, HUNG Y, HSIAO J, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling[J]. Nano Letters, 2007,7(1): 149-154.
    [88] PAMME N, MANZ A. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates[J]. Analytical Chemistry, 2004,76(24): 7250-7256.
    [89] MILLEN R, KAWAGUCHI T, GRANGER M, et al. Giant magnetoresistive sensors and superparamagnetic nanoparticles: A chip-scale detection strategy for immunosorbent assays[J]. Analytical Chemistry, 2005,77(20): 6581-6587.
    [90] CHOI J, OH K, THOMAS J, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities[J]. Lab on a Chip, 2002,2(1): 27-30.
    [91] KALAMBUR V, LONGMIRE E, BISCHOF J. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles[J]. Langmuir, 2007,23(24): 12329-12336.
    [92] ARIAS J, LóPEZ-VIOTA M, LóPEZ-VIOTA J, et al. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment[J]. International Journal of Pharmaceutics, 2009,382(1): 270-276.
    [93] DOBSON J. Magnetic nanoparticles for drug delivery[J]. Drug Development Research, 2006,67(1): 55-60.
    [94] JIN S, YE K. Nanoparticle-mediated drug delivery and gene therapy[J]. Biotechnology Progress, 2008,23(1): 32-41.
    [95] GAO X, YU K, TAM K, et al. Colloidal stable silica encapsulated nano-magnetic composite as a novel bio-catalyst carrier[J]. Chemical Communications, 2003,2003(24): 2998-2999.
    [96] ROITT I. Essential immunology[M]. London, Blackwell Scientific Publications, 1992.
    [97] SONVICO F, DUBERNET C, COLOMBO P, et al. Metallic colloid nanotechnology, applications in diagnosis and therapeutics[J]. Current Pharmaceutical Design, 2005,11(16): 2091-2105.
    [98] CARNEY J, BRAVEN H, SEAL J, et al. Present and future applications of gold in rapid assays[J]. IVD Technology, 2006,5: 41.
    [99] BEGGS M, NOVOTNY M, SAMPEDRO S, et al. A selfperforming chromatographic immunoassay for the qualitative determination of human chorionic gonadotrophin (HCG) in urine and serum[J]. Clinical Chemistry, 1990,36(11): 1084-1085.
    [100]蒋先敏,孔健,林涛,等.甲胎蛋白胶体金诊断试剂临床应用研究[J].中华流行病学杂志, 2003,24(3): 210-212.
    [101] PYO D, CHOI J, HONG J, et al. Rapid analytical detection of microcystins using gold colloidal immunochromatographic strip[J]. Journal of Immunoassay and Immunochemistry, 2006,27(4): 291-302.
    [102]张建华,刘宁国,陈忆九,等. Fn-EⅢA金标试纸条进行损伤时间推断的效果评价[J].法医学杂志, 2006,22(3): 171-172, 176.
    [103] SHI C, ZHAO S, ZHANG K, et al. Preparation of colloidal gold immunochromatography strip for detection of methamidophos residue[J]. Journal of Environmental Sciences (China), 2008,20(11): 1392-1397.
    [104] ZHAO Y, ZHANG G, LIU Q, et al. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues[J].Journal of Agricultural and Food Chemistry, 2008,56(24): 12138-12142.
    [105]林彤,邵军军,丛国正,等. Asia1型口蹄疫病毒胶体金免疫层析检测方法的建立[J].生物工程学报, 2009,25(5): 767-772.
    [106] SHIM W B, YANG Z Y, KIM J Y, et al. Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples[J].Journal of Agricultural and Food Chemistry, 2006,54(26): 9728-9734.
    [107]丁建祖,俞丽玲,楼涤,等.快速检测血吸虫抗体的乳胶微球层析法( DLIA )的建立和应用[J].中国寄生虫学与寄生虫病杂志,2010,28 (1): 30-33
    [108] LAITINENT M, VUENTO M. Immunochromatographic assay for quantitation of milk progesterone[J]. Acta Chemica Scandinavica, 1996,50: 141-145.
    [109] OW H, LARSON D, SRIVASTAVA M, et al. Bright and Stable Core- Shell Fluorescent Silica Nanoparticles[J]. Nano Letters, 2005,5(1): 113-117.
    [110] SANTRA S, DUTTA D, MOUDGIL B. Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics[J]. Food and Bioproducts Processing, 2005,83(2): 136-140.
    [111] GUZELIAN A, BANIN U, KADAVANICH A, et al. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots[J]. Applied Physics Letters, 1996,69: 1432.
    [112] PENG X, MANNA L, YANG W, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000,404(6773): 59-61.
    [113] PENG Z, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001,123(1): 183-184.
    [114] CORSTJENS P, ZUIDERWIJK M, BRINK A, et al. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection[J]. Clinical Chemistry, 2001,47(10): 1885.
    [115] L NNBERG M, DREVIN M, CARLSSON J. Ultra-sensitive immunochromatographic assay for quantitative determination of erythropoietin[J]. Journal of Immunological Methods, 2008,339(2): 236-244.
    [116] PECK R, SCHWEIZER J, WEIGL B, et al. A Magnetic Immunochromatographic Strip Test for Detection of Human Papillomavirus 16 E6[J]. Clinical Chemistry, 2006,52(11): 2170.
    [117] WANG Y, XU H, WEI M, et al. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay[J]. Materials Science and Engineering: C, 2009,29(3): 714-718.
    [118] WORKMAN S, WELLS S, PAU C, et al. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT)[J]. Journal of Virological Methods, 2009,160(1): 14-21.
    [119] XU Q, XU H, GU H, et al. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I[J]. Materials Science and Engineering: C, 2009,29(3): 702-707.
    [1] HYEON T. Chemical synthesis of magnetic nanoparticles[J]. Chemical Communications (Cambridge, England) , 2003,(8): 927-934.
    [2] HYEON T, LEE S S, PARK J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J]. Journal of the American Chemical Society, 2001,123(51): 12798-12801.
    [3] STEVENS P D, LI G, FAN J, et al. Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions[J]. Chemical Communications (Cambridge, England) , 2005,(35): 4435-4437.
    [4] PUNTES V F, KRISHNAN K M, ALIVISATOS A P. Colloidal nanocrystal shape and size control: the case of cobalt[J]. Science, 2001,291(5511): 2115-2117.
    [5] SUN S, MURRAY C, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000,287(5460): 1989.
    [6] SUN S, ANDERS S, HAMANN H, et al. Polymer mediated self-assembly of magnetic nanoparticles[J]. J. Am. Chem. Soc, 2002,124(12): 2884-2885.
    [7] ANDERS S, TONEY M, THOMSON T, et al. X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies[J]. Journal of Applied Physics, 2003,93: 6299.
    [8] SUN S, MURRAY C. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited)[J]. Journal of Applied Physics, 1999,85: 4325.
    [9] CHENG F, SU C, YANG Y, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005,26(7): 729-738.
    [10] KANG Y, RISBUD S, RABOLT J, et al. Synthesis and characterization of nanometer-size Fe3O4 and [gamma]-Fe2O3 particles[J]. Chemistry of Materials, 1996,8(9): 2209-2211.
    [11] FRIED T, SHEMER G, MARKOVICH G. Ordered two-dimensional arrays of ferrite nanoparticles[J]. Advanced Materials, 2001,13(15): 1158-1161.
    [12] PEREZ J, QUINTELA M, MIRA J, et al. Advances in the preparation of magnetic nanoparticles by the microemulsion method[J]. Journal of Physical Chemistry B, 1997,101(41): 8045-8047.
    [13] YU W W, FALKNER J C, YAVUZ C T, et al. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts[J]. Chemical Communications (Cambridge, England) , 2004,(20): 2306-2307.
    [14] SI H, ZHOU C, WANG H, et al. Controlled synthesis of different types iron oxides nanocrystals in paraffin oil[J]. Journal of Colloid and Interface Science, 2008,327(2): 466-471.
    [15] CHEN X, DENG Z, LI Y, et al. Hydrothermal synthesis and superparamagnetic behaviors of a series of ferrite nanoparticles[J]. Chinese Journal of Inorganic Chemistry, 2002,18(5): 460-464.
    [16] YANG C, WANG G, LU Z, et al. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles[J]. Journal of Materials Chemistry, 2005,15(39): 4252-4257.
    [17] GUPTA A, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005,26(18): 3995-4021.
    [18] GUAN N, LIU C, SUN D, et al. A facile method to synthesize carboxyl-functionalized magnetic polystyrene nanospheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,335(1-3): 174-180.
    [19] PORTET D, DENIZOT B, RUMP E, et al. Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: Effect of different bisphosphonate coatings[J]. Drug Development Research, 2002,54(4): 173-181.
    [20] MA I, LOBB E, BILLINGHAM N, et al. Synthesis of biocompatible polymers. 1. Homopolymerization of 2-methacryloyloxyethyl phosphorylcholine via ATRP in protic solvents: an optimization study[J]. Macromolecules, 2002,35(25): 9306-9314.
    [21] NARAIN R, GONZALES M, HOFFMAN A, et al. Synthesis of monodisperse biotinylated p (NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin[J]. Journal of the American Chemical Society, 2004,126: 9938-9939.
    [22] BANERJEE S, CHEN D. Glucose-grafted gum arabic modified magnetic nanoparticles: Preparation and specific interaction with concanavalin A[J]. Chemistry of Materials, 2007,19(15): 3667-3672.
    [23] TURAL B, ZKAN N, VOLKAN M. Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates[J]. Journal of Physics and Chemistry of Solids, 2009,70(5): 860-866.
    [24] LINDBERG R, SJ BLOM J, SUNDHOLM G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995,99(1): 79-88.
    [25] BARNAKOV Y, YU M, ROSENZWEIG Z. Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled st?ber synthesis[J]. Langmuir, 2005,21(16): 7524-7527.
    [26] LI-QIONG Q, LAMBERT W. A new class of silica cross-linked micellar core-shell nanoparticles[J]. Journal of the American Chemical Society, 2006,128: 19.
    [27] MA Z, GUAN Y, LIU H. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption[J]. Journal of Magnetism and Magnetic Materials, 2006,301(2): 469-477.
    [28] NAKAMURA M, ISHIMURA K. Size-controlled, one-pot synthesis, characterization, and biological applications of epoxy-organosilica particles possessing positive zeta potential[J]. Langmuir, 2008,24(21): 12228-12234.
    [29] MAZALEYRAT F, AMMAR M, LOBUE M, et al. Silica coated nanoparticles: Synthesis, magnetic properties and spin structure[J]. Journal of Alloys and Compounds, 2009,483(1-2): 473-478.
    [30] NARITA A, NAKA K, CHUJO Y. Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,336(1-3): 46-56.
    [31] MCCARTHY G, ARMES S, GREAVES S, et al. Synthesis and Characterization of Carboxylic Acid-Functionalized Polypyrrole- Silica Microparticles Using a 3-Substituted Pyrrole Comonomer[J]. Langmuir, 1997,13(14): 3686-3692.
    [32] XU H, CUI L, TONG N, et al. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization[J]. Journal of the American Chemical Society, 2006,128(49): 15582-15583.
    [33] PHILIPSE A, VAN BRUGGEN M, PATHMAMANOHARAN C. Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core[J]. Langmuir, 1994,10(1): 92-99.
    [34] KOBAYASHI Y, KATAKAMI H, MINE E, et al. Silica coating of silver nanoparticles using a modified St?ber method[J]. Journal of Colloid and Interface Science, 2005,283(2): 392-396.
    [35] GRAF C, DEMBSKI S, HOFMANN A, et al. A general method for the controlled embedding of nanoparticles in silica colloids[J]. Langmuir, 2006,22(13): 5604-5610.
    [36] LU Z, WANG G, ZHUANG J, et al. Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2 core/shell nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006,278(1-3): 140-143.
    [37] CARUSO F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001,13(1): 11-22.
    [38] KIM K, WEBSTER S, LEVI N, et al. Luminescent Core-Shell Photonic Crystals from Poly (phenylene ethynylene) Coated Silica Spheres[J]. Langmuir, 2005,21(11): 5207-5211.
    [39] SHOKOUHIMEHR M, PIAO Y, KIM J, et al. A magnetically recyclable nanocomposite catalyst for olefin epoxidation[J]. Angewandte Chemie International Edition, 2007,46(37): 7039.
    [40] STJERNDAHL M, ANDERSSON M, HALL H, et al. Superparamagnetic Fe3O4/SiO2 Nanocomposites: Enabling the Tuning of Both the Iron Oxide Load and the Size of the Nanoparticles[J]. Langmuir, 2008,24(7): 3532-3536.
    [41] HERMANSON G T. Bioconjugate techniques[M]. Rockford: Academic Press, 2008.
    [42] ZENG Z, YU J, GUO Z. Preparation of Carboxyl-Functionalized Polystyrene/Silica Composite Nanoparticles[J]. Macromolecular Chemistry and Physics, 2004,205(16): 2197-2204.
    [43] KLOTZ M, AYRAL A, GUIZARD C, et al. Silica coating on colloidal maghemite particles[J]. Journal of Colloid and Interface Science, 1999,220(2): 357-361.
    [44] YAMAURA M, CAMILO R, SAMPAIO L, et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2004,279(2-3): 210-217.
    [45] WANG P, PAN C. Preparation of styrene/acrylic acid copolymer microspheres: polymerization mechanism and carboxyl group distribution[J]. Colloid & Polymer Science, 2002,280(2): 152-159.
    [46] WANG Y, TENG X, WANG J, et al. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@ polystyrene core-shell nanoparticles[J]. Nano Letterss, 2003,3(6): 789-793.
    [47] TAO K, DOU H, SUN K. Facile interfacial coprecipitation to fabricate hydrophilic amine-capped magnetite nanoparticles[J]. Chemistry of Materials, 2006,18(22): 5273-5278.
    [48] MARCU I, DANIELS E, DIMONIE V, et al. Incorporation of alkoxysilanes into model latex systems: vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate[J]. Macromolecules, 2003,36(2): 328-332.
    [49] NI K, SHAN G, WENG Z. Synthesis of Hybrid Nanocapsules by Miniemulsion (Co) polymerization of Styrene and [gamma]-Methacryloxypropyltrimethoxysilane[J]. Macromolecules, 2006,39(7): 2529-2535.
    [50] DAI J, LIU Y, LI J, et al. Phenanthroline method for quantitative determination of surface carboxyl groups on carboxylated polystyrene particles with high sensitivity[J]. Surface and Interface Analysis, 2009,41(7): 577-580.
    [1] ITO A, SHINKAI M, HONDA H, et al. Medical application of functionalized magnetic nanoparticles[J]. Journal of Bioscience and Bioengineering, 2005,100(1): 1-11.
    [2] CORCHERO J, VILLAVERDE A. Biomedical applications of distally controlled magnetic nanoparticles[J]. Trends in Biotechnology, 2009,27(8): 468-476.
    [3] ARRUEBO M, FERNANDEZ-PACHECO R, VELASCO B, et al. Antibody-functionalized hybrid superparamagnetic nanoparticles[J]. Advanced Functional Materials, 2007,17(9): 1473-1479.
    [4] LEE J, DEININGER R. Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence[J]. Luminescence, 2004,19(1): 31-36.
    [5] PECK R, SCHWEIZER J, WEIGL B, et al. A Magnetic Immunochromatographic Strip Test for Detection of Human Papillomavirus 16 E6[J]. Clinical Chemistry, 2006,52(11): 2170.
    [6] DE PALMA R, REEKMANS G, LAUREYN W, et al. The optimization of magnetosandwich assays for the sensitive and specific detection of proteins in serum[J]. Analytical Chemistry, 2007,79(19): 7540-7548.
    [7] LEE K, LEE S, KIM J, et al. Quantitative detection of magnetic particles in a chromatographic membrane by a giant magnetoresistance sensor[J]. Journal of Applied Physics, 2009,105: 10-13.
    [8] WANG Y, XU H, WEI M, et al. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay[J]. Materials Science and Engineering: C, 2009,29(3): 714-718.
    [9] WORKMAN S, WELLS S, PAU C, et al. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT)[J]. Journal of Virological Methods, 2009,160(1): 14-21.
    [10] XU Q, XU H, GU H, et al. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detectionof cardiac troponin I[J]. Materials Science and Engineering: C, 2009,29(3): 702-707.
    [11] YANG H, YANG X, CHEN Y, et al. Preparation and immunochromatographic assay of biological probes with Fe nanowires/chitosan/antibody[J]. Chinese Journal of Analytical Chemistry, 2009,37(2): 275-278.
    [12] ABOVETHEREST B. TechNote 205 Covalent Coupling[M], Bangslab.
    [13] LA C, JE B, JW O. The absorptive characteristics of proteins for polystyrene and their significance in solid-phase immunoassays[J]. Analytical Biochemistry, 1980,105: 375-382.
    [14] NAGATANI N, TAKAHASHI A, ISHII J, et al. Effect of Trehalose and Surfactant on Immunochromatographic Assay[C] Japan , 2002.
    [15] ZUK R, GINSBERG V, HOUTS T, et al. Enzyme immunochromatography--a quantitative immunoassay requiring no instrumentation[J]. Clinical Chemistry, 1985,31(7): 1144.
    [16] NAGAE H, TAKAHASHI H, KUROKI Y, et al. Enzyme-linked immunosorbent assay using F(ab')2 fragment for the detection of human pulmonary surfactant protein D in sera[J]. Clinica Chimica Acta., 1997,266(2): 157-171.
    [17] TSUTSUMI H, OUCHI K, OHSAKI M, et al. Immunochromatography test for rapid diagnosis of adenovirus respiratory tract infections: comparison with virus isolation in tissue culture[J].Journal of Clinical Microbiology, 1999,37(6): 2007-2009.
    [18] AL-YOUSIF Y, ANDERSON J, CHARD-BERGSTROM C, et al. Development, evaluation, and application of lateral-flow immunoassay (immunochromatography) for detection of rotavirus in bovine fecal samples[J]. Clinical and Diagnostic Laboratory Immunology, 2002,9(3): 723-725.
    [19] ONO T, KAWAMURA M, ARAO S, et al. A highly sensitive quantitative immunochromatography assay for antigen-specific IgE[J]. Journal of Immunological Methods, 2003,272(1-2): 211-218.
    [20] XIULAN S, XIAOLIAN Z, JIAN T, et al. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J].International Journal of Food Microbiology, 2005,99(2): 185-194.
    [21] OH J S, HA G W, CHO Y S, et al. One-step immunochromatography assay kit for detecting antibodies to canine parvovirus[J]. Clinical and Vaccine Immunology, 2006,13(4): 520-524.
    [22] LU C, ZU Y, YAM V W. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols[J].Journal of Chromatography A, 2007,1163(1-2): 328-332.
    [23] SHIM W B, YANG Z Y, KIM J S, et al. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples[J]. Journal of Microbiology and Biotechnology, 2007,17(10): 1629-1637.
    [24] HANSEN S, SCHMIDT V, STEFFENSEN M A, et al. An enzyme-linked immunosorbent assay (ELISA) for quantification of mouse surfactant protein D (SP-D)[J]. Journal of Immunological Methods, 2008,330(1-2): 75-85.
    [25] BOSCATO L, STUART M. Incidence and specificity of interference in two-site immunoassays[J]. Clinical Chemistry, 1986,32(8): 1491.
    [26] SUZUKI N, MATSUMOTO H, KITADA C, et al. A sensitive sandwich-enzyme immunoassay for human endothelin[J]. Journal of Immunological Methods, 1989,118(2): 245-250.
    [27] HARRIS D, CLARK M, FISHER J, et al. Development of an immunoassay for endogenous digitalislike factor[J]. Hypertension, 1991,17(6): 936.
    [28] FUJIMOTO N, MOURI N, IWATA K, et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies[J]. Clinica Chimica Acta, 1993,221(1-2): 91-103.
    [29] ALLARD W, ZHOU Z, YEUNG K. Novel immunoassay for the measurement of complexed prostate-specific antigen in serum[J]. Clinical Chemistry, 1998,44(6): 1216.
    [30] KRICKA L. Interferences in immunoassay--still a threat[J]. Clinical Chemistry, 2000,46(8): 1037.
    [31] WEISS A. Concurrent engineering for lateral-flow diagnostics[J]. IVD Technology, 1999, 7: 48.
    [1] EDWARDS R. Immunodiagnostics: a practical approach[M]. Oxford University Press, USA, 1999.
    [2] MATSUMOTO T, SHIMA H, KISHI T, et al. Sandwich enzyme immunoassay for rat transferrin with two monoclonal antibodies and its application[J]. Biochemical Medicine and Metabolic Biology, 1991,45(2): 188-196.
    [3] ALI E, SENGUPTA J, DHAR T K. Sandwich immunoassay of small molecules. I. Investigation with testosterone as model hapten[J]. Journal of Immunological Methods, 1992,147(2): 173-179.
    [4] PUJOL F H, RODRIGUEZ I, DEVESA M, et al. A double sandwich monoclonal enzyme immunoassay for detection of hepatitis B surface antigen[J]. Journal of Immunoassay, 1993,14(1-2): 21-31.
    [5] SEO Y, TAKAHAMA K. A highly sensitive sandwich enzyme immunoassay for human liver-specific antigen (LSA) and its forensic application[J]. Nihon Hoigaku Zasshi, 1994,48(3): 150-155.
    [6] UEDA H, TSUMOTO K, KUBOTA K, et al. Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region[J]. Nature Biotechnology, 1996,14(13): 1714-1718.
    [7] UEDA H. Open sandwich immunoassay: a novel immunoassay approach based on the interchain interaction of an antibody variable region[J].Journal of Bioscience and Bioengineering, 2002,94(6): 614-619.
    [8] GOH J B, TAM P L, LOO R W, et al. A quantitative diffraction-based sandwich immunoassay[J]. Analytical Biochemistry, 2003,313(2): 262-266.
    [9] VICENNATI P, BENSEL N, WAGNER A, et al. Sandwich immunoassay as a high-throughput screening method for cross-coupling reactions[J]. Angewandte Chemie International Edition International Edition, 2005,44(42): 6863-6866.
    [10] LI X, WANG L, ZHOU C, et al. Preliminary studies of application of CdTe nanocrystals and dextran-Fe3O4 magnetic nanoparticles in sandwich immunoassay[J]. Clinica Chimica Acta., 2007,378(1-2): 168-174.
    [11] SUZUKI T, MUNAKATA Y, MORITA K, et al. Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay[J].Analytical Sciences, 2007,23(1): 65-70.
    [12]胡学刚.胶体金免疫层析法检测乙肝表面抗体分析[J].实用医学杂志, 2005,21(005): 539-539.
    [13]沈志云,杜玲霞,柏则蓉,等.金标记免疫层析法联合ELISA法检测HBsAg在无偿献血者中的应用[J].临床检验杂志, 2006,24(002): 121-121.
    [14]施终戈,戴金华,马建波,等.荧光免疫分析法定量测定血清乙型肝炎病毒标志物的方法学评价[J].现代实用医学, 2007,19(001): 23-23.
    [15]李永成.乙型肝炎病毒感染现状、影响因素及乙肝疫苗免疫持久性研究[D].天津:天津医科大学, 2008.
    [16]刘勇,刘敏,肖玲.电化学发光法,酶联免疫法和金标快速检测板检测HBsAg, HBsAb结果对比[J].四川生殖卫生学院学报, 2008,(005): 54-56.
    [17]马艳焱,杨勇,盂慧灵.乙肝HBsAg快速检测在街头无偿献血中应用[J].新疆医学, 2008,38(011): 53-55.
    [18]席加秋,王中琳.金标记免疫层析法联合ELISA法在检测HBsAg中的应用[J].中国误诊学杂志, 2008,8(010): 2358-2359.
    [19]陈祥胜,廖雯君.乙肝HBsAg定量检测的临床诊断意义[J].湖北中医学院学报, 2009,11(002): 21-24.
    [20]卢锋,廖雪雁,石爽,等.乙型肝炎病毒表面抗原定量检测的临床意义[J].肝脏, 2009,14(001): 64-68.
    [21]张宝华.乙肝病毒表面抗原基因的克隆及在哺乳动物细胞中的表达纯化[D].昆明:云南大学, 2006.
    [1] CHARLTON K, HARRIS W J, PORTER A J. The isolation of super-sensitive anti-hapten antibodies from combinatorial antibody libraries derived from sheep[J]. Biosensors and Bioelectronics, 2001,16(9-12): 639-646.
    [2] CLEMENTI M E, MARINI S, CONDO S G, et al. Antibodies against small molecules[J]. Ann Ist Super Sanita, 1991,27(1): 139-143.
    [3] CHAPPEY O, DEBRAY M, NIEL E, et al. Association constants of monoclonal antibodies for hapten: heterogeneity of frequency distribution and possible relationship with hapten molecular weight[J]. Journal of Immunological Methods, 1994,172(2): 219-225.
    [4] JAEGER L L, JONES A D, HAMMOCK B D. Development of an enzyme-linked immunosorbent assay for atrazine mercapturic acid in human urine[J]. Chemical Research in Toxicology, 1998,11(4): 342-352.
    [5] BANKS K E, HERNANDEZ S. Evaluation and validation of commercially available enzyme-linked immunosorbent assays (ELISAs) specific for atrazine, chlorpyrifos, and diazinon in aqueous phase[J]. Talanta, 2003,61(3): 257-265.
    [6] RUBIO F, VELDHUIS L J, CLEGG B S, et al. Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water[J].Journal of Agricultural and Food Chemistry, 2003,51(3): 691-696.
    [7] EL-SAEID M H, KANU I, ANYANWU E C, et al. Impacts of extraction methods in the rapid determination of atrazine residues in foods using supercritical fluid chromatography and enzyme-linked immunosorbent assay: microwave solvent vs. supercritical fluid extractions[J]. ScientificWorld Journal, 2005,5: 11-19.
    [8] KOIVUNEN M E, DETTMER K, VERMEULEN R, et al. Improved methods for urinary atrazine mercapturate analysis--assessment of an enzyme-linked immunosorbent assay (ELISA) and a novel liquid chromatography-mass spectrometry (LC-MS) method utilizing online solid phase extraction (SPE)[J]. Analytica Chimica Acta, 2006,572(2): 180-189.
    [9]暴铱,郭磊,陈佳,等.生物毒素检测技术研究进展[J].分析化学评述与进展, 37(5): 764-771.
    [10]余若祯,何苗,施汉昌,等.小分子环境污染物的免疫检测技术及其研究进展[J].环境工程, 2005,23(3): 69-72.
    [11]王战辉,张素霞,沈建忠.荧光偏振免疫分析在农药和兽药残留检测中的研究进展[J].光谱学与光谱分析, 2007,27(11): 2299-2306.
    [12] LAITINEN M P, VUENTO M. Affinity immunosensor for milk progesterone: identification of critical parameters[J]. Biosensors and Bioelectronics, 1996,11(12): 1207-1214.
    [13] LEUNG W, CHAN P, BOSGOED F, et al. One-step quantitative cortisol dipstick with proportional reading[J]. Journal of Immunological Methods, 2003,281(1-2): 109-118.
    [14] QIAN S, BAU H H. Analysis of lateral flow biodetectors: competitive format[J]. Analytical Biochemistry, 2004,326(2): 211-224.
    [15] ZHOU P, LU Y, ZHU J, et al. Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran[J].Journal of Agricultural and Food Chemistry, 2004,52(14): 4355-4359.
    [16] CHO Y J, LEE D H, KIM D O, et al. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay[J]. J Agric Food Chem, 2005,53(22): 8447-8451.
    [17] XIULAN S, XIAOLIAN Z, JIAN T, et al. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J]. International Journal of Food Microbiology, 2005,99(2): 185-194.
    [18] JIN Y, JANG J W, HAN C H, et al. Development of immunoassays for the detection of kanamycin in veterinary fields[J]. Journal of Veterinary Science, 2006,7(2): 111-117.
    [19] KAUR J, SINGH K V, BORO R, et al. Immunochromatographic dipstick assay format using gold nanoparticles labeled protein-hapten conjugate for the detection of atrazine[J]. Environmental Science and Technology ., 2007,41(14): 5028-5036.
    [20]张志健,王晓菲,戴绚丽.用胶体金免疫层析法检测饲料中莱克多巴胺含量[J].安徽农学通报, 2007,13(10): 51.
    [21] ZHU J, CHEN W, LU Y, et al. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water[J]. Environmental Pollution, 2008,156(1): 136-142.
    [22] XIE H, MA W, LIU L, et al. Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk[J]. Analytica Chimica Acta, 2009,634(1): 129-133.
    [23]姜燕,吕昌龙,单风平.吗啡和甲基安非他明单克隆抗体联合胶体金检测试卡的研制[J].中国免疫学杂志, 2007,23(7).
    [24]孙思明,周焕英,房彦军,等.雌二醇的免疫胶体金试纸法检测[J].中国公共卫生, 2007,23(1): 126-127.
    [25]李余动,张少恩,吴志刚,等.胶体金免疫层析法快速检测氯霉素残留[J].中国食品卫生杂志, 2005,17(005): 416-419.
    [26]陈建国.基于毒品层析试条定量测试仪的研究[J].福建工程学院学报, 2006,4(3): 355-358.
    [27] P. H J. Beta-agonists and their effects on animal growth and carcass quality [M]. London; Elsevier Applied Science. 1987.
    [28] HERMANSON G T. Bioconjugate techniques[M]. Rockford: Academic Press, 2008.
    [29] BURNS R. Immunochemical Protocols[M]. Totowa: Humana Press, 2005.